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Example
e If K is a compact space, the Banach space
C(K):={f: K— R : f is continuous} with the pointwise order and
the supremum norm is a Banach lattice.
@ /p and Lp(y) are Banach lattices for every 1 < p < co.
@ Any Banach space with a 1-unconditional basis has a natural
structure of Banach lattice. )




L. Kantorovi¢ and his school first recognized the importance of studying
vector lattices in connection with Banach’s theory of normed vector spaces; they
investigated normed vector lattices as well as order-related linear operators
between such vector lattices. (Cf. Kantorovi¢-Vulikh-Pinsker [1950] and Vulikh
[1967].) However, in the years following that early period, functional analysis
and vector lattice theory began drifting more and more apart; it is my
impression that “linear order theory™ could not quite keep pace with the rapid
development of general functional analysis and thus developed into a theory
largely existing for its own sake, even though 1t had interesting and beautiful
applications here and there.

H.H. Schaefer, 1974
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A Banach space X is said to be linearly embeddable into another Banach
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If, in addition, X and Y are Banach lattices and T is also a lattice
homomorphism then X is said to be lattice embeddable into Y.




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:

Q@ X is reflexive;




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;

@ X does not contain any subspace isomorphic to {1 or to cy;




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.



Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:

Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:

Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

© o is linearly embeddable in X;




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:

Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

© o is linearly embeddable in X;
Q ¢ is lattice embeddable in X.




Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:
© o is linearly embeddable in X;
Q ¢ is lattice embeddable in X.

The previous theorem does not hold if we take ¢; instead of ¢p.



Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:
© o is linearly embeddable in X;
Q ¢ is lattice embeddable in X.

The previous theorem does not hold if we take ¢; instead of ¢y. In
particular, 1 is linearly embeddable in CJ[0, 1] but it is not lattice
embeddable.



Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X, the following conditions are equivalent:
Q X is reflexive;
@ X does not contain any subspace isomorphic to {1 or to cy;

© X does not contain any sublattice isomorphic to {1 or to ¢p;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:
© o is linearly embeddable in X;
Q ¢ is lattice embeddable in X.

The previous theorem does not hold if we take ¢; instead of ¢y. In
particular, 1 is linearly embeddable in CJ[0, 1] but it is not lattice
embeddable.

Is co the only Banach lattice with this property? \




For a Banach lattice X, the following conditions are equivalent:




For a Banach lattice X, the following conditions are equivalent:
@ /1 is lattice embeddable in X;




For a Banach lattice X, the following conditions are equivalent:
@ /1 is lattice embeddable in X;

Q /1 is linearly embeddable as a complemented subspace in X;




Theorem

For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;

© ¢ is linearly embeddable in X*,;




For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;
© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;




For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;
© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;
Q / is linearly embeddable in X*;




For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;
© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;
Q / is linearly embeddable in X*;
Q@ / Is lattice embeddable in X*;




For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;

Q /1 is linearly embeddable as a complemented subspace in X;

© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;

Q / is linearly embeddable in X*;
Q@ / Is lattice embeddable in X*;

For a Dedekind o-complete Banach lattice X, the following conditions
are equivalent:




Theorem

For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;
© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;
Q / is linearly embeddable in X*;
Q@ / Is lattice embeddable in X*;

For a Dedekind o-complete Banach lattice X, the following conditions
are equivalent:

© !l is linearly embeddable in X;




Theorem

For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;
Q /1 is linearly embeddable as a complemented subspace in X;
© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;
Q / is linearly embeddable in X*;
Q@ / Is lattice embeddable in X*;

For a Dedekind o-complete Banach lattice X, the following conditions
are equivalent:

© !l is linearly embeddable in X;
Q /! is lattice embeddable in X;




For a Banach lattice X, the following conditions are equivalent:
@ /4 is lattice embeddable in X;

Q /1 is linearly embeddable as a complemented subspace in X;

© ¢ is linearly embeddable in X*,;
Q ¢ is lattice embeddable in X*;

Q / is linearly embeddable in X*;
Q@ / Is lattice embeddable in X*;

For a Dedekind o-complete Banach lattice X, the following conditions
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A Banach lattice is Dedekind o-complete whenever every nonempty
countable subset bounded above has a supremum.
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EMBEDDINGS OF C(4) AND L'[0, 1]
IN BANACH LATTICES

BY
HEINRICH P. LOTZ AND HASKELL P. ROSENTHAL'

ABSTRACT

It is proved that if E is a separable Banach lattice with E’ weakly sequentially
complete, F is a Banach space and T: E — F is a bounded linear operator with
T'F' non-separable, then there is a subspace G of E, isomorphic to C(A), such
that T, is an isomorphism, where C(A) denotes the space of continuous real
valued functions on the Cantor discontinuum. This generalizes an earlier result
of the second-named author. A number of conditions are proved equivalent for
a Banach lattice E (o contain a subspace order isomorphic to C(A). Among
them are the following: L' is lattice isomorphic to a sublattice of E'; C(A) is
lattice isomorphic to a sublattice of E'; E contains an order bounded sequence
with no weak Cauchy subsequence; E has a separable closed sublattice F such
that F' does not have a weak order unit.
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Theorem (N. Ghossoub, 1983)

C(A) linearly embeds in an arbitrary Banach lattice X if and only if there
exists a positive embedding T: C(A) — X.
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Let A denote the Cantor space.
Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

there exists a positive embedding T: C(A) — X;

Ly is lattice embeddable in X*;

C(A)* is lattice embeddable in X*;

there exists a linear embedding T: C(A) — X (N. Ghossoub, 1983);

there exists a lattice embedding T: C[0,1] — X (A. Avilés, G.M.C.,
A. Rueda Zoca, P. Tradacete, 2021);
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A compact space is said to be a Peano compactum if it is a continuous
image of the interval [0, 1].

For any compact spaces K and L and any lattice homomorphism

T : C(K) — C(L) there exist continuous functions u : L — [0, c0) and
h: L\ u"t({0}) — K such that T(f)(t) = u(t)f(h(t)) whenever

t € L\ u~({0} and T(f)(t) = 0 otherwise.
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Theorem (B. de Pagter, A.W. Wickstead, 2015)
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Let X be a Banach lattice and J be a closed ideal in X. If C[0,1] is lattice
embeddable into X /J then C[0, 1] is lattice embeddable into X.
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@ Let X be a Banach lattice. We have to show that if 7: C[0,1] — X
is an isomorphism then there exists a lattice isomorphism
T:C[0,1] — X.

e By Miljutin's Theorem, there exists an isomorphism S: C(A) — X.
By Ghoussoub’s Theorem, we can suppose that S is a positive
embedding. Indeed, it follows from a result of Lotz and Rosenthal
that S can be chosen so that ||S]|||S™1|| is as close to one as we wish.

e WLOG, X is separable and therefore X C C(A, L;).

o Instead of working directly with C[0, 1] we construct a sublattice
Z C X with a quotient lattice isomorphic to C(A).
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Idea of the proof. We consider the sequence (¥, )y e2<w in Q2 Q1(X))
defined recursively as follows:

° Yo = Xps

@ Vom0 = (2X0'”\0 - Xa’\l)—i— A Yo

@ Yo—1 = (2XO"—\1 - X0“0)+ /\_ya-
The subspace Yy = span{y, : 0 € 2<“} is a sublattice lattice isomorphic to
C(A). Furthermore, there is a sublattice Z C X such that
Q(@i(2) =Y.
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defined recursively as follows:
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® Vo0 =(2X~0 = Xo~1)" A Yo.

® Yo1=(2X%~1 = Xo~0) " A Yo
The subspace Yy = span{y, : 0 € 2<“} is a sublattice lattice isomorphic to
C(A). Furthermore, there is a sublattice Z C X such that

Q(A(2)) = Y. By the aforementioned result of de Pagter and
Wickstead, C[0,1] is lattice embeddable into Z C X.
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Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

An infinite-dimensional sublattice of C[0,1] is either lattice isomorphic to
o or it contains a sublattice isomorphic to C[0, 1].
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Thank you for your attention.



