Free Banach lattices p. 1 (work in progress)

T.O. + TTT (M. Taylor, P. Tradacete, V. Troitsky)

ICMAT, May 2022

T.O. + TTT (M. Taylor, P. Tradacete, V. Tr Free Banach lattices p. 1 (work in progress)

Why, and how, we study free objects

• Why. Freedom, Sancho, is one of the most precious gifts that heaven has bestowed upon men ...

- Miguel de Cervantes Saavedra, Don Quixote

• How. The subject is vast, our knowledge is limited.

What is freeness?

Suppose \mathcal{K} and \mathcal{L} are categories, and $\Box : \mathcal{K} \to \mathcal{L}$ is a functor (often, a forgetful functor). \mathcal{K} is called a rigged category.

Fix an object $E \in \mathcal{L}$. A free object over E is a pair (ϕ, X) so that:

- $\ \, {\bf 0} \ \, X \in {\cal K}, \ \phi: E \to \Box X \ \, {\rm is \ an \ } {\cal L} {\rm -morphism};$

Free object is unique, if it exists.

Examples of freeness

1. \mathcal{K} = category of all Hausdorff compacts. \mathcal{L} = category of all topological spaces. \Box = id. Free object on $S \in \mathcal{L}$ is its Stone-Cech compactification βS .

2. \mathcal{K} = category of all normed spaces; morphisms = contractive linear operators. \mathcal{L} = category of sets. $\Box X = \mathbf{B}_X$ (the unit ball of X). Free object on $A \in \mathcal{L}$ is $\ell_1^0(A)$. Used to investigate projective normed spaces.

3. \mathcal{K} = category of all Banach spaces; morphisms = linear contractions. \mathcal{L} = category of metric spaces with 0; morphisms = 0-preserving contractions. $\Box X = \mathbf{B}_X$. Free object $\mathcal{F}(A)$ is the Lipschitz-free space.

Freeness and Banach lattices: our setting

 $Ban_1 = category of Banach spaces; morphisms = linear contractions.$

 BL_1^p = category of Banach lattices, *p*-convex with constant 1; morphisms = contractive lattice homomorphisms.

Recall: X is *q*-convex with constant C if $\|(\sum_i |x_i|^q)^{1/q}\| \leq C(\sum_i ||x_i|^q)^{1/q}$ holds for any $x_1, \ldots, x_N \in X$. **Example.** L_p is *q*-convex (with const. 1) iff $p \leq q$.

For p = 1 recover **BL**₁ = category of Banach lattices.

 $\Box: \textbf{BL}_1^{\textit{p}} \rightarrow \textbf{Ban}_1 = \text{``forgetful functor.''}$

 $\operatorname{FBL}^{(p)}[E]$

Goal: show that the free object $FBL^{(p)}[E]$ exists, describe its properties.

One can also consider other lattice categories – for instance, the category $\mathbf{BL}_{1}^{\uparrow p}$ of Banach lattices with upper *p*-estimate.

Free Banach lattices on Banach spaces

Definition

Suppose *E* is a Banach space, and $1 \le p \le \infty$. A free *p*-convex Banach lattice on *E* (FBL^(*p*)[*E*]) is the unique Banach lattice *X* so that:

- X is p-convex with constant 1.
- There exists an isometry $\phi_E : E \to X$ so that $\phi_E(E)$ generates X as a Banach lattice.
- If Z is a Banach lattice, p-convex with constant 1, then any $T \in B(E, Z)$ extends to a lattice homomorphism $\widehat{T} : \operatorname{FBL}^{(p)}[E] \to Z$ so that $\|\widehat{T}\| = \|T\|$, and $\widehat{T} \circ \phi_E = T$.

If Z is p-convex with constant C, we can construct an extension \widehat{T} with $\|\widehat{T}\| \leq C \|T\|$ (renorming makes Z p-convex with constant 1). **Notation:** FBL[E] := FBL⁽¹⁾[E] (for p = 1, Z is an arbitrary lattice).

Explicit construction of $FBL^{(p)}[E]$

Denote by $\mathbf{H}[E^*]$ the space of positively homogeneous functions on \mathbf{B}_{E^*} $(f(tx^*) = tf(x^*) \forall t \ge 0)$. $\mathbf{H}_p[E^*]$ consists of those $f \in \mathbf{H}[E^*]$ for which $\exists C > 0 \text{ s.t. } \sum_{i=1}^{N} |f(x_i^*)|^p \leqslant C^p$ when $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} \leqslant 1$. $\|f\|_p := \inf C$. Here $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} = \sup_{x \in \mathbf{B}(E)} (\sum_i |\langle x_i^*, x \rangle|^p)^{1/p}$. $\|(x_i^*)_{i=1}^N\|_{\infty,\text{weak}} = \max_i \|x_i^*\|$. $\|(x_i^*)_{i=1}^N\|_{1,\text{weak}} = \max \|\sum_i \pm x_i^*\|$. Let $\phi_E : E \to \mathbf{H}[E^*] : x \mapsto \delta_x$; $\delta_x(x^*) = \langle x^*, x \rangle$.

Theorem

 $\phi_E : E \to \mathbf{H}_p[E^*]$ is an isometry. FBL^(p)[E] is the Banach lattice generated by $\phi_E(E)$ in $\mathbf{H}_p[E^*]$.

Note: All $f \in FBL^{(p)}[E]$ are weak^{*} continuous functions on B_{E^*} .

Explicit construction of $FBL^{(p)}[E]$

Theorem

 $\phi_E : E \to \mathbf{H}_p[E^*]$ is an isometry. FBL^(p)[E] is the Banach lattice generated by $\phi_E(E)$ in $\mathbf{H}_p[E^*]$.

Note: All $f \in FBL^{(p)}[E]$ are weak^{*} continuous functions on B_{E^*} . FBL^(∞)[E] is the set of **all** weak^{*} continuous functions in $\mathbf{H}_{\infty}[E^*]$:

Theorem

 $\operatorname{FBL}^{(\infty)}[E]$ coincides with the space $\operatorname{CH}[E^*]$ of weak^{*} continuous positively homogeneous functions on \mathbf{B}_{E^*} , with sup norm $\|\cdot\|_{\infty}$.

The case of $p \in [1,\infty)$ is different:

Theorem (Avilés, Rodríguez, Tradacete) For $1 \leq p < \infty \exists weak^* \text{ continuous } 0 \leq g \leq f \text{ s.t. } g, f \in H_p[\ell_1^*] \setminus \{0\} \text{ s.t.}$ $f \in |\operatorname{ran} \phi_{\ell_1}| \subset \operatorname{FBL}^{(p)}[\ell_1], g \notin \operatorname{FBL}^{(p)}[\ell_1].$

Free vector lattices

Let FVL[E] be the vector lattice generated by $\phi_E(E)$ in $H[E^*]$.

FVL[*E*] is a realization of the free vector lattice on *E*: for any vector lattice *Z*, any linear map $T: E \rightarrow Z$ has a lattice homomorphic extension \widehat{T} .

$$\operatorname{FBL}^{(p)}[E] = \overline{\operatorname{FVL}[E]}^{\mathsf{H}_p[E^*]}.$$

Theorem

For $1 \leq p \leq \infty$, $\operatorname{FVL}[E]$ is order dense in $\operatorname{FBL}^{(p)}[E]$ – that is, $\forall f \in \operatorname{FBL}^{(p)}[E]_+ \exists g \in \operatorname{FVL}[E]_+ \text{ s.t. } f \geq g$.

Observations and examples

• $\operatorname{FBL}^{(\infty)}[E]$ coincides with the space $\operatorname{CH}[E^*]$ of weak^{*} continuous positively homogeneous functions on \mathbf{B}_{E^*} , with sup norm $\|\cdot\|_{\infty}$.

Such functions extend to positively homogeneous functions on E^* , weak^{*} continuous on bounded sets.

• For $1 \leq p \leq \infty$, $\operatorname{FBL}^{(p)}[E]$ is the sublattice of $\mathbf{H}[E^*]$ generated by $\{\delta_x : x \in E\}$, with norm $\|\cdot\|_p$.

• If q > p, then $\|\cdot\|_p \ge \|\cdot\|_q \Rightarrow \operatorname{FBL}^{(p)}[E] \subset \operatorname{FBL}^{(q)}[E]$, contractively.

• If dim E = n, then $\operatorname{FBL}^{(\infty)}[E]$ is lattice isometric to $\operatorname{CH}[E^*] = C(\mathbf{S}_{E^*})$ $\simeq C(\mathbb{S}^{n-1})$ (\mathbb{S}^{n-1} = sphere in \mathbb{R}^n). $\operatorname{FBL}^{(p)}[E]$ is lattice isomorphic to $C(\mathbb{S}^{n-1})$ (for $f \in \operatorname{FBL}^{(p)}[E]$, $\|f\|_{\infty} \leq \|f\|_{p} \leq n\|f\|_{\infty}$).

• If $E = \mathbb{R}$ (n = 1), then $FBL^{(\infty)}[E] = C(\{1, -1\}) = \ell_{\infty}^2$. $\phi_E(1) = \delta_1 = (1, -1)$. For a Banach lattice Z and $T : E \to Z$, write $T1 = z_+ - z_-$, where $z_+ = (T1)_+$ and $z_- = (T1)_-$ (disjoint). Then $\widehat{T}(a, b) = az_+ - bz_ (\widehat{T}(1, 0) = z_+, \widehat{T}(0, 1) = z_-)$.

Main questions

 \overline{T} is a lattice homomorphism extending $\phi_E \circ T$ (making the diagram commute). If $G \xrightarrow{S} F \xrightarrow{T} E$, then $\overline{T \circ S} = \overline{T} \circ \overline{S}$.

• Consider $T \in B(F, E)$ (E, F are Banach spaces). Which properties of T pass to $\overline{T} : FBL^{(p)}[F] \to FBL^{(p)}[E]$?

• Determine sublattice structure of $FBL^{(p)}[E]$.

- Find connections between properties of E and $FBL^{(p)}[E]$.
- When are $\operatorname{FBL}^{(p)}[E]$ and $\operatorname{FBL}^{(p)}[F]$ isometric? isomorphic? If $T: E \to F$ is an isomorphism (isometry), then so is \overline{T} . If E and F are isomorphic (isometric), the same is true for $\operatorname{FBL}^{(p)}[E]$ and $\operatorname{FBL}^{(p)}[F]$. Can $\operatorname{FBL}^{(p)}[E]$ and $\operatorname{FBL}^{(p)}[F]$ be "same", while E and F are "different?"
- How does ran ϕ_E sit inside of FBL^(p)[E]? In particular: if $(e_i) \subset E$ is a "nice" sequence, what about $(|\phi_E(e_i)|)$?

Properties of T which pass to \overline{T}

Theorem

- T is an isomorphism (isometry) iff \overline{T} is the same.
- T is injective iff \overline{T} is injective.
- T has dense range iff \overline{T} has dense range.
- T is surjective iff \overline{T} is surjective.

What if T is an (isometric, or isomorphic) embedding? Under what conditions with \overline{T} have the same property? Connected to extensions of operators into L_p .

Connections to extensions of operators

$$\operatorname{FBL}^{(p)}[F] - \xrightarrow{\overline{\iota}} \operatorname{FBL}^{(p)}[E]$$

$$\phi_F \int_{F} \xrightarrow{\iota} \phi_E \int_{E} F$$

Consider an embedding $\iota : F \hookrightarrow E$. Then $\overline{\iota} : \operatorname{FBL}^{(p)}[F] \to \operatorname{FBL}^{(p)}[E]$ is contractive. Is it also a lattice isomorphic embedding? That is, is $\overline{\iota}$ bounded below?

Theorem

Suppose $C \ge 1$. The following [and more] are equivalent:

- $\forall f \in \operatorname{FBL}^{(p)}[F], \|\overline{\iota}f\| \ge C^{-1}\|f\|.$
- ② $\forall n \in \mathbb{N} \ \forall \varepsilon > 0 \ \forall u \in B(F, \ell_p^n) \exists$ extension $\widetilde{u} \in B(E, \ell_p^n)$, with $\|\widetilde{u}\| \leq C \|u\| + \varepsilon$.
- **③** $\forall u \in B(F, L_p(\mu)) \exists$ extension $\tilde{u} \in B(F, L_p(\mu))$, with $\|\tilde{u}\| \leq C \|u\|$.

The POE-*p*

Theorem

Suppose $C \ge 1$. The following [and more] are equivalent:

•
$$\forall f \in \operatorname{FBL}^{(p)}[F], \|\overline{\iota}f\| \ge C^{-1}\|f\|.$$

- **②** $\forall n \in \mathbb{N} \ \forall \varepsilon > 0 \ \forall u \in B(F, \ell_p^n) \exists$ extension $\widetilde{u} \in B(E, \ell_p^n)$, with $\|\widetilde{u}\| \leq C \|u\| + \varepsilon$.
- **③** $\forall u \in B(F, L_p(\mu)) \exists$ extension $\tilde{u} \in B(F, L_p(\mu))$, with $\|\tilde{u}\| \leq C \|u\|$.

A pair (F, E) with the above property is said to have *C*-POE-*p* (Property of Operator Extensions into L_p , with const. *C*). (F, E) has the POE-*p* if it has *C*-POE-*p*, for some *C*. *F* has the POE-*p* if (F, E) has the POE-*p* for any *E* containing *F*. Equivalently, $\exists C$ s.t. for any *E* containing *F*, (F, E) has the *C*-POE-*p*. Suffices to consider $E = \ell_{\infty}(\Gamma)$.

Which pairs (F, E), or spaces F, have the POE-p?

Which pairs (F, E), or spaces F, have the POE-p?

Trivial answers: **1.** Any pair has POE- ∞ . **2.** *F* is complemented in $E \Rightarrow (F, E)$ has the POE-*p* (for $1 \le p \le \infty$). Then $\overline{\iota} : \operatorname{FBL}^{(p)}[F] \to \operatorname{FBL}^{(p)}[E]$ is a lattice embedding.

Proposition

For
$$p \in [1,2]$$
, F has the POE- p iff $B(F, L_p) = \prod_2(F, L_p)$.

Proof. (1) Suppose *F* has the POE-*p*. Take $F \hookrightarrow E = \ell_{\infty}(\Gamma)$. Any $u : F \to L_p$ has an extension $\widetilde{u} : \ell_{\infty}(\Gamma) \to L_p$. Then $\pi_2(u) \leq \pi_2(\widetilde{u}) \leq K \|\widetilde{u}\| \leq KC \|u\|$. (2) If $B(F, L_p) = \Pi_2(F, L_p)$, then $\exists K$ s.t. $\pi_2(u) \leq K \|u\|$ for any $u : F \to L_p$. If $F \hookrightarrow E$, then \exists extension $\widetilde{u} : E \to L_p$ s.t. $\|\widetilde{u}\| \leq \pi_2(\widetilde{u}) = \pi_2(u) \leq K \|u\|$.

More about POE-p

Proposition. For $p \in [1, 2]$, F has the POE-p iff $B(F, L_p) = \prod_2 (F, L_p)$.

Proposition

- If 1 ≤ p ≤ q ≤ 2, and F has the POE-p, then it has POE-q.
- If $2 \leq p < \infty$, and F has the POE-p, then it has POE-2.
- ℓ_1 has POE-p iff $2 \leq p \leq \infty$.

Proof. (1) $L_q \hookrightarrow L_p$; $B(F, L_p) = \Pi_2(F, L_p) \Rightarrow B(F, L_q) = \Pi_2(F, L_q)$.

(2) $L_2 \hookrightarrow L_p$, complementably.

Question. Other connections between POE-*p*'s?

Casazza & Nielsen 2003: *E* has Property M_p (M for Maurey Extension) if $\forall F \hookrightarrow E$, any $u: F \to \ell_p$ has an extension $\tilde{u}: E \to \ell_p$.

If *E* is a Köthe function space on (0, 1) with Property M_p with 2 , then*E*is isomorphic to a Hilbert space.

Complemented sublattices of $FBL^{(p)}[E]$

Suppose $\iota: F \hookrightarrow E$, and $P: E \to F$ is a projection $(id_F = P\iota)$. Then $\overline{P}^2 = \overline{P^2} = \overline{P}$, and $\overline{id_F} = \overline{P\iota} = \overline{P}\overline{\iota}$. IOW, $\overline{\iota}: \operatorname{FBL}^{(p)}[F] \to \operatorname{FBL}^{(p)}[E]$ is a lattice embedding, and $\overline{P}: \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[E]$ is a lattice projection (idempotent lattice homomorphism).

Proposition

If F is a complemented subspace of E, then $FBL^{(p)}[F]$ is a lattice-complemented sublattice of $FBL^{(p)}[E]$.

Questions. (1) For $F \hookrightarrow E$, under what conditions is $\text{FBL}^{(p)}[F]$ lattice isomorphic to a lattice complemented subspace of $\text{FBL}^{(p)}[E]$? Is complementation of F in E necessary?

(2) What can we say about (complemented) sublattices of $FBL^{(p)}[E]$?

Sublattice and subspace structure

Proposition

If dim $E \ge n$, then $FBL^{(p)}[E]$ contains a lattice complemented sublattice, lattice isomorphic to $C(\mathbb{S}^{n-1})$.

Proof. Pick a *n*-dimensional (complemented) $F \hookrightarrow E$. Known: $\text{FBL}^{(p)}[F]$ is lattice isomorphic to $C(\mathbb{S}^{n-1})$.

Corollary

If dim $E \ge 2$, then $\text{FBL}^{(p)}[E]$ contains isomorphically any separable Banach space.

Proposition

If Γ is uncountable, and $1 \leq p < 2 < q < \infty$, then $\operatorname{FBL}[\ell_p(\Gamma)]$ does not embed, as a Banach space, in $\operatorname{FBL}[\ell_q(\Gamma)]$.

This is due to WCG considerations.

Lattice copies of *E* inside of $FBL^{(p)}[E]$

Note: Canonical embedding $\phi_E : E \hookrightarrow FBL^{(p)}[E]$ is not a lattice embedding, even if E is a Banach lattice.

Theorem

Suppose the Banach lattice structure on E is determined by its 1-unconditional basis, and, moreover, E is p-convex with constant 1. Then \exists an isometric lattice embedding $J : E \to FBL^{(p)}[E]$, and a contractive lattice projection from $FBL^{(p)}[E]$ onto JE.

Example: If $q \ge p$, then $\operatorname{FBL}^{(p)}[\ell_q]$ contains ℓ_q as a lattice-complemented sublattice (for $q = \infty$, take c_0 instead of ℓ_{∞}).

Lattices that cannot embed into $FBL^{(p)}[E]$

Theorem

Suppose Z is a sublattice of $FBL^{(p)}[E]$. Then lattice homomorphisms in Z^* separate points in Z.

 $z^* \in Z^*$ is a lattice homomorphism iff (i) $z^* \ge 0$, and (ii) if $x, y \in Z$, $x \perp y$, then either $\langle z^*, x \rangle = 0$ or $\langle z^*, y \rangle = 0$. Example: Z = C(K); $z^* \in C(K)^*$ is a lattice homomorphism iff $z^* = \delta_t$, for some $t \in K$. **Proof.** FBL^(p)[E] \hookrightarrow **H**_p[E^*] (as a sublattice). Known: $\phi \in \text{FBL}^{(p)}[E]^*$ is a lattice homomorphism iff $\phi = x^*$ for some $x^* \in E^*$ (that is, $\langle \phi, f \rangle = f(x^*)$). These separate points in $\text{FBL}^{(p)}[E]$.

Corollary

 $\operatorname{FBL}^{(p)}[E]$ cannot contain $L_q(0,1)$ $(1\leqslant q<\infty)$ lattice isomorphically.

Proof. If $Z = L_q(0, 1)$ $(1 \le q < \infty)$, then Z^* contains no lattice homomorphisms.

Dual of a free lattice: describing the atoms

Consider a Banach lattice Z. Then $z^* \in Z^*_+$ is an atom $(0 \le x^* \le z^* \Leftrightarrow x^* \in [0,1] \cdot z^*)$ iff it is a lattice homomorphism $Z \to \mathbb{R}$. **Notation.** For a Banach space E, and $e^* \in E^*$, $\hat{e^*} : \operatorname{FBL}^{(p)}[E] \to \mathbb{R}$ is the lattice homomorphism extending $e^* : E \to \mathbb{R}$, with $||e^*|| = ||\hat{e^*}||$. **Observation.** If $T : X \to Y$ is a lattice homomorphism, then T^* is interval preserving, hence T^*y^* is an atom whenever $y^* \in Y^*$ is.

Proposition (Folklore?)

 $\phi \in \operatorname{FBL}^{(p)}[E]^*$ is an atom iff $\phi = \widehat{e^*}$ for some $e^* \in E^*$.

Proof. $\widehat{e^*}$ is a lattice homomorphic extension of $e^* : E \to \mathbb{R}$. For a lattice homomorphism $\phi : \operatorname{FBL}^{(p)}[E] \to \mathbb{R}$, let $e^* = \phi|_E$. Then $\widehat{e^*}$ is a lattice homomorphism, coinciding with ϕ on E, hence also on the closed sublattice generated by E, which is the whole $\operatorname{FBL}^{(p)}[E]$.

Dual of a free lattice: sums of atoms

Notation. For
$$e_1, \ldots, e_n \in E$$
,
 $\|(e_i)\|_{q, \text{weak}} = \max \left\{ \|\sum_i \lambda_i e_i\| : \sum_i |\lambda_i|^{q'} \leq 1 \right\} = \|u : \ell_{q'}^n \to E\|$
 $= \|u^* : E^* \to \ell_q^n\|$, where $1/q + 1/q' = 1$, and $u : \delta_i \mapsto e_i$.

Proposition

For $e_1^*, \ldots, e_n^* \in E^*$, consider $\widehat{e_1^*}, \ldots, \widehat{e_n^*} \in \operatorname{FBL}^{(p)}[E]^*$. Then, for $p \leq q$, $\|(e_i^*)\|_{q,\operatorname{weak}} = \|(\widehat{e_i^*})\|_{q,\operatorname{weak}}$.

Proof. Consider $T : E \to \ell_q^n : e \mapsto (e_i^*(e))_{i=1}^n$. Then $||T|| = ||(e_i^*)||_{q,\text{weak}}$; $\widehat{T} : \text{FBL}^{(p)}[E] \to \ell_q^n : f \mapsto (\langle \widehat{e_i^*}, f \rangle)_{i=1}^n$ is the lattice homomorphic extension, of the same norm.

Dual of a free lattice: atoms fill the universe

An element of FBL^(p)[E]* is finitely presented if if it can be written as $f_{\overline{e^*},\overline{\alpha}} = \sum_{i=1}^n \alpha_i \widehat{e_i^*}$ for some $\overline{e^*} = (e_1^*, \ldots, e_n^*) \subset E^*$ (with $e_i^* \notin [0,\infty) \cdot e_j^*$ for $i \neq j$) and $\overline{\alpha} = (\alpha_1, \ldots, \alpha_n) \subset \{-1, 1\}$.

We know that, for p = 1, $\|f_{\overline{e^*},\overline{\alpha}}\| = \|\overline{e^*}\|_{1,\text{weak}}$.

Proposition

 $f \in FBL^{(p)}[E]^*$ satisfies $||f|| \leq 1$ iff it is a weak^{*} limit of a net $(f_{\overline{e^*}_j\overline{\alpha}_j})$ of finitely presented functionals of norm not exceeding 1. Moreover, $f \in FBL^{(p)}[E](\ell_p^m)^*$ satisfies $||f|| \leq 1$ iff it is a weak^{*} limit of a net (f_j) , where $f_j = (f_{\overline{e^*}_{js},\overline{\alpha}_{js}})_{s=1}^m$, and $\sup_j ||f_j|| \leq 1$.

Convexity and summing properties of operators

Suppose E, F are Banach spaces, and $T \in B(F, E)$.

T is (r, 1)-summing if here exists a constant *C* so that the inequality $(\sum ||f_i||^r)^{1/r} \leq ||(f_i)||_{1,\text{weak}}; \pi_{r,1}(T) = \inf C.$

If *E* is a Banach lattice, *T* is (r, ∞) -convex if there exists a constant *C* so that the inequality $|| \lor_i |Tf_i|| \le C(\sum_i ||f_i||^r)^{1/r}$; the (r, ∞) -convex norm $\operatorname{cvx}_{r,\infty}(T)$ is the smallest such *C*.

Proposition

For $u \in B(F, E)$ and $r \in (1, \infty)$, the lattice homomomorphism $\overline{u} : \operatorname{FBL}[F] \to \operatorname{FBL}[E]$ is (r, ∞) -convex iff u^* is (r', 1)-summing, with 1/r + 1/r' = 1; then $\operatorname{cvx}_{r,\infty}(\overline{u}) = \pi_{r',1}(u^*)$.

Idea of the proof: dualize.

Upper estimates for FBL[E]

Definition

Suppose $1 \leq q \leq \infty$. A Banach lattice X:

- is *q*-convex with constant *C* if $\left\| \left(\sum_{i=1}^{N} |x_i|^q \right)^{1/q} \right\| \leq C \left(\sum_i \|x_i\|^q \right)^{1/q}$ holds for any $x_1, \ldots, x_N \in X$.
- has upper *q*-estimate with constant *C* if $\operatorname{cvx}_{q,\infty}(id_E) \leq C$: $\| \vee_{i=1}^N |x_i| \| \leq C (\sum_i \|x_i\|^q)^{1/q}$ holds for any $x_1, \ldots, x_N \in X$. Suffices to check this inequality when x_1, \ldots, x_N are disjoint.

Theorem

For a Banach space E, $p \ge 1$, and $C \ge 1$, TFAE:

• FBL[*E*] has upper *p*-estimate with constant *C*.

2 id_{E^*} is (p', 1)-summing with constant C(1/p + 1/p' = 1).

Only $p \in [1, 2]$ are feasible.

Complemented copies of ℓ_1^n

Proposition

For a Banach space E, TFAE:

- **(**) *E* contains copies of ℓ_1^n , uniformly complementably.
- **2** FBL[*E*] contains ℓ_1^n as sublattices, uniformly.
- FBL[E] contains ℓ_1^n as sublattices, uniformly lattice complementably.
- FBL[*E*] contains ℓ_1^n as subspaces, uniformly complementably.

Proof of (1) \Leftrightarrow (2). *E* contains ℓ_1^n , uniformly complementably $\Leftrightarrow E^*$ contains copies of $\ell_{\infty}^n \Leftrightarrow E^*$ has trivial cotype $\Leftrightarrow id_{E^*}$ is not (r', 1)-summing for any $r' < \infty$ $\Leftrightarrow \text{FBL}[E]$ has no non-trivial upper *r*-estimates for r > 1 $\Leftrightarrow \text{FBL}[E]$ contains ℓ_1^n as sublattices, uniformly [Krivine].

Copies of ℓ_1

Proposition

For a Banach space E, TFAE:

- E contains a complemented copy of ℓ_1 .
- **2** FBL[*E*] contains ℓ_1 as a sublattice.
- **③** FBL[E] contains ℓ_1 as a lattice complemented sublattice.
- FBL[*E*] contains ℓ_1 as a complemented subspace.

FBL[E] when E is a Banach lattice

Theorem

Suppose 1 , <math>E is a Banach lattice. Then E has an upper p-estimate iff FBL[E] does.

Corollary

Suppose 1 , E, F are Banach lattices, and F is linearly isomorphic to a complemented subspace of E. If E has the upper p-estimate, then so does F.

Similar result is known for *p*-convexity.

Sketch of proof. Suppose $\iota: F \to E$ isomorphic embedding, and ιF is complemented in E. Then $\overline{\iota}: FBL[F] \to FBL[E]$ is a lattice isomorphic embedding. Upper estimates pass to sublattices.

Properties of $(e_k) \subset E$ versus $(|\phi_E(e_k)|) \subset \operatorname{FBL}^{(p)}[E]$

Proposition

Suppose (e_k) is a basis (an unconditional basis) in *E*. Then $(|\phi_E(e_k)|)$ is a basic sequence (unconditional basic sequence) in FBL^(p)[*E*].

Theorem (Avilés, Tradacete, Villanueva; 2019)

Suppose $(e_k) \subset \ell_q$ is the canonical basis. Then $(|\phi_E(e_k)|) \subset FBL[E]$ is equivalent to the canonical ℓ_r -basis, where r = 1 if $1 \leq q \leq 2$, and 1/r = 1/q + 1/2 for $2 < q \leq \infty$.

Proposition

Suppose $(e_k) \subset E$ is equivalent to the canonical basis of c_0 . Then $(|\phi_E(e_k)|) \subset FBL^{(p)}[E]$ is equivalent to the canonical ℓ_2 basis for $1 \leq p < \infty$, and to the canonical c_0 -basis for $p = \infty$.

$(e_k) \subset E$ versus $(|\phi_E(e_k)|) \subset \mathrm{FBL}^{(p)}[E]$, part II

Proposition

Suppose (e_k) is a semi-normalized basis of E. Then, for $1 \le p < \infty$, $(|\phi_E(e_k)|) \subset FBL^{(p)}[E]$ dominates the canonical ℓ_2 .

Theorem

Suppose (e_k) is an unconditional basis in E, and $p \in [1, \infty)$. Then $(|\phi_E(e_k)|) \subset FBL^{(p)}[E]$ is equivalent to the canonical ℓ_2 -basis iff (e_k) is the canonical basis for c_0 .

Proposition

If $(e_k) \subset C(K)$ is equivalent to the canonical ℓ_2 -basis, then, for $1 \leq p \leq \infty$, $(|\phi_E(e_k)|) \subset FBL^{(p)}[C(K))]$ is equivalent to the canonical ℓ_2 -basis.

Question. Under what conditions on the basis $(e_i) \subset E$ will $(|\phi_E(e_k)|)$ be equivalent to a prescribed sequence (such as ℓ_q -basis)?

Thank you for your attention! Questions welcome!

