Banach spaces consisting of Strongly NA Lipschitz mappings

Óscar Roldán

A joint work with

Vladimir Kadets

Workshop on Banach spaces and Banach lattices II ICMAT, Madrid.

$$
\text { 9-13 May } 2022 .
$$

About the talk:

This talk is based in a recent joint work with Vladimir Kadets, initiated during a stay at V. N. Karazin Kharkiv National University, in Kharkiv, Ukraine:V. Kadets, Ó. Roldán, Closed linear spaces consisting of strongly norm attaining Lipschitz functionals. Preprint (submitted). ArXiv/2202.06855.

About the talk:

This talk is based in a recent joint work with Vladimir Kadets, initiated during a stay at V. N. Karazin Kharkiv National University, in Kharkiv, Ukraine:
\square V. Kadets, Ó. Roldán, Closed linear spaces consisting of strongly norm attaining Lipschitz functionals. Preprint (submitted). ArXiv/2202.06855.

This talk is dedicated with love and support to all my Ukrainian friends and colleagues, and especially, to the kind and lovely persons who welcomed me so warmly in Kharkiv and who are now living a terrible nightmare.

> \#StopThisWar \#StopPutin \#StandWithUkraine

Index

1. Introduction
2. First results: existence of subspaces

- Difficulties and tools
- Results

3. Sizes of subspaces and more questions

- Existence of infinite-dimensional subspaces
- Possible sizes of infinite-dimensional subspaces
- Inverse question
- Restrictions on some metric spaces

4. Some references

- Sample of references

Index

1. Introduction
2. First results: existence of subspaces

- Difficulties and tools
- Results

3. Sizes of subspaces and more questions

- Existence of infinite-dimensional subspaces
- Possible sizes of infinite-dimensional subspaces
- Inverse question
- Restrictions on some metric spaces

4. Some references

- Sample of references

Notation and motivation

Notation and motivation

Some notation:

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: c_{0}, ℓ_{1}

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.
- T attains its norm if there is $x \in X$ with $\|x\|=1$ such that $\|T(x)\|=\|T\|$.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.
- T attains its norm if there is $x \in X$ with $\|x\|=1$ such that $\|T(x)\|=\|T\|$.
- $\mathrm{NA}(X, Y)$: Set of norm-attaining operators from X to Y.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.
- T attains its norm if there is $x \in X$ with $\|x\|=1$ such that $\|T(x)\|=\|T\|$.
- $\mathrm{NA}(X, Y)$: Set of norm-attaining operators from X to Y.

Norm-attaining operators have been widely studied recently by many authors.

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.
- T attains its norm if there is $x \in X$ with $\|x\|=1$ such that $\|T(x)\|=\|T\|$.
- $\mathrm{NA}(X, Y)$: Set of norm-attaining operators from X to Y.

Norm-attaining operators have been widely studied recently by many authors.

- $\mathrm{NA}(X, \mathbb{K})$ is ALWAYS dense in X^{*} (Bishop-Phelps, 1961).

Notation and motivation

Some notation:

- X, Y : Real Banach spaces.
- $\mathcal{L}(X, Y)$: Space of bounded linear operators from X to Y.
- $X^{*}=\mathcal{L}(X, \mathbb{R})$: Topological dual of $X . x^{*} \in X^{*}$: functional.
- Classical Banach spaces: $c_{0}, \ell_{1}, \ell_{1}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \ell_{\infty}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \ldots$

For $T \in \mathcal{L}(X, Y)$, recall:

- Its norm is $\|T\|:=\sup \{\|T(x)\|:\|x\|=1\}$.
- T attains its norm if there is $x \in X$ with $\|x\|=1$ such that $\|T(x)\|=\|T\|$.
- $\mathrm{NA}(X, Y)$: Set of norm-attaining operators from X to Y.

Norm-attaining operators have been widely studied recently by many authors.

- $\mathrm{NA}(X, \mathbb{K})$ is ALWAYS dense in X^{*} (Bishop-Phelps, 1961).
- $\mathrm{NA}(X, Y)$ is NOT ALWAYS dense in $\mathcal{L}(X, Y)$ (Lindenstrauss, 1963).

Notation and motivation

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \mathrm{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \operatorname{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \operatorname{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators. E.g.:

- Let $f_{1}, f_{2} \in c_{0}^{*}$ be $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \mathrm{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators. E.g.:

- Let $f_{1}, f_{2} \in c_{0}^{*}$ be $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$. Then $\operatorname{span}\left(f_{1}, f_{2}\right)$ is a 2 dimensional subspace of c_{0}^{*} formed by NA functionals.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \mathrm{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators. E.g.:

- Let $f_{1}, f_{2} \in c_{0}^{*}$ be $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$. Then $\operatorname{span}\left(f_{1}, f_{2}\right)$ is a 2 dimensional subspace of c_{0}^{*} formed by NA functionals.
Q. (G. Godefroy, 2001): If X is a Banach space of dimension >1, does X^{*} always contain a 2-dimensional subspace consisting of NA functionals?

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \mathrm{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators. E.g.:

- Let $f_{1}, f_{2} \in c_{0}^{*}$ be $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$. Then $\operatorname{span}\left(f_{1}, f_{2}\right)$ is a 2 dimensional subspace of c_{0}^{*} formed by NA functionals.
Q. (G. Godefroy, 2001): If X is a Banach space of dimension >1, does X^{*} always contain a 2-dimensional subspace consisting of NA functionals?
A. (M. Rmoutil, 2017): If X is c_{0} renormed with Read's norm, X^{*} DOES NOT contain any 2-dimensional subspace consisting of NA functionals.

Notation and motivation

$\mathcal{L}(X, Y)$ is a (Banach) linear space, but $\mathrm{NA}(X, Y)$ isn't in general. Example:

- Let $T_{1}, T_{2} \in \mathcal{L}\left(c_{0}, c_{0}\right)$ be defined as

$$
T_{1}(x)=\left(x_{1}, 0.9 x_{2}, 0.99 x_{3}, 0.999 x_{4}, \ldots\right), \quad T_{2}(x)=\left(x_{1}, 0,0,0, \ldots\right)
$$

Then $T_{1}, T_{2} \in \mathrm{NA}\left(c_{0}, c_{0}\right)$, but $T_{1}-T_{2} \notin \mathrm{NA}\left(c_{0}, c_{0}\right)$.

However, sometimes you can form non-trivial spaces of NA operators. E.g.:

- Let $f_{1}, f_{2} \in c_{0}^{*}$ be $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$. Then $\operatorname{span}\left(f_{1}, f_{2}\right)$ is a 2 dimensional subspace of c_{0}^{*} formed by NA functionals.
Q. (G. Godefroy, 2001): If X is a Banach space of dimension >1, does X^{*} always contain a 2-dimensional subspace consisting of NA functionals?
A. (M. Rmoutil, 2017): If X is c_{0} renormed with Read's norm, X^{*} DOES NOT contain any 2-dimensional subspace consisting of NA functionals.

OBJECTIVE: Study similar questions adapted to Lipschitz mappings.

Lipschitz mappings

Lipschitz mappings

- (M, ρ) will always denote a pointed metric space, that is, a metric space with a distinguished point 0 . Usually, we will just write M.

Lipschitz mappings

- (M, ρ) will always denote a pointed metric space, that is, a metric space with a distinguished point 0 . Usually, we will just write M.
- All the vector spaces in this document are considered to be real.

Lipschitz mappings

- (M, ρ) will always denote a pointed metric space, that is, a metric space with a distinguished point 0 . Usually, we will just write M.
- All the vector spaces in this document are considered to be real.

A function $f: M \rightarrow \mathbb{R}$ is said to be Lipschitz if there is a constant $K>0$ such that for every $x, y \in M$,

$$
|f(x)-f(y)| \leq K \cdot \rho(x, y) .
$$

Lipschitz mappings

- (M, ρ) will always denote a pointed metric space, that is, a metric space with a distinguished point 0 . Usually, we will just write M.
- All the vector spaces in this document are considered to be real.

A function $f: M \rightarrow \mathbb{R}$ is said to be Lipschitz if there is a constant $K>0$ such that for every $x, y \in M$,

$$
|f(x)-f(y)| \leq K \cdot \rho(x, y)
$$

Intuition: the incremental slopes at any pairs are uniformly far from ∞ (they are $\leq K$, in fact).

Lipschitz mappings

- (M, ρ) will always denote a pointed metric space, that is, a metric space with a distinguished point 0 . Usually, we will just write M.
- All the vector spaces in this document are considered to be real.

A function $f: M \rightarrow \mathbb{R}$ is said to be Lipschitz if there is a constant $K>0$ such that for every $x, y \in M$,

$$
|f(x)-f(y)| \leq K \cdot \rho(x, y)
$$

Intuition: the incremental slopes at any pairs are uniformly far from ∞ (they are $\leq K$, in fact). In other words, uniformly, there is no verticality.

Lipschitz mappings

Figure: Non vertical ${ }^{(*)}$
(*): Picture from: https://unsplash.com/photos/yON4XwM70yA

Lipschitz mappings

These ARE Lipschitz mappings:

Lipschitz mappings

These ARE NOT Lipschitz mappings:

Lipo(M) and SNA(M)

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$, endowed with the norm

$$
\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\}
$$

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$, endowed with the norm

$$
\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\}
$$

Remark: The Lipschitz norm coincides with the usual operator norm whenever f is linear.

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$, endowed with the norm

$$
\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\}
$$

Remark: The Lipschitz norm coincides with the usual operator norm whenever f is linear.

There is a natural way to define norm-attainment. $f \in \operatorname{Lip}_{0}(M)$ attains its norm strongly if there exist $x \neq y \in M$ such that

$$
\|f\|=\frac{|f(x)-f(y)|}{\rho(x, y)}
$$

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$, endowed with the norm

$$
\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\}
$$

Remark: The Lipschitz norm coincides with the usual operator norm whenever f is linear.

There is a natural way to define norm-attainment. $f \in \operatorname{Lip}_{0}(M)$ attains its norm strongly if there exist $x \neq y \in M$ such that

$$
\|f\|=\frac{|f(x)-f(y)|}{\rho(x, y)}
$$

The set of strongly norm-attaining Lipschitz functions on M will be denoted by SNA(M).

$\operatorname{Lip}_{0}(M)$ and SNA(M)

$\operatorname{Lip}_{0}(M)$ is the space of Lipschitz mappings $f: M \rightarrow \mathbb{R}$ with $f(0)=0$, endowed with the norm

$$
\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\}
$$

Remark: The Lipschitz norm coincides with the usual operator norm whenever f is linear.

There is a natural way to define norm-attainment. $f \in \operatorname{Lip}_{0}(M)$ attains its norm strongly if there exist $x \neq y \in M$ such that

$$
\|f\|=\frac{|f(x)-f(y)|}{\rho(x, y)}
$$

The set of strongly norm-attaining Lipschitz functions on M will be denoted by SNA(M).

- This norm-attainment is called strong because there are other weaker, much less restrictive, norm-attainments considered that are also natural.

The strong norm-attainment is restrictive

Lemma 2.2 (Kadets-Martín-Soloviova, 2016)

If $f \in \operatorname{Lip}_{0}(M)$ attains its norm on a pair $(x, y) \in M \times M, x \neq y$, and if $z \in M \backslash\{x, y\}$ is such an element that $\rho(x, y)=\rho(x, z)+\rho(z, y)$, then f strongly attains its norm on the pairs (x, z) and (z, y), and

$$
f(z)=\frac{\rho(z, y) f(x)+\rho(x, z) f(y)}{\rho(x, y)}
$$

In particular, if M is a convex subset of a Banach space, then f is affine on the closed segment $[x, y]$, that is, $f(\theta x+(1-\theta) y)=\theta f(x)+(1-\theta) f(y)$ for every $\theta \in[0,1]$.

In other words: if f attains its norm strongly at (x, y), it must also attain its norm strongly at any pair of distinct points in between them!

Actually, if the maximum possible slope of f is attained at the pair $(x, y), f$ must be affine in between those points!

The strong norm-attainment is restrictive

The strong norm-attainment is restrictive

The strong norm-attainment is restrictive

Purpose of the talk

Purpose of the talk

Recall the title of the talk:
Banach spaces consisting of Strongly NA Lipschitz mappings

Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

In particular, we are interested in studying the existence and sizes of (closed) linear spaces of Lipschitz norms which attain their norms strongly

Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

Figure: Space (unrelated to our topic).

Picture from: https://pixabay.com/es/photos/estrellas-cielo-noche-1845140/

Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

Figure: This is more like what we mean.

Pisa tower picture from:
https://www.kindpng.com/picc/m/109-1098941_
leaning-tower-of-pisa-building-places-of-interest.png

Index

1. Introduction
2. First results: existence of subspaces

- Difficulties and tools
- Results

3. Sizes of subspaces and more questions

- Existence of infinite-dimensional subspaces
- Possible sizes of infinite-dimensional subspaces
- Inverse question
- Restrictions on some metric spaces

4. Some references

- Sample of references

Remarks

1) Mappings of the same type can have different behaviours.

Remarks

1) Mappings of the same type can have different behaviours.

Left mapping is SNA, right mapping is not SNA.

Difficulties and tools
Results

Remarks

2) A linear combination of SNA mappings needs not to be SNA.

Remarks

2) A linear combination of SNA mappings needs not to be SNA. First and second mappings are SNA, but their difference isn't.

Remarks

2) A linear combination of SNA mappings needs not to be SNA. First and second mappings are SNA, but their difference isn't.

Remarks

3) Metric spaces can be weird and hard to work with.

Remarks

3) Metric spaces can be weird and hard to work with.

For example, with ρ given by $\|\cdot\|_{\infty}$, the complete space
is uniformly discrete, but NONE of the points has a closest point.

Useful tool: Lipschitz-free

Useful tool: Lipschitz-free

The Lipschitz-free space associated to M is

$$
\mathcal{F}(M):=\operatorname{span}\left\{\frac{\delta_{x}-\delta_{y}}{\rho(x, y)}: x \neq y \in M\right\}
$$

where

$$
\begin{aligned}
\delta_{x}: \operatorname{Lip}_{0}(M) & \longrightarrow \mathbb{R} \\
f & \longmapsto \delta_{x}(f):=f(x)
\end{aligned}
$$

Useful tool: Lipschitz-free

The Lipschitz-free space associated to M is

$$
\mathcal{F}(M):=\operatorname{span}\left\{\frac{\delta_{x}-\delta_{y}}{\rho(x, y)}: x \neq y \in M\right\}
$$

where

$$
\begin{aligned}
\delta_{x}: \operatorname{Lip}_{0}(M) & \longrightarrow \mathbb{R} \\
f & \longmapsto \delta_{x}(f):=f(x)
\end{aligned}
$$

Why is it useful?

Useful tool: Lipschitz-free

The Lipschitz-free space associated to M is

$$
\mathcal{F}(M):=\operatorname{span}\left\{\frac{\delta_{x}-\delta_{y}}{\rho(x, y)}: x \neq y \in M\right\}
$$

where

$$
\begin{aligned}
\delta_{x}: \operatorname{Lip}_{0}(M) & \longrightarrow \mathbb{R} \\
f & \longmapsto \delta_{x}(f):=f(x) .
\end{aligned}
$$

Why is it useful?

1) $\mathcal{F}(M)^{*}$ is isometrically isomorphic to $\operatorname{Lip}_{0}(M)$. This allows us to "linearize" Lipschitz mappings.

Useful tool: Lipschitz-free

The Lipschitz-free space associated to M is

$$
\mathcal{F}(M):=\operatorname{span}\left\{\frac{\delta_{x}-\delta_{y}}{\rho(x, y)}: x \neq y \in M\right\}
$$

where

$$
\begin{aligned}
\delta_{x}: \operatorname{Lip}_{0}(M) & \longrightarrow \mathbb{R} \\
f & \longmapsto \delta_{x}(f):=f(x) .
\end{aligned}
$$

Why is it useful?

1) $\mathcal{F}(M)^{*}$ is isometrically isomorphic to $\operatorname{Lip}_{0}(M)$. This allows us to "linearize" Lipschitz mappings.
2) Link to classical functionals theory: $\operatorname{SNA}(M) \subset \operatorname{NA}(\mathcal{F}(M), \mathbb{R})$ in a natural way.

Finite metric spaces

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces to bigger metric spaces.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces to bigger metric spaces.

Example of application: $\ln [0,1]$, fix $n>1$ aligned points, assign random values to them, and define affine functions in the remaining intervals. This IS an n dimensional linear space inside $\operatorname{SNA}([0,1])$.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces to bigger metric spaces.

Example of application: $\ln [0,1]$, fix $n>1$ aligned points, assign random values to them, and define affine functions in the remaining intervals. This IS an n dimensional linear space inside $\operatorname{SNA}([0,1])$.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces to bigger metric spaces.

Example of application: $\ln [0,1]$, fix $n>1$ aligned points, assign random values to them, and define affine functions in the remaining intervals. This IS an n dimensional linear space inside $\operatorname{SNA}([0,1])$.

Finite metric spaces

Observation: If M has exactly $n>1$ elements, then $\operatorname{SNA}(M)=\operatorname{Lip}_{0}(M)$, which is an ($n-1$)-dimensional Banach space. Therefore, we are mainly interested in studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces to bigger metric spaces.

Example of application: $\ln [0,1]$, fix $n>1$ aligned points, assign random values to them, and define affine functions in the remaining intervals. This IS an n dimensional linear space inside $\operatorname{SNA}([0,1])$.

McShane's extension theorem: If $f \in \operatorname{Lip}_{0}(M)$ and M is a metric subspace of M^{\prime}, there is a mapping $F \in \operatorname{Lip}_{0}\left(M^{\prime}\right)$ such that $F=f$ on M and $\|F\|=\|f\|$.

Some bad news, and some good news

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$. It is clear that F_{j} extends f_{j} and that $\left\|F_{j}\right\|=\left\|f_{j}\right\|=1$, for $j \in\{1,2\}$.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$. It is clear that F_{j} extends f_{j} and that $\left\|F_{j}\right\|=\left\|f_{j}\right\|=1$, for $j \in\{1,2\}$. However, $\left\|a f_{1}+b f_{2}\right\| \neq\left\|a F_{1}+b F_{2}\right\|$ in general (in facr, $\left\|f_{1}+f_{2}\right\|=1$, and $\left\|F_{1}+F_{2}\right\|=\sqrt{2}$).

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$. It is clear that F_{j} extends f_{j} and that $\left\|F_{j}\right\|=\left\|f_{j}\right\|=1$, for $j \in\{1,2\}$. However, $\left\|a f_{1}+b f_{2}\right\| \neq\left\|a F_{1}+b F_{2}\right\|$ in general (in facr, $\left\|f_{1}+f_{2}\right\|=1$, and $\left\|F_{1}+F_{2}\right\|=\sqrt{2}$).
However, hope is not fully lost.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$. It is clear that F_{j} extends f_{j} and that $\left\|F_{j}\right\|=\left\|f_{j}\right\|=1$, for $j \in\{1,2\}$. However, $\left\|a f_{1}+b f_{2}\right\| \neq\left\|a F_{1}+b F_{2}\right\|$ in general (in facr, $\left\|f_{1}+f_{2}\right\|=1$, and $\left\|F_{1}+F_{2}\right\|=\sqrt{2}$).

However, hope is not fully lost.

Lemma 1

Let $M \subset M^{\prime}$ be pointed metric spaces and $n \in \mathbb{N}$. If ℓ_{1}^{n} embeds isometrically into $\operatorname{SNA}(M)$, then it also embeds isometrically into $\operatorname{SNA}\left(M^{\prime}\right)$.

Some bad news, and some good news

Don't let your intuitions fool you! Preserving norms and linearity at the same time is often too much to ask...

Proposition

Consider $M \subset M^{\prime}$. It is NOT true in general that you can extend with McShane an isometric subspace X of $\operatorname{SNA}(M)$ to $\operatorname{SNA}\left(M^{\prime}\right)$.

Example: $M=\{(0,0),(0,1),(1,0)\}, M^{\prime}=\mathbb{R}^{2}$. Let $f_{1}, f_{2} \in \operatorname{SNA}(M)$ and $F_{1}, F_{2} \in \operatorname{SNA}\left(M^{\prime}\right)$ be $f_{1}(x, y)=x, f_{2}(x, y)=y, F_{1}(x, y)=x, F_{2}(x, y)=y$. It is clear that F_{j} extends f_{j} and that $\left\|F_{j}\right\|=\left\|f_{j}\right\|=1$, for $j \in\{1,2\}$. However, $\left\|a f_{1}+b f_{2}\right\| \neq\left\|a F_{1}+b F_{2}\right\|$ in general (in facr, $\left\|f_{1}+f_{2}\right\|=1$, and $\left\|F_{1}+F_{2}\right\|=\sqrt{2}$).

However, hope is not fully lost.

Lemma 1

Let $M \subset M^{\prime}$ be pointed metric spaces and $n \in \mathbb{N}$. If ℓ_{1}^{n} embeds isometrically into $\operatorname{SNA}(M)$, then it also embeds isometrically into $\operatorname{SNA}\left(M^{\prime}\right)$.

Question: is it possible to get ℓ_{1}^{n} spaces, $n>1$, in $\operatorname{SNA}(M)$, where M is finite?

On 2-dimensional subspaces

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.

Sketch of proof:

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.
Sketch of proof: Rearrange M to $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1}=0$

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.
Sketch of proof: Rearrange M to $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1}=0$ and

$$
\rho\left(x_{1}, x_{4}\right)+\rho\left(x_{2}, x_{3}\right)=\min \{\rho(\alpha, \beta)+\rho(\gamma, \delta): M=\{\alpha, \beta, \gamma, \delta\}\},
$$

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.
Sketch of proof: Rearrange M to $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1}=0$ and

$$
\rho\left(x_{1}, x_{4}\right)+\rho\left(x_{2}, x_{3}\right)=\min \{\rho(\alpha, \beta)+\rho(\gamma, \delta): M=\{\alpha, \beta, \gamma, \delta\}\}
$$

and consider $\operatorname{span}\left(f_{1}, f_{2}\right)$ where

$$
\left\{\begin{array} { l }
{ f _ { 1 } (x _ { 1 }) = 0 , } \\
{ f _ { 1 } (x _ { 2 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) , } \\
{ f _ { 1 } (x _ { 3 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) + \rho (x _ { 2 } , x _ { 3 }) , } \\
{ f _ { 1 } (x _ { 4 }) = \rho (x _ { 1 } , x _ { 4 }) , }
\end{array} \left\{\begin{array}{l}
f_{2}\left(x_{1}\right)=0 \\
f_{2}\left(x_{2}\right)=\rho\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{3}\right)=\rho\left(x_{1}, x_{2}\right)-\rho\left(x_{2}, x_{3}\right), \\
f_{2}\left(x_{4}\right)=\rho\left(x_{1}, x_{4}\right)
\end{array}\right.\right.
$$

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.
Sketch of proof: Rearrange M to $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1}=0$ and

$$
\rho\left(x_{1}, x_{4}\right)+\rho\left(x_{2}, x_{3}\right)=\min \{\rho(\alpha, \beta)+\rho(\gamma, \delta): M=\{\alpha, \beta, \gamma, \delta\}\}
$$

and consider $\operatorname{span}\left(f_{1}, f_{2}\right)$ where

$$
\left\{\begin{array} { l }
{ f _ { 1 } (x _ { 1 }) = 0 , } \\
{ f _ { 1 } (x _ { 2 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) , } \\
{ f _ { 1 } (x _ { 3 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) + \rho (x _ { 2 } , x _ { 3 }) , } \\
{ f _ { 1 } (x _ { 4 }) = \rho (x _ { 1 } , x _ { 4 }) , }
\end{array} \left\{\begin{array}{l}
f_{2}\left(x_{1}\right)=0 \\
f_{2}\left(x_{2}\right)=\rho\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{3}\right)=\rho\left(x_{1}, x_{2}\right)-\rho\left(x_{2}, x_{3}\right), \\
f_{2}\left(x_{4}\right)=\rho\left(x_{1}, x_{4}\right)
\end{array}\right.\right.
$$

Corollary

If $M>2$, then $\operatorname{SNA}(M)$ contains a 2-dimensional subspace isometrically.

On 2-dimensional subspaces

Theorem

Let $M=\{0, a, b, c\}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{2} isometrically.
Sketch of proof: Rearrange M to $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1}=0$ and

$$
\rho\left(x_{1}, x_{4}\right)+\rho\left(x_{2}, x_{3}\right)=\min \{\rho(\alpha, \beta)+\rho(\gamma, \delta): M=\{\alpha, \beta, \gamma, \delta\}\}
$$

and consider $\operatorname{span}\left(f_{1}, f_{2}\right)$ where

$$
\left\{\begin{array} { l }
{ f _ { 1 } (x _ { 1 }) = 0 , } \\
{ f _ { 1 } (x _ { 2 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) , } \\
{ f _ { 1 } (x _ { 3 }) = \rho (x _ { 1 } , x _ { 4 }) - \rho (x _ { 2 } , x _ { 4 }) + \rho (x _ { 2 } , x _ { 3 }) , } \\
{ f _ { 1 } (x _ { 4 }) = \rho (x _ { 1 } , x _ { 4 }) , }
\end{array} \left\{\begin{array}{l}
f_{2}\left(x_{1}\right)=0, \\
f_{2}\left(x_{2}\right)=\rho\left(x_{1}, x_{2}\right), \\
f_{2}\left(x_{3}\right)=\rho\left(x_{1}, x_{2}\right)-\rho\left(x_{2}, x_{3}\right), \\
f_{2}\left(x_{4}\right)=\rho\left(x_{1}, x_{4}\right) .
\end{array}\right.\right.
$$

Corollary

If $M>2$, then $\operatorname{SNA}(M)$ contains a 2-dimensional subspace isometrically.
Remark: Contrast with classical norm-attainment theory!

One step further

One step further

Lemma 2 (Theorem 14.5, Khan-Mim-Ostrovskii, 2020)
If $|M|=2 n$, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_{1}^{n}.
Remark: We are grateful to M. Ostrovskii for pointing us out about this result.

One step further

Lemma 2 (Theorem 14.5, Khan-Mim-Ostrovskii, 2020)

If $|M|=2 n$, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_{1}^{n}.
Remark: We are grateful to M . Ostrovskii for pointing us out about this result.

It is not true in general that if Y is a subspace of X, then Y^{*} can be embedded isometrically in X^{*}.

One step further

Lemma 2 (Theorem 14.5, Khan-Mim-Ostrovskii, 2020)

If $|M|=2 n$, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_{1}^{n}.
Remark: We are grateful to M . Ostrovskii for pointing us out about this result.

It is not true in general that if Y is a subspace of X, then Y^{*} can be embedded isometrically in X^{*}. However, we have the following.

Lemma 3

Let X be a Banach space that contains a 1-complemented subspace Y. Then Y^{*} embeds isometrically as a subspace of X^{*}.

One step further

Lemma 2 (Theorem 14.5, Khan-Mim-Ostrovskii, 2020)

If $|M|=2 n$, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_{1}^{n}.
Remark: We are grateful to M . Ostrovskii for pointing us out about this result.

It is not true in general that if Y is a subspace of X, then Y^{*} can be embedded isometrically in X^{*}. However, we have the following.

Lemma 3

Let X be a Banach space that contains a 1-complemented subspace Y. Then Y^{*} embeds isometrically as a subspace of X^{*}.

Lemma 4

If $n \in \mathbb{N}$, then ℓ_{1}^{n} is isometric to a subspace of $\ell_{\infty}^{2^{n-1}}$.

One step further

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.
(2) By Lemma 3, $\operatorname{Lip}_{0}(K)=\operatorname{SNA}(K)$ contains $\ell_{\infty}^{2^{n-1}}$ isometrically.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.
(2) By Lemma 3, $\operatorname{Lip}_{0}(K)=\operatorname{SNA}(K)$ contains $\ell_{\infty}^{2^{n-1}}$ isometrically.
(3) By Lemma 4, SNA(K) contains ℓ_{1}^{n} isometrically.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.
(2) By Lemma 3, $\operatorname{Lip}_{0}(K)=\operatorname{SNA}(K)$ contains $\ell_{\infty}^{2^{n-1}}$ isometrically.
(3) By Lemma 4, SNA(K) contains ℓ_{1}^{n} isometrically.
(4) By Lemma 1, $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.
(2) By Lemma 3, $\operatorname{Lip}_{0}(K)=\operatorname{SNA}(K)$ contains $\ell_{\infty}^{2^{n-1}}$ isometrically.
(3) By Lemma 4, SNA(K) contains ℓ_{1}^{n} isometrically.
(4) By Lemma 1, $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Corollary

If M is infinite, $\operatorname{SNA}(M)$ contains all the ℓ_{1}^{n} isometrically.

One step further

Theorem

If $|M| \geq 2^{n}$, then $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Sketch of proof:

(1) Let $K \subset M$ with $|K|=2^{n}$. By Lemma 2, $\mathcal{F}(K)$ contains a 1-complemented subspace isometric to $\ell_{1}^{2^{n-1}}$.
(2) By Lemma 3, $\operatorname{Lip}_{0}(K)=\operatorname{SNA}(K)$ contains $\ell_{\infty}^{2^{n-1}}$ isometrically.
(3) By Lemma 4, SNA(K) contains ℓ_{1}^{n} isometrically.
(4) By Lemma 1, $\operatorname{SNA}(M)$ contains ℓ_{1}^{n} isometrically.

Corollary

If M is infinite, $\operatorname{SNA}(M)$ contains all the ℓ_{1}^{n} isometrically.
Compare this to the classical theory again, where there are Banach spaces X such that $\mathrm{NA}(X)$ does not contain 2-dimensional linear subspaces.

Index

1. Introduction
2. First results: existence of subspaces

- Difficulties and tools
- Results

3. Sizes of subspaces and more questions

- Existence of infinite-dimensional subspaces
- Possible sizes of infinite-dimensional subspaces
- Inverse question
- Restrictions on some metric spaces

4. Some references

- Sample of references

Introduction

Existence of infinite-dimensional subspaces Possible sizes of infinite-dimensional subspaces Inverse question
Restrictions on some metric spaces

Infinite-dimensional subspaces: existence

Infinite-dimensional subspaces: existence

We have seen that if M is infinite, $\operatorname{SNA}(M)$ has subspaces of all possible finite dimensions. Can we find infinite-dimensional subspaces of $\operatorname{SNA}(M)$ for some M ?

Infinite-dimensional subspaces: existence

We have seen that if M is infinite, $\operatorname{SNA}(M)$ has subspaces of all possible finite dimensions. Can we find infinite-dimensional subspaces of $\operatorname{SNA}(M)$ for some M ? Example: $\operatorname{SNA}([0,1])$ contains c_{0} isometrically:

Infinite-dimensional subspaces: existence

We have seen that if M is infinite, $\operatorname{SNA}(M)$ has subspaces of all possible finite dimensions. Can we find infinite-dimensional subspaces of $\operatorname{SNA}(M)$ for some M ?

Example: $\operatorname{SNA}([0,1])$ contains c_{0} isometrically:

Infinite-dimensional subspaces: existence

We have seen that if M is infinite, $\operatorname{SNA}(M)$ has subspaces of all possible finite dimensions. Can we find infinite-dimensional subspaces of $\operatorname{SNA}(M)$ for some M ?

Example: $\operatorname{SNA}([0,1])$ contains c_{0} isometrically:

With retractions and McShane, this construction can be extended:

Infinite-dimensional subspaces: existence

We have seen that if M is infinite, $\operatorname{SNA}(M)$ has subspaces of all possible finite dimensions. Can we find infinite-dimensional subspaces of $\operatorname{SNA}(M)$ for some M ?

Example: $\operatorname{SNA}([0,1])$ contains c_{0} isometrically:

With retractions and McShane, this construction can be extended:

Theorem

If M is a metric space containing $[0,1]$ isometrically, then $\operatorname{SNA}(M)$ contains c_{0} isometrically.

Infinite-dimensional subspaces: possible sizes

Infinite-dimensional subspaces: possible sizes

Can we form "bigger" spaces than c_{0} in $\operatorname{SNA}(M)$ for some M ?

Infinite-dimensional subspaces: possible sizes

Can we form "bigger" spaces than c_{0} in $\operatorname{SNA}(M)$ for some M ? For instance, non-separable spaces like ℓ_{∞}, or spaces with non-separable dual like ℓ_{1}.

Infinite-dimensional subspaces: possible sizes

Can we form "bigger" spaces than c_{0} in $\operatorname{SNA}(M)$ for some M ? For instance, non-separable spaces like ℓ_{∞}, or spaces with non-separable dual like ℓ_{1}.

If we try to do this constructively on a simple space like $[0,1]$ or \mathbb{R}^{n}, we will struggle more than one may think.

Infinite-dimensional subspaces: possible sizes

Can we form "bigger" spaces than c_{0} in $\operatorname{SNA}(M)$ for some M ? For instance, non-separable spaces like ℓ_{∞}, or spaces with non-separable dual like ℓ_{1}.

If we try to do this constructively on a simple space like $[0,1]$ or \mathbb{R}^{n}, we will struggle more than one may think.

However, surprisingly enough, ANY Banach space can be formed in some SNA(M) if you choose the right M.

Infinite-dimensional subspaces: possible sizes

Can we form "bigger" spaces than c_{0} in $\operatorname{SNA}(M)$ for some M ? For instance, non-separable spaces like ℓ_{∞}, or spaces with non-separable dual like ℓ_{1}.

If we try to do this constructively on a simple space like $[0,1]$ or \mathbb{R}^{n}, we will struggle more than one may think.

However, surprisingly enough, ANY Banach space can be formed in some SNA(M) if you choose the right M.

Theorem

If Y is a Banach space, then it embeds isometrically in $\operatorname{SNA}\left(B_{Y^{*}}\right)$.

Introduction

Some references

Existence of infinite-dimensional subspaces Possible sizes of infinite-dimensional subspaces Inverse question
Restrictions on some metric spaces

The inverse question

Existence of infinite-dimensional subspaces Possible sizes of infinite-dimensional subspaces Inverse question
Restrictions on some metric spaces

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be?

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof:

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof: $[(1) \Rightarrow(2)]$ take $X=\mathcal{F}(M)$.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof: $[(1) \Rightarrow(2)]$ take $X=\mathcal{F}(M) . \quad[(2) \Rightarrow(1)]$ take $M=B_{X}$.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof: $[(1) \Rightarrow(2)]$ take $X=\mathcal{F}(M) . \quad[(2) \Rightarrow(1)]$ take $M=B_{X}$. $[(2) \Rightarrow(3)]$ find a separable James boundary of Z_{1}, and deduce that then Z_{1}^{*} and Y^{*} are separable.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof: $[(1) \Rightarrow(2)]$ take $X=\mathcal{F}(M) . \quad[(2) \Rightarrow(1)]$ take $M=B_{X}$. $[(2) \Rightarrow(3)]$ find a separable James boundary of Z_{1}, and deduce that then Z_{1}^{*} and Y^{*} are separable. $[(3) \Rightarrow(1)]$ take $M=B_{Y^{*}}$. \quad.

The inverse question

Question: If Y is a subspace of $\operatorname{SNA}(M)$, how small can M be? From the previous result, if Y has a separable dual, M can be chosen to be separable. What if not? Does $\operatorname{SNA}(M)$ always contain ℓ_{1} for all infinite M ?

Theorem

For a Banach space Y, the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace $Z \subset \operatorname{Lip}_{0}(M)$ such that Z is isometric to Y and $Z \subset \operatorname{SNA}(M)$.
(2) There is a separable Banach space X and a closed linear subspace $Z_{1} \subset X^{*}$ such that Z_{1} is isometric to Y and $Z_{1} \subset \operatorname{NA}(X, \mathbb{R})$.
(3) Y^{*} is separable.

Sketch of proof: $[(1) \Rightarrow(2)]$ take $X=\mathcal{F}(M) . \quad[(2) \Rightarrow(1)]$ take $M=B_{X}$. $[(2) \Rightarrow(3)]$ find a separable James boundary of Z_{1}, and deduce that then Z_{1}^{*} and Y^{*} are separable. $[(3) \Rightarrow(1)]$ take $M=B_{Y^{*}}$. ■.

So if Y^{*} is not separable, M CANNOT be separable either. Hence, some $\operatorname{SNA}(M)$ with M infinite don't contain ℓ_{1}, despite containing all the ℓ_{1}^{n} spaces.

Introduction

Existence of infinite-dimensional subspaces Possible sizes of infinite-dimensional subspaces Inverse question
Restrictions on some metric spaces

Restrictions on some metric spaces

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically.

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically. We will now see that not much more can be said in this case.

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically. We will now see that not much more can be said in this case.

Recall that a space is σ-(pre)compact if it's a countable union of (pre)compact sets.

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically. We will now see that not much more can be said in this case.

Recall that a space is σ-(pre)compact if it's a countable union of (pre)compact sets. This includes all compact spaces and all \mathbb{R}^{n} spaces, for instance.

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically. We will now see that not much more can be said in this case.

Recall that a space is σ-(pre)compact if it's a countable union of (pre)compact sets. This includes all compact spaces and all \mathbb{R}^{n} spaces, for instance.

Theorem

Let M be a σ-precompact pointed metric space, then all Banach subspaces in SNA (M) are separable and isomorphic to polyhedral spaces.

Restrictions on some metric spaces

Earlier we saw that $\operatorname{SNA}([0,1])$ contains c_{0} isometrically. We will now see that not much more can be said in this case.

Recall that a space is σ-(pre)compact if it's a countable union of (pre)compact sets. This includes all compact spaces and all \mathbb{R}^{n} spaces, for instance.

Theorem

Let M be a σ-precompact pointed metric space, then all Banach subspaces in SNA (M) are separable and isomorphic to polyhedral spaces.

So all the subspaces of $\operatorname{SNA}([0,1])$ are separable and isomorphically polyhedral, and the same happens on all the \mathbb{R}^{n} spaces, for instance.

Index

1. Introduction
2. First results: existence of subspaces

- Difficulties and tools
- Results

3. Sizes of subspaces and more questions

- Existence of infinite-dimensional subspaces
- Possible sizes of infinite-dimensional subspaces
- Inverse question
- Restrictions on some metric spaces

4. Some references

- Sample of references

Sample of references

For the interested reader.

Figure: Interested reader

NON-EXHAUSTIVE sample of references

\square G. Godefroy, On norm attaining Lipschitz maps between Banach spaces, Pure Appl. Funct. Anal. 1 (2016), no. 1, 39-46.
V. Kadets, M. Martín, and M. Soloviova, Norm-attaining Lipschitz functionals, Banach J. Math. Anal. 10 (2016), no. 3, 621-637.

V. Kadets, Ó. Roldán, Closed linear spaces consisting of strongly norm attaining Lipschitz functionals. Preprint (2022, submitted). ArXiv/2202.06855.
S. S. Khan, M. Mim and M. I. Ostrovskii, Isometric copies of ℓ_{∞}^{n} and ℓ_{1}^{n} in transportation cost spaces on finite metric spaces. In: The mathematical legacy of Victor Lomonosov 189-203, Adv. Anal. Geom., 2, De Gruyter, Berlin, 2020.

宔
M. Rmoutil, Norm-attaining functionals need not contain 2-dimensional subspaces, J. Funct. Anal. 272 (2017), no. 3, 918-928.

Thank you for your attention!

Vladimir Kadets
v.kateds@karazin.ua
School of Mathematics and Computer Sciences
V.n. Karazin Kharkiv National University

Óscar Roldán

Oscar.Roldan@uv.es
Departamento de Análisis Matemático
Universitat de València

