Free Banach lattices, p. 2: lattice homomorphisms, and non-linear theory of Banach spaces

T.O. + TTT (M. Taylor, P. Tradacete, V. Troitsky)

ICMAT, May 2022

T.O. + TTT (M. Taylor, P. Tradacete, V. TrFree Banach lattices, p. 2: lattice homomorpl

Free Banach lattices on Banach spaces

Definition

Suppose *E* is a Banach space, and $1 \le p \le \infty$. A free *p*-convex Banach lattice on *E* (FBL^(*p*)[*E*]) is the unique Banach lattice *X* so that:

- X is p-convex with constant 1.
- There exists an isometry $\phi_E : E \to X$ so that $\phi_E(E)$ generates X as a Banach lattice.
- If Z is a Banach lattice, p-convex with constant 1, then any $T \in B(E, Z)$ extends to a lattice homomorphism $\widehat{T} : \operatorname{FBL}^{(p)}[E] \to Z$ so that $\|\widehat{T}\| = \|T\|$, and $\widehat{T} \circ \phi_E = T$.

If Z is p-convex with constant C, we can construct an extension \widehat{T} with $\|\widehat{T}\| \leq C \|T\|$ (renorming makes Z p-convex with constant 1). **Notation:** FBL[E] := FBL⁽¹⁾[E] (for p = 1, Z is an arbitrary lattice).

Functional representation of $FBL^{(p)}[E]$

Denote by $\mathbf{H}[E^*]$ the space of positively homogeneous functions on \mathbf{B}_{E^*} $(f(tx^*) = tf(x^*) \ \forall t \ge 0)$. $\mathbf{H}_p[E^*]$ consists of those $f \in \mathbf{H}[E^*]$ for which $\exists C > 0 \text{ s.t. } \sum_{i=1}^N |f(x_i^*)|^p \le C^p$ when $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} \le 1$. $\|f\|_p := \inf C$. Here $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} = \sup_{x \in \mathbf{B}(E)} (\sum_i |\langle x_i^*, x \rangle|^p)^{1/p}$. $\|(x_i^*)_{i=1}^N\|_{\infty,\text{weak}} = \max_i \|x_i^*\|$. $\|(x_i^*)_{i=1}^N\|_{1,\text{weak}} = \max \|\sum_i \pm x_i^*\|$. Let $\phi_E : E \to \mathbf{H}[E^*] : x \mapsto \delta_x; \ \delta_x(x^*) = \langle x^*, x \rangle$.

Theorem

 $\phi_E : E \to \mathbf{H}_p[E^*]$ is an isometry. FBL^(p)[E] is the Banach lattice generated by $\phi_E(E)$ in $\mathbf{H}_p[E^*]$.

Note: All $f \in FBL^{(p)}[E]$ are weak^{*} continuous functions on **B**_{*E*^{*}}.

Theorem

 $\operatorname{FBL}^{(\infty)}[E]$ coincides with the space $\operatorname{CH}[E^*]$ of weak^{*} continuous positively homogeneous functions on \mathbf{B}_{E^*} , with sup norm $\|\cdot\|_{\infty}$.

When do we have $FBL^{(p)}[E] = FBL^{(q)}[E]$?

Theorem

Suppose E is a Banach space, $p > q \ge 1$. TFAE:

- FBL^(q)[E] is p-convex.
- **2** $\operatorname{FBL}^{(p)}[E]$ is (canonically) lattice isomorphic to $\operatorname{FBL}^{(q)}[E]$.
- Any $T : E \to L_q(\mu)$ has a factorization $E \xrightarrow{S} L_p(\mu) \xrightarrow{M_g} L_q(\mu)$; M_g is the multiplication by $g \in L_r$, 1/q = 1/p + 1/r.

Corollary

- If 2 > s > p > q ≥ 1, and E has type s, then FBL^(p)[E] is (canonically) lattice isomorphic to FBL^(q)[E].
- If 1 ≤ p ≤ 2 ≤ r, then FBL^(p)[L_r(µ)] is (canonically) lattice isomorphic to FBL⁽²⁾[L_r(µ)].

Convexity

Theorem

If dim $E = \infty$, and FBL^(p)[E] is q-convex, then $q \leq \max\{2, p\}$.

If dim $E = n < \infty$, then $\text{FBL}^{(p)}[E] \simeq C(\mathbb{S}^{n-1})$ is *q*-convex for any *q*. If dim $E = \infty$, and $p \ge 2$, then $\text{FBL}^{(p)}[E]$ is, by definition, *p*-convex (with

constant 1). By the above theorem, this cannot be improved: $FBL^{(p)}[E]$ cannot be *q*-convex for q > p.

Corollary

If dim $E = \infty$, and FBL^(p)[E] is lattice isomorphic to FBL^(q)[E], then either p = q, or $p, q \in [1, 2]$.

Structure of lattice homomorphisms between free lattices

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak^{*} to weak^{*} continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in FBL^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. Moreover:

- Any positively homogeneous Φ : F* → E*, weak* to weak* continuous on bounded sets, determines T : FBL^(∞)[E] → FBL^(∞)[F] s.t.
 Φ_T = Φ, ||T|| = sup_{||y*||≤1} ||Φ_Ty*||.
- If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q, \text{weak}} \le \|T\| \|(y_i^*)\|_{q, \text{weak}}$.

• If T is a lattice isomorphism, then $\Phi_{T^{-1}} = \Phi_T^{-1}$.

$$\mathsf{Recall:} \ \|(y_i^*)_{i=1}^{\mathsf{N}}\|_{q,\mathrm{weak}} = \mathsf{sup}_{y \in \mathsf{B}(\mathsf{F})} \left(\sum_i |\langle y_i^*, y \rangle|^q\right)^{1/q}.$$

Structure of lattice homomorphisms: sketch of a proof

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak^{*} to weak^{*} continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in \operatorname{FBL}^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q,\operatorname{weak}} \leq \|T\| \|(y_i^*)\|_{q,\operatorname{weak}}$.

(1) Construction of Φ_T . $\{\widehat{y^*} : y^* \in F^*\} = \text{set of atoms } (\widehat{y^*} \text{ is the evaluation at } y^*)$. T^* is interval preserving, hence $T^*\widehat{y^*}$ is also an atom, say $\widehat{x^*}$. Define $\Phi_T y^* = x^*$.

(2) (q, weak) norms. $||(y_i^*)_{i=1}^N||_{q, \text{weak}} = ||(\widehat{y_i^*})_{i=1}^N||_{q, \text{weak}}$. $||(\widehat{T^*y_i^*})_{i=1}^N||_{q, \text{weak}} \leq ||T|| ||(\widehat{y_i^*})_{i=1}^N||_{q, \text{weak}}$.

Remark. (1) $\forall y^* \| \Phi_T y^* \| \leq \|T\| \| y^* \|$. (2) If T is a lattice quotient, then T^* is bounded below, hence $\exists c > 0$ s.t. $\forall y^* \| \Phi_T y^* \| \ge c \| y^* \|$.

Non-linear maps between Banach spaces

Many classes of non-linear maps between Banach spaces have been considered.

Continuous maps are too common to be useful: topological homeomorphisms are not an efficient tool for classifying Banach spaces.

Theorem (Kadec; Torunczyk)

If Banach spaces E and F have the same density character, then they are homeomorphic.

Need more restrictive classes of maps: Lipschitz, uniformly continuous, coarse, ...

Lipschitz equivalence of Banach spaces

Theorem

Suppose E is separable and reflexive, and Lipschitz isomorphic to F. If F has the RNP, then E linearly isomorphic to a complemented subspace of F. Under some extra conditions E and F are linearly isomorphic.

Theorem

If E is Lipschitz isomorphic to L_p or ℓ_p (1 , then the two are linearly isomorphic.

Theorem

If a separable E is Lipschitz isomorphic to a subset of F, then $E \hookrightarrow F^{**}$.

Theorem

There exist an uncountable Γ and a Banach space E so that $c_0(\Gamma)$ is Lipschitz isomorphic to, but does not embed into, E.

Rigidity of isometries

Theorem (Mazur-Ulam)

Any surjective isometry between Banach spaces is affine. Consequently, if Banach spaces E and F are isometric, then they are also linearly isometric.

Non-surjective isometries need not be affine. But:

Theorem (T. Figiel) Suppose X, Y are separable Banach spaces, $T : X \to Y$ is an isometry s.t. T0 = 0, and $\overline{\text{span}}[TX] = Y$. Then \exists linear contraction $S : Y \to X$ s.t. $ST = I_X$.

Theorem

Suppose X, Y are separable Banach spaces, and $T : X \to Y$ is an isometry. Then Y contains an isometric copy of X.

When do we have $\operatorname{FBL}^{(p)}[E] = \operatorname{FBL}^{(p)}[F]$?

If T is isomorphic (isometric), then so is \overline{T} . Can $\operatorname{FBL}^{(p)}[E]$ and $\operatorname{FBL}^{(p)}[F]$ be "similar," while E and F are "different?"

The answer for $p = \infty$ differs from what we get for $p \in [1, \infty)$.

The isometric and isomorphic settings are different.

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak* to weak* continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in FBL^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q, \text{weak}} \leq \|T\| \|(y_i^*)\|_{q, \text{weak}}$.

Case of $p = \infty$: structure of lattice homomorphisms

Theorem

FBL^(∞)[*E*] coincides with the space **CH**[*E*^{*}] of weak^{*} continuous positively homogeneous functions on **B**_{*E*^{*}}, with sup norm $\|\cdot\|_{\infty}$.

Corollary (Lattice homomorphism vs compositions) (1) If $\Phi : F^* \to E^*$ is a positively homogeneous and weak* continuous on bounded sets, then \exists a lattice homomorphism $T : FBL^{(\infty)}[E] \to FBL^{(\infty)}[F]$ s.t. $\Phi = \Phi_T - that$ is, $Tf = f \circ \Phi$. (2) If, moreover, Φ is surjective, and $\forall y^* \in F^* \ C_1 ||y^*|| \ge ||\Phi y^*|| \ge ||y^*||/C_2$, then T is a lattice isomorphism, with $||T|| \le C_1$ and $||T^{-1}|| \le C_2$.

Comparing $FBL^{(\infty)}[E]$ with $FBL^{(\infty)}[F]$, and FDDs

A Banach space *E* has Finite Dimensional Decomposition (FDD) if \exists a sequence of finite rank projections $P_n \in B(E)$ s.t. (i) $P_iP_j = P_{\min\{i,j\}}$, and (ii) $\forall x \in E$, $\lim_N P_N x = x$ (then $\sup_N ||P_N|| < \infty$).

Example: a Schauder basis (e_i) gives rise to an FDD $(P_i = \text{canonical basis projection})$.

An FDD (P_i) is monotone if $\sup_N ||P_N|| = 1$. **Example:** canonical basis in ℓ_p .

Theorem

If E is a Banach space with a monotone FDD, then $\text{FBL}^{(\infty)}[E]$ is lattice isometric to $\text{FBL}^{(\infty)}[c_0]$.

$\operatorname{FBL}^{(\infty)}[E] = \operatorname{FBL}^{(\infty)}[c_0]$, construction in particular case

Suppose *E* has strictly monotone normalized basis (e_i) – that is, $\|\sum_{i=1}^{N} \alpha_i e_i\| \leq \|\sum_{i=1}^{N+1} \alpha_i e_i\|$, with equality iff $\alpha_{N+1} = 0$.

Goal: construct positively homogeneous norm-preserving surjection $\Phi: E^* \rightarrow \ell_1 = c_0^*$ s.t. Φ and Φ^{-1} are weak^{*} continuous on bounded sets.

Let $e_i^* \in E^*$ be the biorthogonal functionals, and let f_i^* be the canonical basis of ℓ_1 . Let P_n be the *n*-th basis projection in *E*, then $P_n^* : E^* \to X_n = \operatorname{span}[e_i^* : 1 \leq i \leq n]$ canonically.

Construct maps $\Phi_n : X_n \to Y_n = \operatorname{span}[f_i^* : 1 \leq i \leq n] \subset \ell_1$. Let $\Phi_1 \alpha_1 e_1^* := \alpha_1 f_1^*$. Define Φ_n recursively: for $e^* = x^* + \alpha e_n^*$ ($x^* \in X_{n-1}$), let $\Phi_n e^* := \Phi_{n-1} x^* + t f_n^*$, where $t = \operatorname{sign} \alpha \cdot (\|e^*\| - \|x^*\|)$. The $\Phi = \operatorname{weak}^* - \operatorname{lim} \Phi_n P_n^*$ has the desired properties.

Question. Can we avoid the FDD assumption?

Properties of $FBL^{(\infty)}[c_0]$

Theorem

If E is a Banach space with a monotone FDD, then $\text{FBL}^{(\infty)}[E]$ is lattice isometric to $\text{FBL}^{(\infty)}[c_0] =: \mathfrak{U}$ (for "universal").

Corollary

(1) If E has FDD, then FBL^(∞)[E] is lattice isomorphic to 𝔅.
(2) If E is a separable Banach space, then ∃ linear isometry
J: FBL^(∞)[E] → 𝔅 and a contractive lattice homomorphism
P: 𝔅 → FBL^(∞)[E] so that PJ = id_{FBL^(∞)[E]}.
(3) If F has the BAP, J can be a lattice isomorphism (not isometric).

Proof of (2). $X = \operatorname{FBL}^{(\infty)}[E]$ is an $\mathcal{L}_{\infty,1+}$ space, hence it has a monotone basis, hence $\operatorname{FBL}^{(\infty)}[X]$ is lattice isometric to \mathfrak{U} . $id: X \to X$ extends to a lattice homomorphism $\widehat{id} : \operatorname{FBL}^{(\infty)}[X] \to X$. $\widehat{id} \circ \phi_X$ is the desired factorization via $\operatorname{FBL}^{(\infty)}[X] = \mathfrak{U}$.

Properties of ${\mathfrak U}$

Question. What can we say about \mathfrak{U} ?

Proposition (\mathfrak{U} is not homogeneous (Gurarii))

If $1 \leq p \leq \infty$ and dim $E \geq 2$, there exist norm one $\phi, \psi \in \text{FBL}^{(p)}[E]_+$ s.t. $||T\phi - \psi|| \geq 1/3$ for any lattice isometry T.

Proposition

 \mathfrak{U} is Banach space isomorphic to C[0,1].

$\operatorname{FBL}^{(\infty)}[E]$ vs. $\operatorname{FBL}^{(\infty)}[F]$, non-separable case

Theorem (Keller)

If *E* and *F* are separable Banach spaces, then (\mathbf{B}_{E^*}, w^*) is homeomorphic to (\mathbf{B}_{F^*}, w^*) . In fact, both are homeomorphic to $[0, 1]^{\omega}$.

No analogue exists in the non-separable setting.

Proposition

For Γ with $|\Gamma| \ge c$, and $p \in (1, \infty)$, let $E = \ell_1(\Gamma)$ and $F = \ell_p(\Gamma)$. Then:

- **(** \mathbf{B}_{E^*}, w^*) is not homeomorphic to (\mathbf{B}_{F^*}, w^*).
- **2** $\operatorname{FBL}^{(\infty)}[E]$ is not lattice isomorphic to $\operatorname{FBL}^{(\infty)}[F]$.

Lattice homomorphisms of $\mathrm{FBL}^{(p)}$ for $1\leqslant p<\infty$

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak* to weak* continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in \operatorname{FBL}^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q,\operatorname{weak}} \leq \|T\| \|(y_i^*)\|_{q,\operatorname{weak}}$.

Although any lattice homomorphism is a composition operator, a composition need not generate a lattice homomorphism.

Proposition

 $\forall p \in [1, \infty) \exists$ positively homogeneous $\Phi : \ell_1^* \to \ell_1^*$, weak^{*} continuous on bounded sets, s.t. $\forall q \in [p, \infty], \forall y_1^*, \dots, y_N^* \in \ell_1^*$ we have $\|(\Phi y_i^*)\|_{q, \text{weak}} \leq \|(y_i^*)\|_{q, \text{weak}}$, but s.t. $f \circ \Phi \notin \text{FBL}^{(p)}[\ell_1]$ for some $f \in \text{FBL}^{(p)}[\ell_1]$.

Lattice quotients $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$, $1 \leq p < \infty$

Theorem

Fix $u, v \in [2, \infty]$, $p \in [1, \infty]$, and $u < \min\{v, p'\}$, 1/p + 1/p' = 1. Suppose E^* has cotype u, and F^* does not have cotype less than v. Then $FBL^{(p)}[F]$ is not lattice isomorphic to a lattice quotient of $FBL^{(p)}[E]$.

Cotype
$$u: \exists K \text{ s.t. } \forall x_1^*, \dots, x_N^* \in E^*$$
, $\mathbb{E} \| \sum_i \pm x_i^* \| \ge K (\sum_i \|x_i^*\|^u)^{1/u}$.
 L_r has cotype max $\{r, 2\}$.

Corollary

Suppose $\beta \in [1, 2]$, and $\alpha \in (\beta, \infty]$. Then $FBL[L_{\beta}]$ is not a lattice quotient of $FBL[L_{\alpha}]$.

Known: L_{β} is not a quotient of L_{α} .

Proof. Apply theorem with $E = L_{\alpha}$, $F = L_{\beta}$, p = 1. E^* has cotype $\max\{2, \alpha'\}$, F^* has cotype $\beta' > \max\{2, \alpha'\}$.

Lattice quotients $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F], 1 \leq p < \infty$

Theorem

Fix $u, v \in [2, \infty]$, $p \in [1, \infty]$, and $u < \min\{v, p'\}$, 1/p + 1/p' = 1. Suppose E^* has cotype u, and F^* does not have cotype less than v. Then $FBL^{(p)}[F]$ is not lattice isomorphic to a lattice quotient of $FBL^{(p)}[E]$.

Cotype u: $\exists K \text{ s.t. } \forall x_1^*, \ldots, x_N^* \in E^*, \mathbb{E} \| \sum_i \pm x_i^* \| \ge K(\sum_i \|x_i^*\|^u)^{1/u}.$ **Proof.** Find $q \in (u, \min\{v, p'\})$. $\exists C \text{ s.t. } \forall n \exists y_1^*, \ldots, y_n^* \in F^* \text{ s.t.}$ $\forall (\alpha_i) \lor_i |\alpha_i| \leq \|\sum_i \alpha_i y_i^*\| \leq C (\sum_i |\alpha_i|^q)^{1/q}$ $\Rightarrow \min_{i} \|y_{i}^{*}\| \ge 1, \|(y_{i}^{*})\|_{\sigma', \text{weak}} \le C \Rightarrow \|(\Phi_{T}y_{i}^{*})\|_{\sigma', \text{weak}} \le C \|T\|.$ Suppose $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a surjective lattice homomorphism. T^* is bounded below by c > 0, hence $\forall \mathbf{v}^* \in F^* \| \Phi_{\mathcal{T}} \mathbf{v}^* \| \ge c \| \mathbf{v}^* \|.$ By cotype u, max₊ $\|\sum_i \pm \Phi_T y_i^*\| \ge K c n^{1/u}$, so $\|(\Phi_T y_i^*)\|_{q',\text{weak}} \ge \max_{\pm} \|\sum_i \pm n^{-1/q} \Phi_T y_i^*\| \ge K c n^{1/u - 1/q} > \|T\|C$ for large n. Contradiction!

Lattice quotients $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F], 1 \leq p < \infty$

Theorem

Suppose $\infty \ge u > \max\{v, p\} \ge v \ge 1$, $E = (\sum_j E_j)_u (E_1, E_2, ... \text{ are finite dimensional})$, and F^* contains a copy of $\ell_{v'}$, with 1/v + 1/v' = 1. Then $FBL^{(p)}[F]$ is not a lattice quotient of $FBL^{(p)}[E]$.

More general results (involving games in Banach spaces) are known.

Questions. (1) Do there exist non-isomorphic *E* and *F* s.t. $\text{FBL}^{(p)}[E]$ and $\text{FBL}^{(p)}[F]$ are lattice isomorphic $(1 \le p < \infty)$?

(2) If $FBL^{(p)}[E]$ and $FBL^{(p)}[F]$ are lattice isomorphic, which properties do *E* and *F* share?

Known for FBL (p = 1). If E contains ℓ_1 complementably (or contains ℓ_1^n uniformly complementably), then so does F.

Lattice isometries $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F], 1 \leq p < \infty$

A Banach space Z is called strictly convex if \forall norm one $z_1, z_2 \in Z$ we have $||z_1 + z_2|| < 2$ unless $z_1 \neq z_2$.

Proposition (Preservation of strict convexity – warm-up)

Suppose $1 \leq p < \infty$, and E, F are Banach spaces s.t. $FBL^{(p)}[E]$ is lattice isometric to $FBL^{(p)}[F]$. If F^* is not strictly convex, neither is E^* .

Proof for
$$p = 1$$
. Suppose $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a lattice
isometry. Then $\forall x^*, y^* \in F^*$ we have $||(x^*, y^*)||_{1, \text{weak}} = \max_{\pm} ||x^* \pm y^*|| = \max_{\pm} ||\Phi_T x^* \pm \Phi_T y^*|| = ||(\Phi_T x^*, \Phi_T y^*)||_{1, \text{weak}}$.
Find distinct norm one $z_1, z_2 \in F^*$ so that $||z_1 + z_2|| = 2$. Let $x^* = \frac{z_1 + z_2}{2}$,
 $y^* = \frac{z_1 - z_2}{2}$. Then $x^* \neq y^*$ and $||(x^*, y^*)||_{1, \text{weak}} = 1$.
Let $w_1 = \Phi_T x^* + \Phi_T y^*$, $w_2 = \Phi_T x^* - \Phi_T y^*$ (in E^*). Then
 $||w_1 + w_2|| = 2||\Phi_T x^*|| = 2||x^*|| = 1$, and $w_2 \neq 0$.
On the other hand, $||w_1||, ||w_2|| \leq ||(\Phi_T x^*, \Phi_T y^*)||_{1, \text{weak}} = 1$,
so E^* is not strictly convex either.

Lattice isometries $\operatorname{FBL}^{(p)}[\mathcal{E}] \to \operatorname{FBL}^{(p)}[\mathcal{F}], \ 1 \leqslant p < \infty$

A Banach space Z is called smooth if $\forall z \in Z \setminus \{0\}$ the norming functional $z^* \in Z^*$ is unique. Meaning: the unit sphere of Z has no "corners."

Theorem

Suppose $1 \leq p < \infty$, and E, F are Banach spaces s.t. either (i) E^*, F^* are smooth, or (ii) E, F are reflexive, and either E^* or F^* is smooth. Then $FBL^{(p)}[E]$ is lattice isometric to $FBL^{(p)}[F]$ iff E is isometric to F.

Idea. We have access to $||(e_i^*)||_{p,\text{weak}}$, have to use these quantities to reach conclusion.

For $x \in Z$, denote by $\mathcal{F}(x)$ the set of support functionals for x – that is, of $x^* \in Z^*$ for which $||x^*|| = ||x||$ and $||x||^2 = \langle x^*, x \rangle$.

Lemma

Suppose
$$x, y \in \mathbf{S}_Z$$
, and $1 \leq p < \infty$. Let $\kappa = \sup_{x^* \in \mathcal{F}(x)} |\langle x^*, y \rangle|$. Then, for $t \to 0$, $\|(x, ty)\|_{p, weak} = 1 + \frac{\kappa^p}{p} |t|^p + o(|t|^p)$.

Lattice isometries when E^* , F^* are smooth

Theorem

Suppose $1 \leq p < \infty$, and E, F are Banach spaces so that E^*, F^* are smooth. Then $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a lattice isometry iff $T = \overline{U}$, for some isometry $U : E \to F$.

Proof. If Z is smooth, then $\forall x \in Z \exists f_x \in Z^*$ s.t. $\mathcal{F}(x) = \{f_x\}$. Define semi-inner product $[y, x] := \langle f_x, y \rangle$. This has the same properties as the inner product, except symmetry and additivity in second variable. Let $[\cdot, \cdot]_E$ and $[\cdot, \cdot]_F$ be the semi-inner products on E^* and F^* respectively. For $x^*, y^* \in \mathbf{S}_{F^*}$, $\|(x^*, ty^*)\|_{P, \text{weak}} = 1 + \frac{|t|^p}{p} |[y^*, x^*]_F| + o(|t|^p)$, hence $|[y^*, x^*]_F| = |[\Phi_T y^*, \Phi_T x^*]_E|$. [Ilisevic & Turnsec]: $\exists \sigma : F^* \to \{-1, 1\}$ and $V : F^* \to E^*$ s.t. $\forall x^* \in F^*$ $\Phi_T x^* = \sigma(x^*)Vx^*$. Show that $\sigma = \text{const}$ and V is weak* continuous, so $V = U^*$.

Lattice isometries and the lack of smoothness

Definition

An element x of a Banach space X is called an ℓ_1 -point if the equality $\max_{\pm} ||x \pm y|| = ||x|| + ||y||$ holds for any $y \in X$.

Proposition

Suppose $1 \leq p < \infty$. x is an ℓ_1 -point iff $\|(x,y)\|_{p,\mathrm{weak}} = (\|x\|^p + \|y\|^p)^{1/p}$ for any $y \in X$.

Proposition

Suppose $T : FBL^{(p)}[F] \to FBL^{(p)}[E]$ is a lattice isometry. Then Φ_T is a bijection between ℓ_1 -points of E^* and F^* .

Application: free lattices on AM-spaces

Proposition

Suppose E and F are AM-spaces. For $1 \leqslant p < \infty$, TFAE:

- FBL^(p)[E] is lattice isometric to FBL^(p)[F].
- 2 E and F are isometric.
- I and F are lattice isometric.

Idea of proof. Realize E as a set of functions of $\overline{\Omega_E}$ (the weak* closure of the state space). Identify ℓ_1 points with point masses. Do the same for F. Any lattice isometry $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ will generate a homeomorphism between Ω_E and Ω_F .

Weak compact generation

Definition

A Banach space E is weakly compactly generated (WCG) if \exists a weakly compact set $K \subseteq E$ whose linear span is dense. A Banach lattice X is weakly compactly generated as a lattice (LWCG) if there is a weakly compact set $K \subseteq X$ so that the sublattice generated by K is dense in X.

Proposition

Suppose E is either an AM-space, or an order continuous p-convex Banach lattice. Then $FBL^{(p)}[E]$ is LWCG iff E is WCG.

Theorem (A. Avilés, J. Rodríguez, and P. Tradacete)

For $1 < q \leq 2$, and uncountable Γ , $\operatorname{FBL}[\ell_q(\Gamma)]$ is LWCG, but not WCG.

Sketch of a proof. $\ell_q(\Gamma)$ is order continuous. However, $\text{FBL}[\ell_q(\Gamma)]$ contains a complemented copy of $\ell_1(\Gamma)$, hence it is not WCG.

Thank you for your attention! Questions welcome!

T.O. + TTT (M. Taylor, P. Tradacete, V. TrFree Banach lattices, p. 2: lattice homomorph