Relations between the linear and the lattice structure of Banach lattices

joint work with A. Avilés, A. Rueda Zoca and P. Tradacete

Workshop on Banach spaces and Banach lattices II ICMAT (Madrid)

Gonzalo Martínez Cervantes

University of Alicante, Spain

May 9th, 2022

This work was supported by the project MTM2017-86182-P (Government of Spain, AEI/FEDER, EU), the project 20797/PI/18 by Fundación Séneca, ACyT Región de Murcia and by the European Social Fund (ESF) and the Youth European Initiative (YEI) under the Spanish Seneca Foundation (CARM) (ref. 21319/PDGI/19).

(日) (圖) (필) (필) (필) 표

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A vector lattice is a (real) vector space X that is also a lattice and

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A vector lattice is a (real) vector space X that is also a lattice and

• $x \le y$ implies $x + z \le y + z$ for every $x, y, z \in E$;

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A vector lattice is a (real) vector space X that is also a lattice and

- $x \le y$ implies $x + z \le y + z$ for every $x, y, z \in E$;
- **2** $0 \le x$ implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A vector lattice is a (real) vector space X that is also a lattice and

•
$$x \le y$$
 implies $x + z \le y + z$ for every $x, y, z \in E$;

2 $0 \le x$ implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$.

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

•
$$x \leq y$$
 implies $x + z \leq y + z$ for every $x, y, z \in E$;

2
$$0 \le x$$
 implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$,

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

•
$$x \leq y$$
 implies $x + z \leq y + z$ for every $x, y, z \in E$;

2
$$0 \le x$$
 implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$,

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

•
$$x \leq y$$
 implies $x + z \leq y + z$ for every $x, y, z \in E$;

2
$$0 \le x$$
 implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x)$

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

$$x \le y \text{ implies } x + z \le y + z \text{ for every } x, y, z \in E;$$

2 $0 \le x$ implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x) = x^+ + x^-$ (notice that $x = x^+ - x^-$).

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

$$x \le y \text{ implies } x + z \le y + z \text{ for every } x, y, z \in E;$$

2
$$0 \le x$$
 implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x) = x^+ + x^-$ (notice that $x = x^+ - x^-$). We say that $x, y \in X$ are disjoint if $|x| \land |y| = 0$.

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

$$x \leq y \text{ implies } x + z \leq y + z \text{ for every } x, y, z \in E;$$

2
$$0 \le x$$
 implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x) = x^+ + x^-$ (notice that $x = x^+ - x^-$). We say that $x, y \in X$ are disjoint if $|x| \land |y| = 0$.

Definition

A Banach lattice is a vector lattice X that is also a Banach space

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

$$x \leq y \text{ implies } x + z \leq y + z \text{ for every } x, y, z \in E;$$

2 $0 \le x$ implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x) = x^+ + x^-$ (notice that $x = x^+ - x^-$). We say that $x, y \in X$ are disjoint if $|x| \land |y| = 0$.

Definition

A Banach lattice is a vector lattice X that is also a Banach space and for all $x, y \in X$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space X that is also a lattice and

$$x \leq y \text{ implies } x + z \leq y + z \text{ for every } x, y, z \in E;$$

2 $0 \le x$ implies $0 \le tx$ for every $x \in E$ and $t \in \mathbb{R}^+$.

An element $x \in X$ is positive if $x \ge 0$. We can define for every $x \in X$ the elements $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x) = x^+ + x^-$ (notice that $x = x^+ - x^-$). We say that $x, y \in X$ are disjoint if $|x| \land |y| = 0$.

Definition

A Banach lattice is a vector lattice X that is also a Banach space and for all $x, y \in X$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

In particular, ||x|| = |||x|||.

Example

If K is a compact space, the Banach space
 C(K) := {f: K → ℝ : f is continuous} with the pointwise order and the supremum norm is a Banach lattice.

Example

If K is a compact space, the Banach space
 C(K) := {f: K → ℝ : f is continuous} with the pointwise order and the supremum norm is a Banach lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• ℓ_p and $L_p(\mu)$ are Banach lattices for every $1 \le p \le \infty$.

Example

If K is a compact space, the Banach space
 C(K) := {f: K → ℝ : f is continuous} with the pointwise order and the supremum norm is a Banach lattice.

- ℓ_p and $L_p(\mu)$ are Banach lattices for every $1 \le p \le \infty$.
- Any Banach space with a 1-unconditional basis has a natural structure of Banach lattice.

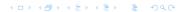
L. Kantorovič and his school first recognized the importance of studying vector lattices in connection with Banach's theory of normed vector spaces; they investigated normed vector lattices as well as order-related linear operators between such vector lattices. (Cf. Kantorovič-Vulikh-Pinsker [1950] and Vulikh [1967].) However, in the years following that early period, functional analysis and vector lattice theory began drifting more and more apart; it is my impression that "linear order theory" could not quite keep pace with the rapid development of general functional analysis and thus developed into a theory largely existing for its own sake, even though it had interesting and beautiful applications here and there.

H.H. Schaefer, 1974

Let $T : X \to Y$ be a bounded operator between Banach lattices.

<ロ> < 団> < 団> < 三> < 三> < 三> < 三</p>

Let $T : X \to Y$ be a bounded operator between Banach lattices. T preserves the order if $Tx \leq Ty$ whenever $x \leq y$.



Let $T : X \to Y$ be a bounded operator between Banach lattices. *T* preserves the order if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Let $T: X \to Y$ be a bounded operator between Banach lattices. *T* preserves the order if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An *order-preserving* operator *T* is also known as a positive operator.

・ロト・日本・モト・モー ショー ショー

Let $T : X \to Y$ be a bounded operator between Banach lattices.

T preserves the order if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An

order-preserving operator T is also known as a positive operator.

Nevertheless, a positive operator might not preserve suprema and infima:

・ロト・日本・モト・モー ショー ショー

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

 $T((1,0) \lor (0,1))$

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

$$T((1,0) \lor (0,1)) = T((1,1))$$

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

$$T((1,0) \lor (0,1)) = T((1,1)) = 2$$

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

$$T((1,0) \lor (0,1)) = T((1,1)) = 2
eq 1 = T(1,0) \lor T(0,1).$$

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

$$T((1,0) \lor (0,1)) = T((1,1)) = 2
eq 1 = T(1,0) \lor T(0,1).$$

Definition

 $T: X \to Y$ is a lattice homomorphism if it preserves suprema and infima, i.e. $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$ for every $x, y \in X$.

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}$ be given by the formula T(x, y) = x + y. Then T is positive but it does not preserve suprema since

$$T((1,0) \lor (0,1)) = T((1,1)) = 2
eq 1 = T(1,0) \lor T(0,1).$$

Definition

 $T: X \to Y$ is a lattice homomorphism if it preserves suprema and infima, i.e. $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$ for every $x, y \in X$. If, in addition, T is a (Banach) isomorphism, then we say that T is a lattice isomorphism.

A Banach space X is said to be linearly embeddable into another Banach space Y whenever there exists an operator $T: X \longrightarrow Y$ which is an isomorphism onto its range, i.e. T is a linear embedding.

A Banach space X is said to be linearly embeddable into another Banach space Y whenever there exists an operator $T: X \longrightarrow Y$ which is an isomorphism onto its range, i.e. T is a linear embedding. If, in addition, X and Y are Banach lattices and T is also a lattice homomorphism then X is said to be lattice embeddable into Y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

For a Banach lattice X, the following conditions are equivalent:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For a Banach lattice X, the following conditions are equivalent:

1 *X* is reflexive;

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- 2 X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;

(日) (四) (日) (日) (日)

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

(日)

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

・ロン ・四 と ・ 日 と ・ 日

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

- c_0 is linearly embeddable in X;
- **2** c_0 is lattice embeddable in X.

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

- c_0 is linearly embeddable in X;
- \bigcirc c_0 is lattice embeddable in X.

The previous theorem does not hold if we take ℓ_1 instead of c_0 .

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

The previous theorem does not hold if we take ℓ_1 instead of c_0 . In particular, ℓ_1 is linearly embeddable in C[0,1] but it is not lattice embeddable.

For a Banach lattice X, the following conditions are equivalent:

- X is reflexive;
- **2** X does not contain any subspace isomorphic to ℓ_1 or to c_0 ;
- Solution X does not contain any sublattice isomorphic to ℓ_1 or to c_0 ;

Thus, James space does not admit a Banach lattice structure.

Theorem (P. Meyer-Nieberg, 1973)

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

 \bigcirc c_0 is lattice embeddable in X.

The previous theorem does not hold if we take ℓ_1 instead of c_0 . In particular, ℓ_1 is linearly embeddable in C[0,1] but it is not lattice embeddable.

Question

Is c_0 the only Banach lattice with this property?

For a Banach lattice X, the following conditions are equivalent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

For a Banach lattice X, the following conditions are equivalent:

• ℓ_1 is lattice embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in *X*;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in *X*;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• c_0 is linearly embeddable in X^* ;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in *X*;

- c_0 is linearly embeddable in X^* ;
- c₀ is lattice embeddable in X*;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in *X*;

- c_0 is linearly embeddable in X^* ;
- c₀ is lattice embeddable in X*;
- **(a)** ℓ_{∞} is linearly embeddable in X^* ;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in *X*;

- c_0 is linearly embeddable in X^* ;
- c_0 is lattice embeddable in X^* ;
- **(**) ℓ_{∞} is linearly embeddable in X^* ;
- ℓ_{∞} is lattice embeddable in X*;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- 2) ℓ_1 is linearly embeddable as a complemented subspace in X;
- c_0 is linearly embeddable in X^* ;
- c_0 is lattice embeddable in X^* ;
- **(**) ℓ_{∞} is linearly embeddable in X^* ;
- ℓ_{∞} is lattice embeddable in X*;

Theorem

For a **Dedekind** σ -complete Banach lattice X, the following conditions are equivalent:

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in X;
- c_0 is linearly embeddable in X^* ;
- c_0 is lattice embeddable in X^* ;
- **5** ℓ_{∞} is linearly embeddable in X^{*};
- ℓ_{∞} is lattice embeddable in X*;

Theorem

For a **Dedekind** σ -complete Banach lattice X, the following conditions are equivalent:

• ℓ_{∞} is linearly embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in X;
- c_0 is linearly embeddable in X^* ;
- c_0 is lattice embeddable in X^* ;
- **(a)** ℓ_{∞} is linearly embeddable in X^* ;
- ℓ_{∞} is lattice embeddable in X*;

Theorem

For a **Dedekind** σ -complete Banach lattice X, the following conditions are equivalent:

- ℓ_{∞} is linearly embeddable in X;
- 2 ℓ_{∞} is lattice embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

- ℓ_1 is lattice embeddable in X;
- **2** ℓ_1 is linearly embeddable as a complemented subspace in X;
- o is linearly embeddable in X*;
- c_0 is lattice embeddable in X^* ;
- **5** ℓ_{∞} is linearly embeddable in X^{*};
- ℓ_{∞} is lattice embeddable in X*;

Theorem

For a **Dedekind** σ -complete Banach lattice X, the following conditions are equivalent:

- ℓ_{∞} is linearly embeddable in X;
- 2 ℓ_{∞} is lattice embeddable in X;

A Banach lattice is Dedekind σ -complete whenever every nonempty countable subset bounded above has a supremum.

For a Banach lattice X, the following conditions are equivalent:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For a Banach lattice X, the following conditions are equivalent:

1 c_0 is linearly embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

• Suppose that Y is a separable Banach lattice such that Y is lattice embeddable in an arbitrary Banach lattice whenever it is linearly embeddable.

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

• Suppose that Y is a separable Banach lattice such that Y is lattice embeddable in an arbitrary Banach lattice whenever it is linearly embeddable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Since Y is linearly embeddable in C[0, 1], it must be lattice embeddable into C[0, 1].

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

- Suppose that Y is a separable Banach lattice such that Y is lattice embeddable in an arbitrary Banach lattice whenever it is linearly embeddable.
- Since Y is linearly embeddable in C[0,1], it must be lattice embeddable into C[0,1].

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a Banach lattice X, the following conditions are equivalent:

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

- Suppose that Y is a separable Banach lattice such that Y is lattice embeddable in an arbitrary Banach lattice whenever it is linearly embeddable.
- Since Y is linearly embeddable in C[0,1], it must be lattice embeddable into C[0,1].

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a Banach lattice X, the following conditions are equivalent:

• C[0,1] is linearly embeddable in X;

For a Banach lattice X, the following conditions are equivalent:

• c_0 is linearly embeddable in X;

2 c_0 is lattice embeddable in X.

Question

Is c_0 the only Banach lattice with this property?

- Suppose that Y is a separable Banach lattice such that Y is lattice embeddable in an arbitrary Banach lattice whenever it is linearly embeddable.
- Since Y is linearly embeddable in C[0,1], it must be lattice embeddable into C[0,1].

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a Banach lattice X, the following conditions are equivalent:

• C[0,1] is linearly embeddable in X;

 \bigcirc C[0,1] is lattice embeddable in X.

EMBEDDINGS OF $C(\Delta)$ AND $L^{1}[0, 1]$ IN BANACH LATTICES

BY

HEINRICH P. LOTZ AND HASKELL P. ROSENTHAL'

ABSTRACT

It is proved that if E is a separable Banach lattice with E' weakly sequentially complete, F is a Banach space and $T: E \to F$ is a bounded linear operator with T'F' non-separable, then there is a subspace G of E, isomorphic to $C(\Delta)$, such that T_{iG} is an isomorphism, where $C(\Delta)$ denotes the space of continuous real valued functions on the Cantor discontinuum. This generalizes an earlier result of the second-named author. A number of conditions are proved equivalent for a Banach lattice E to contain a subspace order isomorphic to $C(\Delta)$. Among them are the following: L^1 is lattice isomorphic to a sublattice of E'; $C(\Delta)'$ is lattice isomorphic to a sublattice of E'; E contains an order bounded sequence with no weak Cauchy subsequence; E has a separable closed sublattice F such that F' does not have a weak order unit.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X;$

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2 L_1 is lattice embeddable in X^* ;

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 L_1 is lattice embeddable in X^* ;

• $C(\Delta)^*$ is lattice embeddable in X^* ;

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 L_1 is lattice embeddable in X^* ;

• $C(\Delta)^*$ is lattice embeddable in X^* ;

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

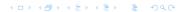
• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

2 L_1 is lattice embeddable in X^* ;

• $C(\Delta)^*$ is lattice embeddable in X^* ;

Theorem (N. Ghossoub, 1983)

 $C(\Delta)$ linearly embeds in an arbitrary Banach lattice X if and only if there exists a positive embedding $T: C(\Delta) \longrightarrow X$.



Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X;$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2 L_1 is lattice embeddable in X^* ;

Let Δ denote the Cantor space.

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

• there exists a positive embedding $T: C(\Delta) \longrightarrow X$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 L_1 is lattice embeddable in X^* ;

3 $C(\Delta)^*$ is lattice embeddable in X^* ;

Let Δ denote the Cantor space.

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

- there exists a positive embedding $T: C(\Delta) \longrightarrow X$;
- **2** L_1 is lattice embeddable in X^* ;
- $C(\Delta)^*$ is lattice embeddable in X^* ;
- there exists a linear embedding $T : C(\Delta) \longrightarrow X$ (N. Ghossoub, 1983);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let Δ denote the Cantor space.

Theorem (H.P. Lotz and H.P. Rosenthal, 1978)

For a Banach lattice X it is equivalent that:

- there exists a positive embedding $T: C(\Delta) \longrightarrow X$;
- **2** L_1 is lattice embeddable in X^* ;
- $C(\Delta)^*$ is lattice embeddable in X^* ;
- there exists a linear embedding $T : C(\Delta) \longrightarrow X$ (N. Ghossoub, 1983);
- there exists a lattice embedding T : C[0, 1] → X (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $C(\Delta)$ linearly embeds in C[0,1] but $C(\Delta)$ is not lattice isomorphic to a sublattice of C[0,1].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $C(\Delta)$ linearly embeds in C[0,1] but $C(\Delta)$ is not lattice isomorphic to a sublattice of C[0,1].

Proposition

For a compact space K, C(K) is lattice embeddable into C[0,1] if and only if K is a disjoint finite union of Peano compacta.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $C(\Delta)$ linearly embeds in C[0,1] but $C(\Delta)$ is not lattice isomorphic to a sublattice of C[0,1].

Proposition

For a compact space K, C(K) is lattice embeddable into C[0,1] if and only if K is a disjoint finite union of Peano compacta.

A compact space is said to be a Peano compactum if it is a continuous image of the interval [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $C(\Delta)$ linearly embeds in C[0,1] but $C(\Delta)$ is not lattice isomorphic to a sublattice of C[0,1].

Proposition

For a compact space K, C(K) is lattice embeddable into C[0,1] if and only if K is a disjoint finite union of Peano compacta.

A compact space is said to be a Peano compactum if it is a continuous image of the interval [0, 1].

For any compact spaces K and L and any lattice homomorphism $T: C(K) \longrightarrow C(L)$ there exist continuous functions $u: L \longrightarrow [0, \infty)$ and $h: L \setminus u^{-1}(\{0\}) \longrightarrow K$ such that T(f)(t) = u(t)f(h(t)) whenever $t \in L \setminus u^{-1}(\{0\})$ and T(f)(t) = 0 otherwise. Recall that every separable Banach space embeds into $C(\Delta)$.

<ロト < 団ト < 三ト < 三ト < 三 の Q (P)</p>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem ()

Every separable Banach lattice embeds lattice isometrically into $C(\Delta, L_1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem ()

Every separable Banach lattice embeds lattice isometrically into $C(\Delta, L_1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem ()

Every separable Banach lattice embeds lattice isometrically into $C(\Delta, L_1)$.

 $C(\Delta, L_1)$ denotes the Banach lattice of continuous functions $f : \Delta \to L_1$, endowed with the norm $||f|| = \sup_{t \in \Delta} ||f(t)||_{L_1}$.

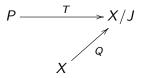
Theorem (D.H. Leung, L. Li, T. Oikhberg and M.A. Tursi, 2019)

Every separable Banach lattice embeds lattice isometrically into $C(\Delta, L_1)$.

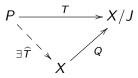
 $C(\Delta, L_1)$ denotes the Banach lattice of continuous functions $f : \Delta \to L_1$, endowed with the norm $||f|| = \sup_{t \in \Delta} ||f(t)||_{L_1}$.

A Banach lattice P is said to be projective if, whenever X is a Banach lattice, J is a closed ideal in X and Q: $X \longrightarrow X/J$ is the quotient map, for every lattice homomorphism $T: P \longrightarrow X/J$ and every $\varepsilon > 0$ there exists a lattice homomorphism $\widehat{T}: P \longrightarrow X$ such that $T = Q \circ \widehat{T}$ and $\|\widehat{T}\| \le (1 + \varepsilon)\|T\|$.

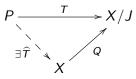
A Banach lattice P is said to be projective if, whenever X is a Banach lattice, J is a closed ideal in X and Q: $X \longrightarrow X/J$ is the quotient map, for every lattice homomorphism $T: P \longrightarrow X/J$ and every $\varepsilon > 0$ there exists a lattice homomorphism $\widehat{T}: P \longrightarrow X$ such that $T = Q \circ \widehat{T}$ and $\|\widehat{T}\| \le (1 + \varepsilon)\|T\|$.



A Banach lattice P is said to be projective if, whenever X is a Banach lattice, J is a closed ideal in X and Q: $X \longrightarrow X/J$ is the quotient map, for every lattice homomorphism $T: P \longrightarrow X/J$ and every $\varepsilon > 0$ there exists a lattice homomorphism $\widehat{T}: P \longrightarrow X$ such that $T = Q \circ \widehat{T}$ and $\|\widehat{T}\| \le (1 + \varepsilon)\|T\|$.



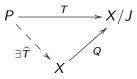
A Banach lattice P is said to be projective if, whenever X is a Banach lattice, J is a closed ideal in X and Q: $X \longrightarrow X/J$ is the quotient map, for every lattice homomorphism $T: P \longrightarrow X/J$ and every $\varepsilon > 0$ there exists a lattice homomorphism $\widehat{T}: P \longrightarrow X$ such that $T = Q \circ \widehat{T}$ and $\|\widehat{T}\| \le (1 + \varepsilon)\|T\|$.



Theorem (B. de Pagter, A.W. Wickstead, 2015)

C[0,1] is projective

A Banach lattice P is said to be projective if, whenever X is a Banach lattice, J is a closed ideal in X and Q: $X \longrightarrow X/J$ is the quotient map, for every lattice homomorphism $T: P \longrightarrow X/J$ and every $\varepsilon > 0$ there exists a lattice homomorphism $\widehat{T}: P \longrightarrow X$ such that $T = Q \circ \widehat{T}$ and $\|\widehat{T}\| \le (1 + \varepsilon)\|T\|$.



Theorem (B. de Pagter, A.W. Wickstead, 2015)

C[0,1] is projective

Corollary

Let X be a Banach lattice and J be a closed ideal in X. If C[0,1] is lattice embeddable into X/J then C[0,1] is lattice embeddable into X.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Idea of the proof.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

Let X be a Banach lattice. We have to show that if T: C[0, 1] → X is an isomorphism then there exists a lattice isomorphism

 T: C[0, 1] → X.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Let X be a Banach lattice. We have to show that if $T: C[0,1] \longrightarrow X$ is an isomorphism then there exists a lattice isomorphism $\widehat{T}: C[0,1] \longrightarrow X$.
- By Miljutin's Theorem, there exists an isomorphism $S: C(\Delta) \longrightarrow X$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Let X be a Banach lattice. We have to show that if $T: C[0,1] \longrightarrow X$ is an isomorphism then there exists a lattice isomorphism $\widehat{T}: C[0,1] \longrightarrow X$.
- By Miljutin's Theorem, there exists an isomorphism S: C(Δ) → X. By Ghoussoub's Theorem, we can suppose that S is a positive embedding.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Let X be a Banach lattice. We have to show that if $T: C[0,1] \longrightarrow X$ is an isomorphism then there exists a lattice isomorphism $\widehat{T}: C[0,1] \longrightarrow X$.
- By Miljutin's Theorem, there exists an isomorphism S: C(Δ) → X. By Ghoussoub's Theorem, we can suppose that S is a positive embedding. Indeed, it follows from a result of Lotz and Rosenthal that S can be chosen so that ||S||||S⁻¹|| is as close to one as we wish.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Let X be a Banach lattice. We have to show that if $T: C[0,1] \longrightarrow X$ is an isomorphism then there exists a lattice isomorphism $\widehat{T}: C[0,1] \longrightarrow X$.
- By Miljutin's Theorem, there exists an isomorphism S: C(Δ) → X. By Ghoussoub's Theorem, we can suppose that S is a positive embedding. Indeed, it follows from a result of Lotz and Rosenthal that S can be chosen so that ||S||||S⁻¹|| is as close to one as we wish.

• WLOG, X is separable and therefore $X \subseteq C(\Delta, L_1)$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Let X be a Banach lattice. We have to show that if T: C[0, 1] → X is an isomorphism then there exists a lattice isomorphism

 T: C[0, 1] → X.
- By Miljutin's Theorem, there exists an isomorphism S: C(Δ) → X. By Ghoussoub's Theorem, we can suppose that S is a positive embedding. Indeed, it follows from a result of Lotz and Rosenthal that S can be chosen so that ||S||||S⁻¹|| is as close to one as we wish.
- WLOG, X is separable and therefore $X \subseteq C(\Delta, L_1)$.
- Instead of working directly with C[0,1] we construct a sublattice $Z \subseteq X$ with a quotient lattice isomorphic to $C(\Delta)$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Idea of the proof.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma \colon \{1, 2, \dots, n\} \longrightarrow \{0, 1\} \colon n < \omega\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, \dots, n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ .

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\frac{\{f_{\sigma} : |\sigma| \le n\}}{\bigcup_{n} Y_{n}} = C(\Delta)$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\frac{\{f_{\sigma} : |\sigma| \le n\}}{\bigcup_{n} Y_{n}} = C(\Delta)$.

We have a positive embedding S: C(Δ) → X ⊆ C(Δ, L₁).

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\underline{\{f_{\sigma} : |\sigma| \leq n\}}$ is just $Y_n := \text{span}\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\overline{\bigcup_n Y_n} = C(\Delta)$.

• We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

• Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\{f_{\sigma} : |\sigma| \le n\}$ is just $Y_n := \text{span}\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\bigcup_n Y_n = C(\Delta)$.

• We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 - \varepsilon\}.$

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\frac{\{f_{\sigma} : |\sigma| \le n\}}{\bigcup_{n} Y_{n}} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\{f_{\sigma} : |\sigma| \le n\}$ is just $Y_n := span\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\bigcup_n Y_n = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\underline{\{f_{\sigma} : |\sigma| \le n\}}$ is just $Y_n := \text{span}\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\overline{\bigcup_n Y_n} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map. Set $h_{\sigma} := Q_1 g_{\sigma}$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\{f_{\sigma} : |\sigma| \le n\}$ is just $Y_n := \text{span}\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\overline{\bigcup_n Y_n} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map. Set $h_{\sigma} := Q_1 g_{\sigma}$.
- Set $L_{\sigma}(s) := \{t \in [0,1] : h_{\sigma}(s)(t) \ge 2(h_{\emptyset}(s)(t) h_{\sigma}(s)(t))\}$ and

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\underline{\{f_{\sigma} : |\sigma| \leq n\}}$ is just $Y_n := \text{span}\{f_{\sigma} : |\sigma| = n\}$. Furthermore, $\overline{\bigcup_n Y_n} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map. Set $h_{\sigma} := Q_1 g_{\sigma}$.
- Set $L_{\sigma}(s) := \{t \in [0,1] : h_{\sigma}(s)(t) \ge 2(h_{\emptyset}(s)(t) h_{\sigma}(s)(t))\}$ and $L(s) := \bigcap_{\sigma: s \in K'_{\sigma}} L_{\sigma}(s)$ for every $s \in K$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\frac{\{f_{\sigma} : |\sigma| \le n\}}{\bigcup_{n} Y_{n}} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map. Set $h_{\sigma} := Q_1 g_{\sigma}$.
- Set $L_{\sigma}(s) := \{t \in [0,1] : h_{\sigma}(s)(t) \ge 2(h_{\emptyset}(s)(t) h_{\sigma}(s)(t))\}$ and $L(s) := \bigcap_{\sigma: s \in K'_{\sigma}} L_{\sigma}(s)$ for every $s \in K$. Define $Q_2: C(K, L_1) \longrightarrow \ell_{\infty}(K, L_1)$ by the formula $(Q_2 f)(s) = f(s)\chi_{L(s)}$ for every $s \in K$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

- Set $\Delta = 2^{\omega}$ and $2^{<\omega} = \{\sigma : \{1, 2, ..., n\} \longrightarrow \{0, 1\} : n < \omega\}$. $\Delta_{\sigma} = \{t \in \Delta : t|_{supp(\sigma)} = \sigma\}$ and $f_{\sigma} = \chi_{\Delta_{\sigma}}$ its characteristic function for every $\sigma \in 2^{<\omega}$. Then $f_{\sigma} = f_{\sigma \frown 0} + f_{\sigma \frown 1}$ and $f_{\sigma \frown 0}$, $f_{\sigma \frown 1}$ are pairwise disjoint for every σ . The Banach lattice generated by $\frac{\{f_{\sigma} : |\sigma| \le n\}}{\bigcup_{n} Y_{n}} = C(\Delta)$.
- We have a positive embedding $S: C(\Delta) \longrightarrow X \subseteq C(\Delta, L_1)$. Set $g_{\sigma} := Sf_{\sigma}$ and $K_{\sigma} := \{t \in \Delta : ||g_{\sigma}(t)|| \ge 1 \varepsilon\}$. Take $K := \bigcap_{k \in \mathbb{N}} (\bigcup_{|\sigma|=k} K_{\sigma})$ and $Q_1: C(\Delta, L_1) \longrightarrow C(K, L_1)$ the restriction map. Set $h_{\sigma} := Q_1 g_{\sigma}$.
- Set $L_{\sigma}(s) := \{t \in [0,1] : h_{\sigma}(s)(t) \ge 2(h_{\emptyset}(s)(t) h_{\sigma}(s)(t))\}$ and $L(s) := \bigcap_{\sigma: s \in K'_{\sigma}} L_{\sigma}(s)$ for every $s \in K$. Define $Q_2: C(K, L_1) \longrightarrow \ell_{\infty}(K, L_1)$ by the formula $(Q_2 f)(s) = f(s)\chi_{L(s)}$ for every $s \in K$. Set $x_{\sigma} = Q_2 h_{\sigma}$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof. We consider the sequence $(y_{\sigma})_{\sigma \in 2^{<\omega}}$ in $Q_2(Q_1(X))$ defined recursively as follows:

•
$$y_{\emptyset} = x_{\emptyset};$$

• $y_{\sigma \frown 0} = (2x_{\sigma \frown 0} - x_{\sigma \frown 1})^+ \land y_{\sigma}.$
• $y_{\sigma \frown 1} = (2x_{\sigma \frown 1} - x_{\sigma \frown 0})^+ \land y_{\sigma}.$

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof. We consider the sequence $(y_{\sigma})_{\sigma \in 2^{<\omega}}$ in $Q_2(Q_1(X))$ defined recursively as follows:

•
$$y_{\emptyset} = x_{\emptyset}$$
;
• $y_{\sigma \frown 0} = (2x_{\sigma \frown 0} - x_{\sigma \frown 1})^+ \land y_{\sigma}$.
• $y_{\sigma \frown 1} = (2x_{\sigma \frown 1} - x_{\sigma \frown 0})^+ \land y_{\sigma}$.
The subspace $\hat{Y} = \overline{\text{span}} \{ y_{\sigma} : \sigma \in 2^{<\omega} \}$ is a sublattice lattice isomorphic to $C(\Delta)$.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof. We consider the sequence $(y_{\sigma})_{\sigma \in 2^{<\omega}}$ in $Q_2(Q_1(X))$ defined recursively as follows:

•
$$y_{\emptyset} = x_{\emptyset}$$
;
• $y_{\sigma \frown 0} = (2x_{\sigma \frown 0} - x_{\sigma \frown 1})^+ \land y_{\sigma}$.
• $y_{\sigma \frown 1} = (2x_{\sigma \frown 1} - x_{\sigma \frown 0})^+ \land y_{\sigma}$.
The subspace $\hat{Y} = \overline{\text{span}}\{y_{\sigma} : \sigma \in 2^{<\omega}\}$ is a sublattice lattice isomorphic $C(\Delta)$. Furthermore, there is a sublattice $Z \subseteq X$ such that $Q_2(Q_1(Z)) = \hat{Y}$

to

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Idea of the proof. We consider the sequence $(y_{\sigma})_{\sigma \in 2^{<\omega}}$ in $Q_2(Q_1(X))$ defined recursively as follows:

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a separable Banach lattice X the following conditions are equivalent:

• X is linearly embeddable in a Banach lattice if and only if it is lattice embeddable;

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a separable Banach lattice X the following conditions are equivalent:

 X is linearly embeddable in a Banach lattice if and only if it is lattice embeddable;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 X is lattice embeddable in C[0,1].

The Banach lattice C[0,1] is linearly embeddable in a Banach lattice if and only if it is lattice embeddable.

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

For a separable Banach lattice X the following conditions are equivalent:

- X is linearly embeddable in a Banach lattice if and only if it is lattice embeddable;
- **2** X is lattice embeddable in C[0,1].

Theorem (A. Avilés, G.M.C., A. Rueda Zoca, P. Tradacete, 2021)

An infinite-dimensional sublattice of C[0,1] is either lattice isomorphic to c_0 or it contains a sublattice isomorphic to C[0,1].

Open Problems

• Is there a nonseparable Banach lattice X such that X is lattice embeddable in a Banach lattice if and only if it is linearly embeddable?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Open Problems

- Is there a nonseparable Banach lattice X such that X is lattice embeddable in a Banach lattice if and only if it is linearly embeddable?
- Does $C([0,1]^{\Gamma})$ satisfy this property for some uncountable Γ ?

Open Problems

- Is there a nonseparable Banach lattice X such that X is lattice embeddable in a Banach lattice if and only if it is linearly embeddable?
- Does $C([0,1]^{\Gamma})$ satisfy this property for some uncountable Γ ?

Thank you for your attention.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで