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Notation and motivation

Some notation:
X , Y : Real Banach spaces.
L(X , Y ): Space of bounded linear operators from X to Y .
X ∗ = L(X ,R): Topological dual of X . x∗ ∈ X ∗: functional.
Classical Banach spaces: c0, ℓ1, ℓn

1 = (Rn, ∥ · ∥1), ℓn
∞ = (Rn, ∥ · ∥∞). . .

For T ∈ L(X , Y ), recall:
Its norm is ∥T∥ := sup{∥T (x)∥ : ∥x∥ = 1}.
T attains its norm if there is x ∈ X with ∥x∥ = 1 such that ∥T (x)∥ = ∥T∥.
NA(X , Y ): Set of norm-attaining operators from X to Y .

Norm-attaining operators have been widely studied recently by many authors.
NA(X ,K) is ALWAYS dense in X ∗ (Bishop-Phelps, 1961).
NA(X , Y ) is NOT ALWAYS dense in L(X , Y ) (Lindenstrauss, 1963).
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Notation and motivation

L(X , Y ) is a (Banach) linear space, but NA(X , Y ) isn’t in general. Example:
Let T1, T2 ∈ L(c0, c0) be defined as

T1(x) = (x1, 0.9x2, 0.99x3, 0.999x4, . . .), T2(x) = (x1, 0, 0, 0, . . .)

Then T1, T2 ∈ NA(c0, c0), but T1 − T2 /∈ NA(c0, c0).

However, sometimes you can form non-trivial spaces of NA operators. E.g.:
Let f1, f2 ∈ c∗

0 be f1(x) = x1 and f2(x) = x2. Then span(f1, f2) is a 2-
dimensional subspace of c∗

0 formed by NA functionals.

Q. (G. Godefroy, 2001): If X is a Banach space of dimension > 1, does X ∗

always contain a 2-dimensional subspace consisting of NA functionals?
A. (M. Rmoutil, 2017): If X is c0 renormed with Read’s norm, X ∗ DOES

NOT contain any 2-dimensional subspace consisting of NA functionals.

OBJECTIVE: Study similar questions adapted to Lipschitz mappings.
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T1(x) = (x1, 0.9x2, 0.99x3, 0.999x4, . . .), T2(x) = (x1, 0, 0, 0, . . .)

Then T1, T2 ∈ NA(c0, c0), but T1 − T2 /∈ NA(c0, c0).

However, sometimes you can form non-trivial spaces of NA operators. E.g.:
Let f1, f2 ∈ c∗

0 be f1(x) = x1 and f2(x) = x2. Then span(f1, f2) is a 2-
dimensional subspace of c∗

0 formed by NA functionals.

Q. (G. Godefroy, 2001): If X is a Banach space of dimension > 1, does X ∗

always contain a 2-dimensional subspace consisting of NA functionals?
A. (M. Rmoutil, 2017): If X is c0 renormed with Read’s norm, X ∗ DOES

NOT contain any 2-dimensional subspace consisting of NA functionals.

OBJECTIVE: Study similar questions adapted to Lipschitz mappings.
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Lipschitz mappings

(M, ρ) will always denote a pointed metric space, that is, a metric space
with a distinguished point 0. Usually, we will just write M.

All the vector spaces in this document are considered to be real.

A function f : M → R is said to be Lipschitz if there is a constant K > 0 such
that for every x , y ∈ M,

|f (x) − f (y)| ≤ K · ρ(x , y).

Intuition: the incremental slopes at any pairs are uniformly far from ∞ (they
are ≤ K , in fact). In other words, uniformly, there is no verticality.
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Figure: Non vertical(∗)

(∗): Picture from: https://unsplash.com/photos/yON4XwM70yA
Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022
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Lipschitz mappings

These ARE Lipschitz mappings:
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Lipschitz mappings

These ARE NOT Lipschitz mappings:
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Lip0(M) and SNA(M)

Lip0(M) is the space of Lipschitz mappings f : M → R with f (0) = 0, endowed
with the norm

∥f ∥ := sup
{

|f (x) − f (y)|
ρ(x , y) : x , y ∈ M, x ̸= y

}
.

Remark: The Lipschitz norm coincides with the usual operator norm whenever
f is linear.

There is a natural way to define norm-attainment. f ∈ Lip0(M) attains its norm
strongly if there exist x ̸= y ∈ M such that

∥f ∥ = |f (x) − f (y)|
ρ(x , y) .

The set of strongly norm-attaining Lipschitz functions on M will be denoted by
SNA(M).

▶ This norm-attainment is called strong because there are other weaker, much
less restrictive, norm-attainments considered that are also natural.
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The strong norm-attainment is restrictive

Lemma 2.2 (Kadets-Martín-Soloviova, 2016)
If f ∈ Lip0(M) attains its norm on a pair (x , y) ∈ M × M, x ̸= y , and if
z ∈ M\{x , y} is such an element that ρ(x , y) = ρ(x , z) + ρ(z, y), then f
strongly attains its norm on the pairs (x , z) and (z, y), and

f (z) = ρ(z, y)f (x) + ρ(x , z)f (y)
ρ(x , y) .

In particular, if M is a convex subset of a Banach space, then f is affine on the
closed segment [x , y ], that is, f (θx + (1 − θ)y) = θf (x) + (1 − θ)f (y) for every
θ ∈ [0, 1].

In other words: if f attains its norm strongly at (x , y), it must also attain its
norm strongly at any pair of distinct points in between them!

Actually, if the maximum possible slope of f is attained at the pair (x , y), f must
be affine in between those points!
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Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings
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Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

In particular, we are interested in studying the existence and sizes of (closed)
linear spaces of Lipschitz norms which attain their norms strongly

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

Figure: Space (unrelated to our topic).

Picture from: https://pixabay.com/es/photos/estrellas-cielo-noche-1845140/
Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022
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Purpose of the talk

Recall the title of the talk:

Banach spaces consisting of Strongly NA Lipschitz mappings

Figure: This is more like what we mean.

Pisa tower picture from:
https://www.kindpng.com/picc/m/109-1098941_
leaning-tower-of-pisa-building-places-of-interest.png
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Remarks

3) Metric spaces can be weird and hard to work with.

For example, with ρ given by ∥ · ∥∞, the complete space

(1 + 1/1 , 0 , 0 , 0 , 0 , . . .)
(1 + 1/2 , 1 + 1/2 , 0 , 0 , 0 , . . .)
(1 + 1/3 , 1 + 1/3 , 1 + 1/3 , 0 , 0 , . . .)
(1 + 1/4 , 1 + 1/4 , 1 + 1/4 , 1 + 1/4 , 0 , . . .)

. . .

is uniformly discrete, but NONE of the points has a closest point.
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Useful tool: Lipschitz-free

The Lipschitz-free space associated to M is

F(M) := span
{

δx − δy

ρ(x , y) : x ̸= y ∈ M
}

,

where

δx : Lip0(M) −→ R
f 7−→ δx (f ) := f (x).

Why is it useful?

1) F(M)∗ is isometrically isomorphic to Lip0(M). This allows us to “linearize”
Lipschitz mappings.

2) Link to classical functionals theory: SNA(M) ⊂ NA(F(M),R) in a natural
way.
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2) Link to classical functionals theory: SNA(M) ⊂ NA(F(M),R) in a natural
way.
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Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space.

Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Finite metric spaces

Observation: If M has exactly n > 1 elements, then SNA(M) = Lip0(M), which
is an (n − 1)-dimensional Banach space. Therefore, we are mainly interested in
studying infinite metric spaces.

Idea: Maybe sometimes we can extend constructions from smaller metric spaces
to bigger metric spaces.

Example of application: In [0, 1], fix n > 1 aligned points, assign random values
to them, and define affine functions in the remaining intervals. This IS an n-
dimensional linear space inside SNA([0, 1]).

McShane’s extension theorem: If f ∈ Lip0(M) and M is a metric subspace of
M′, there is a mapping F ∈ Lip0(M′) such that F = f on M and ∥F∥ = ∥f ∥.

Óscar Roldán (UV) - Subspaces of SNA(M) Workshop BSBL II, 11th May 2022



Introduction
First results: existence of subspaces

Sizes of subspaces and more questions
Some references

Difficulties and tools
Results

Some bad news, and some good news

Don’t let your intuitions fool you! Preserving norms and linearity at the
same time is often too much to ask...

Proposition
Consider M ⊂ M′. It is NOT true in general that you can extend with McShane
an isometric subspace X of SNA(M) to SNA(M′).

Example: M = {(0, 0), (0, 1), (1, 0)}, M′ = R2. Let f1, f2 ∈ SNA(M) and
F1, F2 ∈ SNA(M′) be f1(x , y) = x , f2(x , y) = y , F1(x , y) = x , F2(x , y) = y .
It is clear that Fj extends fj and that ∥Fj∥ = ∥fj∥ = 1, for j ∈ {1, 2}. However,
∥af1 +bf2∥ ≠ ∥aF1 +bF2∥ in general (in facr, ∥f1 +f2∥ = 1, and ∥F1 +F2∥ =

√
2).

However, hope is not fully lost.

Lemma 1
Let M ⊂ M′ be pointed metric spaces and n ∈ N. If ℓn

1 embeds isometrically
into SNA(M), then it also embeds isometrically into SNA(M′).

Question: is it possible to get ℓn
1 spaces, n > 1, in SNA(M), where M is finite?
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On 2-dimensional subspaces

Theorem

Let M = {0, a, b, c}, then SNA(M) contains ℓ2
1 isometrically.

Sketch of proof: Rearrange M to x1, x2, x3, x4 with x1 = 0 and

ρ(x1, x4) + ρ(x2, x3) = min {ρ(α, β) + ρ(γ, δ) : M = {α, β, γ, δ}} ,

and consider span(f1, f2) where
f1(x1) = 0,

f1(x2) = ρ(x1, x4) − ρ(x2, x4),
f1(x3) = ρ(x1, x4) − ρ(x2, x4) + ρ(x2, x3),
f1(x4) = ρ(x1, x4),


f2(x1) = 0,

f2(x2) = ρ(x1, x2),
f2(x3) = ρ(x1, x2) − ρ(x2, x3),
f2(x4) = ρ(x1, x4). ■

Corollary
If M > 2, then SNA(M) contains a 2-dimensional subspace isometrically.

Remark: Contrast with classical norm-attainment theory!
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One step further

Lemma 2 (Theorem 14.5, Khan-Mim-Ostrovskii, 2020)
If |M| = 2n, then F(M) contains a 1-complemented subspace isometric to ℓn

1.

Remark: We are grateful to M. Ostrovskii for pointing us out about this result.

It is not true in general that if Y is a subspace of X , then Y ∗ can be embedded
isometrically in X ∗. However, we have the following.

Lemma 3
Let X be a Banach space that contains a 1-complemented subspace Y . Then
Y ∗ embeds isometrically as a subspace of X ∗.

Lemma 4

If n ∈ N, then ℓn
1 is isometric to a subspace of ℓ2n−1

∞ .
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One step further

Theorem
If |M| ≥ 2n, then SNA(M) contains ℓn

1 isometrically.

Sketch of proof:
(1) Let K ⊂ M with |K | = 2n. By Lemma 2, F(K) contains a 1-complemented

subspace isometric to ℓ2n−1
1 .

(2) By Lemma 3, Lip0(K) = SNA(K) contains ℓ2n−1
∞ isometrically.

(3) By Lemma 4, SNA(K) contains ℓn
1 isometrically.

(4) By Lemma 1, SNA(M) contains ℓn
1 isometrically. ■.

Corollary
If M is infinite, SNA(M) contains all the ℓn

1 isometrically.

Compare this to the classical theory again, where there are Banach spaces X
such that NA(X) does not contain 2-dimensional linear subspaces.
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Infinite-dimensional subspaces: existence

We have seen that if M is infinite, SNA(M) has subspaces of all possible finite
dimensions. Can we find infinite-dimensional subspaces of SNA(M) for some M?

Example: SNA([0, 1]) contains c0 isometrically:

With retractions and McShane, this construction can be extended:

Theorem
If M is a metric space containing [0, 1] isometrically, then SNA(M) contains c0
isometrically.
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With retractions and McShane, this construction can be extended:

Theorem
If M is a metric space containing [0, 1] isometrically, then SNA(M) contains c0
isometrically.
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Infinite-dimensional subspaces: possible sizes

Can we form “bigger” spaces than c0 in SNA(M) for some M? For instance,
non-separable spaces like ℓ∞, or spaces with non-separable dual like ℓ1.

If we try to do this constructively on a simple space like [0, 1] or Rn, we will
struggle more than one may think.

However, surprisingly enough, ANY Banach space can be formed in some SNA(M)
if you choose the right M.

Theorem
If Y is a Banach space, then it embeds isometrically in SNA(BY ∗ ).
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The inverse question

Question: If Y is a subspace of SNA(M), how small can M be? From the
previous result, if Y has a separable dual, M can be chosen to be separable.
What if not? Does SNA(M) always contain ℓ1 for all infinite M?

Theorem
For a Banach space Y , the following assertions are equivalent.
(1) There is a separable pointed metric space M and a closed linear subspace

Z ⊂ Lip0(M) such that Z is isometric to Y and Z ⊂ SNA(M).
(2) There is a separable Banach space X and a closed linear subspace Z1 ⊂ X ∗

such that Z1 is isometric to Y and Z1 ⊂ NA(X ,R).
(3) Y ∗ is separable.

Sketch of proof: [(1)⇒(2)] take X = F(M). [(2)⇒(1)] take M = BX .
[(2)⇒(3)] find a separable James boundary of Z1, and deduce that then Z ∗

1
and Y ∗ are separable. [(3)⇒(1)] take M = BY ∗ . ■.

So if Y ∗ is not separable, M CANNOT be separable either. Hence, some
SNA(M) with M infinite don’t contain ℓ1, despite containing all the ℓn

1 spaces.
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Restrictions on some metric spaces

Earlier we saw that SNA([0, 1]) contains c0 isometrically. We will now see that
not much more can be said in this case.

Recall that a space is σ-(pre)compact if it’s a countable union of (pre)compact
sets. This includes all compact spaces and all Rn spaces, for instance.

Theorem
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For the interested reader.

Figure: Interested reader

Manipulated pictures. Originals: Pisa tower, Book, Sunglasses.
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Thank you for your attention!
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