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Definition

A lattice is a partially ordered set (L,≤) such that every two elements x
and y have a supremum x ∨ y and an infimum x ∧ y .

Definition

A vector lattice is a (real) vector space X that is also a lattice and

1 x ≤ y implies x + z ≤ y + z for every x , y , z ∈ E ;

2 0 ≤ x implies 0 ≤ tx for every x ∈ E and t ∈ R+.

An element x ∈ X is positive if x ≥ 0. We can define for every x ∈ X the
elements x+ = x ∨0, x− = (−x)∨0, |x | = x ∨ (−x) = x+ + x− (notice
that x = x+ − x−). We say that x , y ∈ X are disjoint if |x | ∧ |y | = 0.

Definition

A Banach lattice is a vector lattice X that is also a Banach space and for
all x , y ∈ X , |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

In particular, ‖x‖ = ‖|x |‖.
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Example

If K is a compact space, the Banach space
C (K ) := {f : K −→ R : f is continuous} with the pointwise order and
the supremum norm is a Banach lattice.

`p and Lp(µ) are Banach lattices for every 1 ≤ p ≤ ∞.

Any Banach space with a 1-unconditional basis has a natural
structure of Banach lattice.
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H.H. Schaefer, 1974



Let T : X → Y be a bounded operator between Banach lattices.

T preserves the order if Tx ≤ Ty whenever x ≤ y . This is equivalent to
0 ≤ Tx whenever 0 ≤ x (because x ≤ y ⇔ 0 ≤ y − x). An
order-preserving operator T is also known as a positive operator.
Nevertheless, a positive operator might not preserve suprema and infima:

Example

Let T : R2 → R be given by the formula T (x , y) = x + y . Then T is
positive but it does not preserve suprema since

T ((1, 0) ∨ (0, 1)) = T ((1, 1)) = 2 6= 1 = T (1, 0) ∨ T (0, 1).

Definition

T : X → Y is a lattice homomorphism if it preserves suprema and infima,
i.e. T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every
x , y ∈ X . If, in addition, T is a (Banach) isomorphism, then we say that
T is a lattice isomorphism.
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Definition

A Banach space X is said to be linearly embeddable into another Banach
space Y whenever there exists an operator T : X −→ Y which is an
isomorphism onto its range, i.e. T is a linear embedding.

If, in addition, X and Y are Banach lattices and T is also a lattice
homomorphism then X is said to be lattice embeddable into Y .
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Theorem (G. Ja. Lozanovskii, 1968)

For a Banach lattice X , the following conditions are equivalent:

1 X is reflexive;

2 X does not contain any subspace isomorphic to `1 or to c0;

3 X does not contain any sublattice isomorphic to `1 or to c0;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X , the following conditions are equivalent:

1 c0 is linearly embeddable in X ;

2 c0 is lattice embeddable in X .

The previous theorem does not hold if we take `1 instead of c0. In
particular, `1 is linearly embeddable in C [0, 1] but it is not lattice
embeddable.

Question

Is c0 the only Banach lattice with this property?
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Let ∆ denote the Cantor space.

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

1 there exists a positive embedding T : C (∆) −→ X;

2 L1 is lattice embeddable in X ∗;

3 C (∆)∗ is lattice embeddable in X ∗;

Theorem (N. Ghossoub, 1983)

C (∆) linearly embeds in an arbitrary Banach lattice X if and only if there
exists a positive embedding T : C (∆) −→ X.
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Remark

C (∆) linearly embeds in C [0, 1] but C (∆) is not lattice isomorphic to a
sublattice of C [0, 1].

Proposition

For a compact space K, C (K ) is lattice embeddable into C [0, 1] if and
only if K is a disjoint finite union of Peano compacta.

A compact space is said to be a Peano compactum if it is a continuous
image of the interval [0, 1].

For any compact spaces K and L and any lattice homomorphism
T : C (K ) −→ C (L) there exist continuous functions u : L −→ [0,∞) and
h : L \ u−1({0}) −→ K such that T (f )(t) = u(t)f (h(t)) whenever
t ∈ L \ u−1({0} and T (f )(t) = 0 otherwise.
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Recall that every separable Banach space embeds into C (∆).

Nevertheless,
not every separable Banach lattice is lattice embeddable into C (∆).
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Every separable Banach lattice embeds lattice isometrically into C (∆, L1).

C (∆, L1) denotes the Banach lattice of continuous functions f : ∆→ L1,
endowed with the norm ‖f ‖ = supt∈∆ ‖f (t)‖L1 .
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Definition (B. de Pagter, A.W. Wickstead, 2015)

A Banach lattice P is said to be projective if, whenever X is a Banach
lattice, J is a closed ideal in X and Q : X −→ X/J is the quotient map,
for every lattice homomorphism T : P −→ X/J and every ε > 0 there
exists a lattice homomorphism T̂ : P −→ X such that T = Q ◦ T̂ and
‖T̂‖ ≤ (1 + ε)‖T‖.

Theorem (B. de Pagter, A.W. Wickstead, 2015)

C [0, 1] is projective

Corollary

Let X be a Banach lattice and J be a closed ideal in X . If C [0, 1] is lattice
embeddable into X/J then C [0, 1] is lattice embeddable into X .
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Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

The Banach lattice C [0, 1] is linearly embeddable in a Banach lattice if
and only if it is lattice embeddable.

Idea of the proof.

Let X be a Banach lattice. We have to show that if T : C [0, 1] −→ X
is an isomorphism then there exists a lattice isomorphism
T̂ : C [0, 1] −→ X .

By Miljutin’s Theorem, there exists an isomorphism S : C (∆) −→ X .
By Ghoussoub’s Theorem, we can suppose that S is a positive
embedding. Indeed, it follows from a result of Lotz and Rosenthal
that S can be chosen so that ‖S‖‖S−1‖ is as close to one as we wish.

WLOG, X is separable and therefore X ⊆ C (∆, L1).

Instead of working directly with C [0, 1] we construct a sublattice
Z ⊆ X with a quotient lattice isomorphic to C (∆).
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Set ∆ = 2ω and 2<ω = {σ : {1, 2, . . . , n} −→ {0, 1} : n < ω}.
∆σ = {t ∈ ∆ : t|supp(σ) = σ} and fσ = χ∆σ its characteristic function
for every σ ∈ 2<ω. Then fσ = fσ_0 + fσ_1 and fσ_0, fσ_1 are
pairwise disjoint for every σ. The Banach lattice generated by
{fσ : |σ| ≤ n} is just Yn := span{fσ : |σ| = n}. Furthermore,⋃

n Yn = C (∆).

We have a positive embedding S : C (∆) −→ X ⊆ C (∆, L1). Set
gσ := Sfσ and Kσ := {t ∈ ∆ : ‖gσ(t)‖ ≥ 1− ε}. Take
K :=

⋂
k∈N(

⋃
|σ|=k Kσ) and Q1 : C (∆, L1) −→ C (K , L1) the

restriction map. Set hσ := Q1gσ.

Set Lσ(s) := {t ∈ [0, 1] : hσ(s)(t) ≥ 2(h∅(s)(t)− hσ(s)(t))} and
L(s) :=

⋂
σ: s∈K ′

σ
Lσ(s) for every s ∈ K . Define

Q2 : C (K , L1) −→ `∞(K , L1) by the formula (Q2f )(s) = f (s)χL(s) for
every s ∈ K . Set xσ = Q2hσ.
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Idea of the proof. We consider the sequence (yσ)σ∈2<ω in Q2(Q1(X ))
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yσ_0 = (2xσ_0 − xσ_1)+ ∧ yσ.

yσ_1 = (2xσ_1 − xσ_0)+ ∧ yσ.

The subspace Ŷ = span{yσ : σ ∈ 2<ω} is a sublattice lattice isomorphic to
C (∆). Furthermore, there is a sublattice Z ⊆ X such that
Q2(Q1(Z )) = Ŷ . By the aforementioned result of de Pagter and
Wickstead, C [0, 1] is lattice embeddable into Z ⊆ X .
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An infinite-dimensional sublattice of C [0, 1] is either lattice isomorphic to
c0 or it contains a sublattice isomorphic to C [0, 1].
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Open Problems

Is there a nonseparable Banach lattice X such that X is lattice
embeddable in a Banach lattice if and only if it is linearly
embeddable?

Does C ([0, 1]Γ) satisfy this property for some uncountable Γ?

Thank you for your attention.
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