C(K)-spaces associated with almost disjoint families (Part II)

Niels Laustsen

Lancaster University, UK

Workshop on Banach spaces and Banach lattices II

ICMAT, Madrid

12th May 2022

Main parts: joint work with Piotr Koszmider (IMPAN, Warsaw) and with Max Arnott (Lancaster)

1

Today:

- ► An addition to yesterday's talk.
- Outline of the proof of the main theorem (joint work with Koszmider).
- Automatic continuity of homomorphisms from $\mathscr{B}(X)$.
- Uniqueness of algebra norm on all quotients of *B(X)* by its closed ideals (joint work with Arnott).

C(K)-spaces for which all complemented subspaces are known

Yesterday I gave the following list:

- ▶ c_0 is prime (Pełczyński, *Studia Math.* 1960), that is, every complemented, ∞ -dimensional subspace of c_0 is isomorphic to c_0 .
- More generally, for Γ of arbitrary cardinality, every complemented subspace of $c_0(\Gamma)$ is isomorphic to $c_0(\Delta)$ for some $\Delta \subseteq \Gamma$ (Granero, 1998).
- Every complemented, ∞ -dimensional subspace of $C[0, \omega^{\omega}]$ is isomorphic to either c_0 or $C[0, \omega^{\omega}]$ (Benyamini, *Israel J. Math.* 1978).
- ▶ ℓ_{∞} is prime (Lindenstrauss, *Israel J. Math.* 1967).

However, this list is incomplete. Additional results are:

• $C_0(K_A)$, where $A \subseteq [\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family admitting few operators.

Suppose that $C_0(K_A) = X \oplus Y$ for some closed, ∞ -dimensional subspaces X and Y. Then $X \cong C_0(K_A)$ and $Y \cong c_0$, or vice versa (Koszmider, *PAMS* 2005).

 $\blacktriangleright \ell_{\infty}^{c}(\Gamma)$ for any uncountable set Γ .

Every ∞ -dimensional complemented subspace of $\ell_{\infty}^{c}(\Gamma)$ is isomorphic to either ℓ_{∞} or $\ell_{\infty}^{c}(\Delta)$ for some uncountable $\Delta \subseteq \Gamma$ (Johnson–Kania–Schechtman, *PAMS* 2016). (to be continued) Finally, all complemented subspaces are known for any C(K)-space of the form

 $C(K \sqcup L) \cong C(K) \oplus C(L),$

where K is scattered and C(L) is a Grothendieck space, and all the complemented subspaces of C(K) and C(L) are classified (Johnson-Kania-Schechtman, *PAMS* 2016).

Specifically, this result applies in the following cases:

- $C(K) = c_0(\Gamma)$ for infinite Γ , or $C(K) = C[0, \omega^{\omega}]$, or $C_0(K_A)$ for $A \subseteq [\mathbb{N}]^{\omega}$ an uncountable, almost disjoint family admitting few operators; and
- $C(L) = \ell_{\infty}$ or $C(L) = \ell_{\infty}^{c}(\Upsilon)$ for Υ uncountable.

Proof of the main theorem (joint work with Piotr Koszmider)

Aim: Outline the main steps of the proof of following result.

Theorem (Koszmider–L, Adv. Math. 2021, working within ZFC). There is an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})),$$

where

$$\mathscr{X}(C_0(K_{\mathcal{A}})) = \{T \in \mathscr{B}(C_0(K_{\mathcal{A}})) : T \text{ has separable range}\}.$$

Recall: Since K_A is scattered, for $T \in \mathscr{B}(C_0(K_A))$, $f \in C_0(K_A)$ and $s \in K_A$, we have

$$T(f)(s) = \langle T(f), \delta_s \rangle = \langle f, T^*(\delta_s) \rangle = \sum_{t \in K_A} T^*(\delta_s)(\{t\})f(t),$$

where $\delta_s \in C_0(K_A)^*$ is the point evaluation at s. We regard $(T^*(\delta_s)(\{t\}))_{s,t\in K_A}$ as a "matrix representation" of T.

Using $\mathbb{N} \times \mathbb{N}$ -matrices to analyze operators on $C_0(K_A)$

Recall:

- $(T^*(\delta_s)(\{t\}))_{s,t\in K_A}$ is a matrix representation of $T\in \mathscr{B}(C_0(K_A))$.
- ► $K_{\mathcal{A}} = \{x_n : n \in \mathbb{N}\} \cup \{y_A : A \in \mathcal{A}\}$, where x_n is isolated for every $n \in \mathbb{N}$ and $x_n \xrightarrow[A \ni n \to \infty]{} y_A$ for every $A \in \mathcal{A}$.

Definition. The *reduced matrix* of $T \in \mathscr{B}(C_0(K_A))$ is $M_T^{\text{red}} = (T^*(\delta_{x_k})(\{x_n\}))_{k,n\in\mathbb{N}}.$

Fact. $M_T^{\mathsf{red}} \in \mathbb{M}$, where

$$\mathbb{M} = \left\{ M = (m_{k,n})_{k,n\in\mathbb{N}} : \|M\| := \sup_{k\in\mathbb{N}} \sum_{n\in\mathbb{N}} |m_{k,n}| < \infty \right\}.$$

These are precisely the matrices representing operators $c_0
ightarrow \ell_\infty$ via

$$(Mf)(k) = \sum_{n \in \mathbb{N}} m_{k,n} f(n) \qquad (k \in \mathbb{N})$$

for $f \in c_0$ and $M = (m_{k,n})_{k,n \in \mathbb{N}} \in \mathbb{M}$.

Note: The above formula makes sense for $f \in \ell_{\infty}$.

Fact. The matrices in \mathbb{M} are the transposes of operators on ℓ_1 , or in other words the weak*-continuous operators on ℓ_{∞} .

An illustrative calculation

Let $T \in \mathscr{B}(C_0(K_A))$ for some almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$, and take $A, B \in \mathcal{A}$. Then $1_{U(A)} \in C_0(K_A)$, where $U(A) = \{x_n : n \in A\} \cup \{y_A\}$, and

$$x_k \xrightarrow[B \ni k \to \infty]{} y_B$$
, so $(T1_{U(A)})(x_k) \xrightarrow[B \ni k \to \infty]{} (T1_{U(A)})(y_B)$.

Now

$$(T1_{U(A)})(x_k) = \langle T1_{U(A)}, \delta_{x_k} \rangle = \langle 1_{U(A)}, T^* \delta_{x_k} \rangle = \sum_{t \in K_A} (T^* \delta_{x_k})(\{t\}) 1_{U(A)}(t)$$
$$= \sum_{t \in U(A)} (T^* \delta_{x_k})(\{t\}) = \sum_{n \in A} \underbrace{(T^* \delta_{x_k})(\{x_n\})}_{= (M_T^{red})_{k,n}} + (T^* \delta_{x_k})(\{y_A\}).$$

Recall: $T^*\delta_{x_k} \in C_0(K_{\mathcal{A}})^* \cong \ell_1(K_{\mathcal{A}})$, so

$$\mathcal{A}_{\mathcal{T}} := \bigcup_{k \in \mathbb{N}} \{ A \in \mathcal{A} : (\mathcal{T}^* \delta_{x_k})(\{y_A\}) \neq 0 \} \text{ is countable.}$$

For $A \in \mathcal{A} \setminus \mathcal{A}_T$,

$$(T1_{U(A)})(y_B) \underset{B \ni k \to \infty}{\leftarrow} (T1_{U(A)})(x_k) = \sum_{n \in A} (M_T^{\mathsf{red}})_{k,n} = (M_T^{\mathsf{red}}1_A)(k).$$

Conclusion: $((M_T^{\text{red}} 1_A)(k))_{k \in B}$ converges for all but countably many $A, B \in A$.

The Reduction Lemma

Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family such that, for every $M \in \mathbb{M}$, one of the following three conditions holds:

(i) There are uncountably many $A \in A$ that **reject** M, in the sense that

$$((M1_A)(k))_{k\in A}$$
 diverges.

(ii) Or there are uncountably many $A \in A$ that **undermine** M, in the sense that there is $n \in \mathbb{N}$ such that

$$(M1_{\{n\}})(k) \xrightarrow[A \ni k \to \infty]{} 0.$$

(iii) Or there are $\lambda \in \mathbb{K}$ and a countable subset $\mathcal{A}' \subseteq \mathcal{A}$ such that $\mathcal{A} \setminus \mathcal{A}'$ admits $M - \lambda I$, in the sense that

$$((M - \lambda I)1_A)(k) \xrightarrow[B \ni k \to \infty]{} 0 \qquad (A, B \in \mathcal{A} \setminus \mathcal{A}'),$$

where $I = (\delta_{k,n})_{k,n \in \mathbb{N}} \in \mathbb{M}$.

Then

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$

Task: Construct an uncountable almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ as above.

Recall: \mathcal{A} *admits* $M \in \mathbb{M}$ if

$$(M1_A)(k) \xrightarrow[B \ni k \to \infty]{} 0 \qquad (A, B \in \mathcal{A}).$$

Problem: This notion is not closed under finite unions, or subsets.

Definition. For $A \in [\mathbb{N}]^{\omega}$, $M = (m_{k,n})_{k,n \in \mathbb{N}} \in \mathbb{M}$ and $j \in \mathbb{N}$, define

$$M_j^A = (m_{k,n}')_{k,n \in \mathbb{N}} \in \mathbb{M}, \quad ext{where} \quad m_{k,n}' = egin{cases} m_{k,n} & ext{if } k, n \in A ext{ and } n > j \ 0 & ext{otherwise}. \end{cases}$$

The set A accepts M if

$$\|M_j^A\| o 0$$
 as $j o \infty$.

Note: This is equivalent to saying that the operator $T: c_0 \to \ell_{\infty}$ induced by compressing the matrix M to the set A is compact because

$$T ext{ is compact } \iff TP_j o T ext{ as } j o \infty$$

Definition. An almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ accepts $M \in \mathbb{M}$ if the set $A \cup B$ accepts M for every $A, B \in \mathcal{A}$.

9

Outline proof of the main result

Begin with an uncountable almost disjoint family $C \subseteq [\mathbb{N}]^{\omega}$ such that $\{1_C : C \in C\}$ is a Borel subset of the Cantor cube $\{0, 1\}^{\mathbb{N}}$, and define

 $\mathbb{M}' = \{ M \in \mathbb{M} : \exists \lambda_M \in \mathbb{K}, C_M \subset C \text{ countable: } C \setminus C_M \text{ accepts } M - \lambda_M I \}.$

If $\mathbb{M}' = \mathbb{M}$, set $\mathcal{A} = \mathcal{C}$ and go straight to Case 2 (next slide).

Otherwise enumerate $\mathbb{M} \setminus \mathbb{M}'$ as

$$\mathbb{M}\setminus\mathbb{M}'=\{M_{\xi}:\xi<\mathfrak{c}\}$$

with each matrix repeated continuum many times.

By transfinite recursion on $\xi < \mathfrak{c}$, choose $B_{\xi}, C_{\xi} \in \mathcal{C}$ such that

- ▶ there is $A_{\xi} \in [B_{\xi} \cup C_{\xi}]^{\omega}$ which rejects M_{ξ} ,
- ▶ and $\{B_{\eta}, C_{\eta}\} \cap \{B_{\xi}, C_{\xi}\} = \emptyset$ for every $\eta < \xi < \mathfrak{c}$.

That this is possible relies on a classical theorem of Alexandroff and Hausdorff:

Every uncountable Borel subset of $\{0,1\}^{\mathbb{N}}$ has cardinality \mathfrak{c} .

Define $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\}.$

Check: Every $M \in \mathbb{M}$ satisfies one of the conditions (i)–(iii) in the Reduction Lemma with respect to this choice of \mathcal{A} .

Outline proof of the main result (continued)

The Reduction Lemma. Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family such that, for every $M \in \mathbb{M}$, one of the following three conditions holds:

- (i) There are uncountably many $A \in \mathcal{A}$ that reject M.
- (ii) Or there are uncountably many $A \in \mathcal{A}$ that undermine M.
- (iii) Or there are $\lambda \in \mathbb{K}$ and a countable subset $\mathcal{A}' \subseteq \mathcal{A}$ such that $\mathcal{A} \setminus \mathcal{A}'$ admits $M \lambda I$.

Then

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$

Recall:

M \ M' = {M_ξ : ξ < c}, with each matrix repeated continuum many times;
 A = {A_ξ : ξ < c}, where A_ξ rejects M_ξ.

Case 1. If $M \in \mathbb{M} \setminus \mathbb{M}'$, then $M = M_{\xi}$ for continuum many $\xi < \mathfrak{c}$, and $A_{\xi} \in \mathcal{A}$ rejects M for each of these ξ , so condition (i) in the Reduction Lemma holds.

Case 2. If

$$\mathcal{A}' := \{A \in \mathcal{A} : A \text{ undermines } M\}$$

is uncountable, then condition (ii) in the Reduction Lemma is satisfied.

Outline proof of the main result (continued)

Case 3. It remains to consider the case where

 $\mathcal{A}' := \{ A \in \mathcal{A} : A \text{ undermines } M \}$

is countable and $M \in \mathbb{M}'$; that is, there are $\mathcal{C}_M \subseteq \mathcal{C}$ countable and $\lambda_M \in \mathbb{K}$ such that $\mathcal{C} \setminus \mathcal{C}_M$ accepts $M - \lambda_M I$.

Recall: Every $A \in \mathcal{A}$ is contained in $B \cup C$ for some $B, C \in C$. Observe: $B \in C_M$ or $C \in C_M$ for only countably many $A \in \mathcal{A}$. Since "acceptance" passes to subsets of finite unions,

$$\exists \mathcal{A}'' \subseteq \mathcal{A} \text{ countable:} \quad \mathcal{A} \setminus \mathcal{A}'' \text{ accepts } M - \lambda_M I.$$

Note: no $A \in \mathcal{A} \setminus \mathcal{A}'$ undermines $M - \lambda_M I$ because, for every $n \in \mathbb{N}$,

$$(M-\lambda_M I)(1_{\{n\}})(k)=M(1_{\{n\}})(k)-\lambda_M 1_{\{n\}}(k) \xrightarrow[A \ni k \to \infty]{} 0-0=0.$$

Hence

$$\mathcal{A} \setminus (\mathcal{A}' \cup \mathcal{A}'') \text{ accepts } M - \lambda_M I \\ \text{no } A \in \mathcal{A} \setminus (\mathcal{A}' \cup \mathcal{A}'') \text{ undermines } M - \lambda_M I \\ \right\} \Rightarrow \mathcal{A} \setminus (\mathcal{A}' \cup \mathcal{A}'') \text{ admits } M - \lambda_M I$$

so condition (iii) in the Reduction Lemma is satisfied.

Two questions from Koszmider–L:

▶ Is there within ZFC a *maximal* almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that

 $\mathscr{B}(C_0(K_{\mathcal{A}}))/\mathscr{X}(C_0(K_{\mathcal{A}}))\cong \mathbb{K}?$

Which unital Banach algebras of density at most c are isomorphic to

 $\mathscr{B}(C_0(K_{\mathcal{A}}))/\mathscr{X}(C_0(K_{\mathcal{A}}))$

for some uncountable almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$?

We propose this as a counterpart for Mrówka spaces of the

Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X)/\mathscr{K}(X)$ for some Banach space X?

Mini-break

Terminology. "Homomorphism" means algebra homomorphism.

Theorem. (Koszmider–L). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family such that

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$

Then every homomorphism from $\mathscr{B}(C_0(K_A))$ into a Banach algebra is continuous.

In fact, this result is an immediate consequence of a more general result: **Theorem.** (Koszmider–L). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family. Then every homomorphism from $\mathscr{X}(C_0(K_{\mathcal{A}}))$ into a Banach algebra is continuous.

Question. Is there an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that $\mathscr{B}(C_0(K_{\mathcal{A}}))$ admits a **dis**continuous homomorphism into a Banach algebra?

The automatic continuity of homomorphisms (or lack thereof) is one of the oldest lines of research in the theory of Banach algebras.

The seminal automatic-continuity result for $\mathscr{B}(X)$ is due to B.E. Johnson (*JLMS*, 1967):

Theorem. Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then every homomorphism from $\mathscr{B}(X)$ into a Banach algebra is continuous.

Remark. The hypothesis $X \cong X \oplus X$ can be weakened somewhat.

The conclusion that every homomorphism from $\mathscr{B}(X)$ into a Banach algebra is continuous remains true for many Banach spaces X for which the hypothesis $X \cong X \oplus X$ fails (as well as any possible weakenings of it), notably:

- ▶ $X = J_p$ (the p^{th} quasi-reflexive James space) for 1 (Willis,*Studia Math.*1995).
- X = C[0, ω₁] (Ogden, JLMS 1996; simplified proof in Kania–Koszmider–L, TLMS 2014).

Question. Let X be the Argyros–Haydon space (or the Gowers–Maurey space). Is every homomorphism from $\mathscr{B}(X)$ into a Banach algebra continuous?

Within ZFC, not many Banach spaces X are known for which $\mathscr{B}(X)$ admits a discontinuous homomorphism into a Banach algebra.

The most important example is Read's Banach space X_R such that $\mathscr{B}(X_R)$ admits a discontinuous "point derivation". (Read, *JLMS* 1989).

In fact, it has a stronger property:

Let ℓ_2^{\sim} be the unitization of the Hilbert space ℓ_2 endowed with the trivial product; that is, $\ell_2^{\sim} = \ell_2 \oplus \mathbb{K}1$ as a vector space,

$$||x + s1|| = ||x||_2 + |s|$$

and

$$(x+s1)(y+t1) = tx+sy+st1$$
 $(x,y \in \ell_2, s,t \in \mathbb{K}).$

Theorem (L–Skillicorn, Studia Math. 2017). There is a continuous, surjective homomorphism $\psi : \mathscr{B}(X_R) \to \ell_2^{\sim}$ with ker $\psi = \mathscr{W}(X_R)$ such that the extension

$$\{0\} \longrightarrow \mathscr{W}(X_{\mathsf{R}}) \longrightarrow \mathscr{B}(X_{\mathsf{R}}) \xrightarrow{\psi} \ell_{2}^{\sim} \longrightarrow \{0\}$$

splits in the category of Banach algebras.

Discontinuous homomorphisms from $\mathscr{B}(X)$ (assuming CH)

Theorem (Dales, Am. J. Math. 1979; Esterle, PLMS 1978; assuming CH). Let K be an infinite compact Hausdorff space. Then C(K) admits a discontinuous homomorphism into a Banach algebra.

Corollary (Assuming CH). Let X be a Banach space such that $\mathscr{B}(X)$ admits a continuous, surjective homomorphism onto C(K) for some infinite compact Hausdorff space K. Then $\mathscr{B}(X)$ admits a discontinuous homomorphism into a Banach algebra.

It is highly non-trivial that Banach spaces exist which satisfy the hypothesis of this corollary. Examples include:

- (Mankiewicz, Israel J. Math. 1989; Dales–Loy–Willis, JFA 1994) There is a Banach space X such that ℬ(X) admits a continuous, surjective homomorphism onto l_∞ ≅ C(βN).
- (Motakis, Puglisi and Zisimopoulou, Indiana Univ. Math. J. 2016)
 For every countably infinite, compact metric space K, there is a Banach space X for which there is a continuous, surjective homomorphism *φ*: *B*(X) → C(K). Moreover, ker *φ* = *K*(X).
- (Motakis, preprint 2021). Same, but without requiring that the compact metric space K be countably infinite.

Banach spaces X for which C(K) is a quotient of $\mathscr{B}(X)$ (continued)

• Koszmider's "first" C(K)-space with few operators.

Recall: K is an infinite, compact Hausdorff space such that

 $\mathscr{B}(C(K)) = \{M_f : f \in C(K)\} + \mathscr{W}(C(K)),$

where M_f is the multiplication operator $M_f(g) = fg$.

For this space, there is a continuous, surjective homomorphism $\varphi \colon \mathscr{B}(C(K)) \to C(K)$ with ker $\varphi = \mathscr{W}(C(K))$.

In fact, the extension

$$\{0\} \longrightarrow \mathscr{W}(C(K)) \longrightarrow \mathscr{B}(C(K)) \xrightarrow{\varphi} C(K) \longrightarrow \{0\}$$

splits in the category of Banach algebras provided K has no isolated points.

Question. Within ZFC, is there a compact Hausdorff space K such that $\mathscr{B}(C(K))$ admits a discontinuous homomorphism into a Banach algebra?

Any questions?

Uniqueness of algebra norm (joint work with Max Arnott)

Aim: For a Banach space X, decide whether every quotient of $\mathscr{B}(X)$ by a closed ideal has a unique algebra norm.

Main result (Arnott–L, in preparation). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family such that

 $\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$

Then every quotient of $\mathscr{B}(C_0(K_A))$ by a closed ideal has a unique algebra norm.

Definition. A submultiplicative norm on an algebra \mathscr{B} is an **algebra norm**; that is,

$$||ab|| \leq ||a|| ||b||$$
 for every $a, b \in \mathscr{B}$.

We say that \mathscr{B} has a *unique algebra norm* (up to equivalence) if every pair of algebra norms $\|\cdot\|$ and $\|\cdot\|$ on \mathscr{B} are equivalent, that is, there are constants C, c > 0 such that

$$c \|a\| \leq \|a\| \leq C \|a\|$$
 for every $a \in \mathscr{B}$.

Remark. When \mathscr{B} is unital, one usually requires that an algebra norm must satisfy ||1|| = 1. However, for simplicity, we ignore that convention. This will not cause problems because one can always pass to an equivalent algebra norm which satisfies ||1|| = 1.

Recall: \mathscr{B} has a unique algebra norm if, for every pair of algebra norms $\|\cdot\|$ and $\|\cdot\|$, there are constants C, c > 0 such that

$$c\|a\| \leqslant \|a\| \leqslant C\|a\| \quad \text{for every} \quad a \in \mathscr{B}. \tag{\dagger}$$

Remarks.

- It is more common to study whether *B* has a unique complete algebra norm (up to equivalence). To do so, it suffices to establish either of the two inqualities in (†) by the Banach Isomorphism Theorem.
- ▶ We shall study the two inequalities in (†) separately.

Definition. An algebra norm $\|\cdot\|$ on an algebra \mathscr{B} is *maximal* if, for every algebra norm $\|\cdot\|$ on \mathscr{B} , there is a constant C > 0 such that

 $|||a||| \leq C ||a||$ for every $a \in \mathscr{B}$.

Proposition. The following conditions are equivalent for a Banach algebra \mathscr{B} :

- (a) Its norm $\|\cdot\|$ is maximal.
- (b) Every homomorphism from \mathscr{B} into a Banach algebra is continuous.
- (c) For every closed ideal \mathscr{I} of \mathscr{B} , the quotient norm on \mathscr{B}/\mathscr{I} is maximal.
- (d) For every closed ideal I of B, every homomorphism from B/I into a Banach algebra is continuous.

Maximality of the norm (continued)

Proposition. The following conditions are equivalent for a Banach algebra \mathscr{B} :

- (a) Its norm $\|\cdot\|$ is maximal; that is, for every algebra norm $\|\cdot\|$ on \mathscr{B} , there is a constant C > 0 such that $\|a\| \leq C \|a\|$ for every $a \in \mathscr{B}$.
- (b) Every homomorphism from \mathscr{B} into a Banach algebra is continuous.
- (c) For every closed ideal \mathscr{I} of \mathscr{B} , the quotient norm on \mathscr{B}/\mathscr{I} is maximal.
- (d) For every closed ideal \mathscr{I} of \mathscr{B} , every homomorphism from \mathscr{B}/\mathscr{I} into a Banach algebra is continuous.

Proof. (a) \Rightarrow (b). Given a homomorphism $\varphi \colon \mathscr{B} \to \mathscr{C}$,

$$|||a||| = \max\{||a||, ||\varphi(a)||\}$$
 for $a \in \mathscr{B}$

defines an algebra norm on \mathcal{B} . By hypothesis, there is C > 0 such that

$$\|\varphi(a)\| \leq \|a\| \leq C \|a\|$$
 for every $a \in \mathscr{B}$,

so φ is continuous.

(b) \Rightarrow (a). Given an algebra norm $\|\cdot\|$ on \mathscr{B} , let \mathscr{C} be the completion of \mathscr{B} with respect to $\|\cdot\|$, and consider the inclusion map $a \mapsto a$, $\mathscr{B} \to \mathscr{C}$. (c) \Leftrightarrow (d). Apply (a) \Leftrightarrow (b) with \mathscr{B}/\mathscr{I} instead of \mathscr{B} . (b) \Rightarrow (d). Apply the Open Mapping Theorem. (d) \Rightarrow (b). Clear! **Definition.** An algebra norm $\|\cdot\|$ on an algebra \mathscr{B} is *minimal* if, for every algebra norm $\|\cdot\|$ on \mathscr{B} , there is a constant C > 0 such that

 $||a|| \leq C ||a||$ for every $a \in \mathscr{B}$.

Proposition. The following conditions are equivalent for a Banach algebra \mathcal{B} :

- (a) Its norm $\|\cdot\|$ is minimal.
- (b) Every injective homomorphism from *B* into a Banach algebra is bounded below.

Proof. (a) \Rightarrow (b). Given an injective homomorphism $\varphi \colon \mathscr{B} \to \mathscr{C}$,

$$|||a||| = ||\varphi(a)||$$
 for $a \in \mathscr{B}$

defines an algebra norm on \mathcal{B} . By hypothesis, there is C > 0 such that

$$\|a\| \leqslant C \|\|a\|\| = C \|\varphi(a)\|$$
 for every $a \in \mathscr{B}$,

so φ is bounded below by 1/C.

(b) \Rightarrow (a). Given an algebra norm $\|\cdot\|$ on \mathscr{B} , let \mathscr{C} be the completion of \mathscr{B} with respect to $\|\cdot\|$, and consider the inclusion map $a \mapsto a, \ \mathscr{B} \to \mathscr{C}$. \Box

Characterization of uniqueness of algebra norm for all quotients

Corollary. The following conditions are equivalent for a Banach algebra \mathscr{B} :

- (a) Every quotient algebra of \mathscr{B} by a closed ideal has a unique algebra norm.
- (b) Every homomorphism from \mathscr{B} into a Banach algebra is continuous and has closed range.

Proof. (a) \Rightarrow (b). Let $\varphi \colon \mathscr{B} \to \mathscr{C}$ be a homomorphism.

It is continuous because the norm on \mathscr{B} is maximal.

In particular, the ideal $\ker \varphi$ is closed, so the quotient norm on $\mathscr{B}/\ker \varphi$ is minimal.

Let $\widetilde{\varphi} \colon \mathscr{B} / \ker \varphi \to \mathscr{C}$ be the induced homomorphism, which satisfies:

- $\blacktriangleright \ \widetilde{\varphi}[\mathscr{B}/\ker\varphi] = \varphi[\mathscr{B}].$
- $\blacktriangleright \widetilde{\varphi}$ is injective, hence bounded below.
- $\blacktriangleright \widetilde{\varphi}$ is continuous, hence it has closed range, and therefore so does φ .

(b) \Rightarrow (a). Let \mathscr{I} be a closed ideal of \mathscr{B} . The quotient norm on \mathscr{B}/\mathscr{I} is maximal because homomorphisms from \mathscr{B} are continuous.

To see that it is minimal, let $\varphi \colon \mathscr{B}/\mathscr{I} \to \mathscr{C}$ be an injective homomorphism. By hypothesis $\varphi \circ \pi$ is continuous and has closed range, where $\pi \colon \mathscr{B} \to \mathscr{B}/\mathscr{I}$ is the quotient homomorphism.

Hence φ is continuous and has closed range, so φ is bounded below.

| |

Any questions?

Key known results for $\mathscr{B}(X)$

Theorem (Yood, Pacific Math. J. 1954). The operator norm on $\mathscr{B}(X)$ is minimal for every Banach space X.

Corollary. Let X be a Banach space. Then:

 $\mathscr{B}(X)$ has a unique algebra norm \iff

every homomorphism from $\mathscr{B}(X)$ into a Banach algebra is continuous.

For all the Banach spaces X we consider, the latter condition will be satisfied, usually by Johnson's Theorem: Suppose that $X \cong X \oplus X$. Then every homomorphism from $\mathscr{B}(X)$ into a Banach algebra is continuous.

Theorem (Meyer, *BLMS* 1992). Let $X = c_0$ or $X = \ell_p$ for some $p \in [1, \infty)$. Then $\mathscr{B}(X)/\mathscr{K}(X)$ has a unique algebra norm.

Since $\mathscr{K}(X)$ is the **only** non-trivial closed ideal of $\mathscr{K}(X)$ for $X = c_0$ and $X = \ell_p$ for some $p \in [1, \infty)$, it follows that every quotient algebra of $\mathscr{B}(X)$ by a closed ideal has a unique algebra norm.

Generalization (Ware, PhD thesis 2014). Let Γ be an uncountable index set, and let $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for some $p \in [1, \infty)$. Then every quotient algebra of $\mathscr{B}(X)$ by a closed ideal has a unique algebra norm.

Daws' classification of the closed operator ideals on $c_0(\Gamma)$ and $\ell_p(\Gamma)$ for $1 \le p < \infty$

Recall:

Generalization (Ware, PhD thesis 2014). Let Γ be an uncountable index set, and let $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for some $p \in [1, \infty)$. Then every quotient algebra of $\mathscr{B}(X)$ by a closed ideal has a unique algebra norm.

Key ingredient: Daws' classification of the closed ideals of $\mathscr{B}(X)$ (*Math. Proc. Cambr. Phil. Soc.* 2006):

$$\{0\} \subsetneq \mathscr{K}(X) \subsetneq \mathscr{K}_{\aleph_{1}}(X) \subsetneq \cdots \subsetneq \mathscr{K}_{\kappa}(X) \subsetneq \mathscr{K}_{\kappa^{+}}(X) \subsetneq \cdots$$
$$\cdots \subsetneq \mathscr{K}_{\Gamma}(X) \subsetneq \mathscr{K}_{\Gamma^{+}}(X) = \mathscr{B}(X)$$

where $\mathscr{K}_{\kappa}(X)$ is the ideal of " κ -compact operators" for a cardinal $\kappa \ge \aleph_1$.

Daws' result generalizes results of Gramsch (*J. Reine Angew. Math.* 1967) and Luft (*Czech. Math. J.* 1968) for $X = \ell_2(\Gamma)$.

See also Johnson–Kania–Schechtman (*PAMS* 2016) and Horváth–Kania (*Q. J. Math.* 2021).

Key known results for $\mathscr{B}(X)$ (continued)

Ware's main focus: Uniquenenss of algebra norm for the Calkin algebra.

Theorem (Ware, "thesis highlights"). $\mathscr{B}(X)/\mathscr{K}(X)$ has a unique algebra norm in each of the following cases:

- ▶ $X = \ell_{p_1} \oplus \cdots \oplus \ell_{p_n}$ for any $n \in \mathbb{N}$ and $1 \leq p_1 < \cdots < p_n < \infty$. (One can also add c_0 .)
- $\blacktriangleright X = \left(\bigoplus_{n=1}^{\infty} \ell_p^n\right)_{c_0} \text{ and } X = \left(\bigoplus_{n=1}^{\infty} \ell_p^n\right)_{\ell_q} \text{ for } 1 \leqslant p \leqslant \infty \text{ and } 1 \leqslant q < \infty.$
- ▶ $X = J_p$ for $1 , the <math>p^{th}$ quasi-reflexive James space.

Banach spaces X such that the quotient norm on $\mathscr{B}(X)/\mathscr{K}(X)$ is **not** minimal were first found by Astala–Tylli (*JFA* 1987) and Tylli (*Israel J. Math.* 1995).

Theorem (Johnson–Phillips–Schechtman, in preparation). Let $L_p = L_p[0, 1]$ for some 1 . Then:

- The Calkin algebra \$\mathcal{B}(L_p) / \$\mathcal{K}(L_p)\$ has a unique algebra norm. More generally, this is true for every complemented subspace of L_p.
- Suppose that $p \neq 2$. Then $\mathscr{B}(L_p)$ contains a closed ideal \mathscr{I} for which the quotient norm on $\mathscr{B}(L_p)/\mathscr{I}$ is not minimal.

There is a simple way of proving that a maximal norm on a Banach algebra \mathscr{B} is also minimal (and therefore \mathscr{B} has a unique algebra norm). It can be found in the works of Meyer and Johnson–Phillips–Schechtman.

Lemma. Let $\|\cdot\|$ be a maximal algebra norm on an algebra \mathscr{B} . Suppose that there is a constant $K \ge 1$ such that, for every $b \in \mathscr{B}$ with $\|b\| = 1$, there are $a, c \in \mathscr{B}$ with $\|a\| \|c\| \le K$ such that abc is a non-zero idempotent. Then $\|\cdot\|$ is minimal, and therefore \mathscr{B} has a unique algebra norm.

Proof. Given an algebra norm $\|\cdot\|$ on \mathscr{B} , choose C > 0 such that $\|\cdot\| \leq C \|\cdot\|$. Given $b \in \mathscr{B} \setminus \{0\}$, choose $a, c \in \mathscr{B}$ with $\|a\| \|c\| \leq K$ such that $abc/\|b\|$ is a non-zero idempotent. Then

$$\left\|\frac{abc}{\|b\|}\right| \geqslant 1,$$

SO

$$\|b\| \leq \|abc\| \leq \|a\| \|b\| \|c\| \leq C^2 \|a\| \|b\| \|c\| \leq C^2 K \|b\|. \qquad \Box$$

Any questions?

New results I: Uniqueness of algebra norm on quotients of $\mathscr{B}(C_0(K_A))$

Theorem (Arnott–L, in preparation). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family such that

 $\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$

Then every quotient of $\mathscr{B}(C_0(K_A))$ by a closed ideal has a unique algebra norm. Recall: Kania–Kochanek's closed ideal classification:

$$\{0\} \subset \mathscr{K}(C_0(K_{\mathcal{A}})) \subset \mathscr{K}(C_0(K_{\mathcal{A}})) \subset \mathscr{B}(C_0(K_{\mathcal{A}})).$$

Maximality of the quotient norms follows from the automatic continuity of homormorphisms from $\mathscr{B}(C_0(K_A))$.

To do: Show that the quotient norm on $\mathscr{B}(C_0(K_{\mathcal{A}}))/\mathscr{K}(C_0(K_{\mathcal{A}}))$ is minimal.

One can view this as a quantitative version of the key step in the proof of K–K: For $T \in \mathscr{B}(C_0(K_A)) \setminus \mathscr{K}(C_0(K_A))$, there are $U, V \in \mathscr{B}(C_0(K_A))$ such that

$$\mathsf{Id}_{c_0} = VTU.$$

We do the same but, assuming $||T + \mathscr{K}(C_0(K_A))|| = 1$, we need a uniform bound on ||U|| ||V||. This will follow from two more general results.

Step 1. A "blueprint" for proving minimality of the quotient norm of the Calkin algebra of C(K) for K scattered.

Theorem. (Arnott–L). Let $T \in \mathscr{B}(C_0(K))$ for a scattered, locally compact Hausdorff space K, and suppose that $B_{C_0(K)}$ contains a disjoint sequence $(f_n)_{n \in \mathbb{N}}$ such that

$$\delta := \inf \{ \| Tf_n \| : n \in \mathbb{N} \} > 0.$$
(‡)

Then, for every C > 1, there is an operator $U \in \mathscr{B}(C_0(K))$ with $||U|| \leq C/\delta$ such that TU is a projection whose image is C-isomorphic to c_0 .

Key ingredients: Quantitative versions of theorems of Rosenthal and Dowling– Randrianantoanina–Turett.

Step 2. We show that (‡) is satisfied (for $\delta < 1/4$) whenever $K = K_A$ for an an uncountable, almost disjoint family $A \subseteq [\mathbb{N}]^{\omega}$.

This is a somewhat involved recursive construction.

Work in progress:

Can we verify (‡) for other scattered spaces, such as $K = [0, \omega^{\omega})$?

It would imply that the Calkin algebra of $C_0[0, \omega^{\omega})$ has a unique algebra norm.

New results II: The Banach space $X = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0}$ and its dual

Let
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0}$$
. Note: $X^* = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{\ell_1}$.

Theorem (Arnott–L, in preparation). Every quotient algebra of $\mathscr{B}(X)$ and of $\mathscr{B}(X^*)$ by a closed ideal has a unique algebra norm.

Key ingredient:

Theorem (L–Loy–Read, JFA 2004). $\mathscr{B}(X)$ constains exactly four closed ideals, namely

$$\{0\} \subset \mathscr{K}(X) \subset \overline{\mathscr{G}_{c_0}(X)} \subset \mathscr{B}(X),$$

where $\mathscr{G}_{c_0}(X) = \{X \xrightarrow{S} c_0 \xrightarrow{T} X : S \in \mathscr{B}(X, c_0) \text{ and } T \in \mathscr{B}(c_0, X)\}.$

- ▶ $X \cong X \oplus X$, giving maximality by Johnson's Theorem.
- Minimality for $\mathscr{B}(X)$ follows from Yood's Theorem.
- ▶ Ware handled $\mathscr{B}(X)/\mathscr{K}(X)$.
- ▶ Only minimality of the quotient norm of $\mathscr{B}(X)/\overline{\mathscr{G}_{c_0}(X)}$ remains. It follows from the previous result because the proof of LLR shows that Id_X factors through every operator $T \in \mathscr{B}(X) \setminus \overline{\mathscr{G}_{c_0}(X)}$ with control over the norms.

Theorem (L–Schlumprecht–Zsák, J. Op. Th. 2006). $\mathscr{B}(X^*)$ contains exactly four closed ideals, namely

$$\{0\} \subset \mathscr{K}(X^*) \subset \overline{\mathscr{G}_{\ell_1}(X^*)} \subset \mathscr{B}(X^*).$$

New results III: The direct sum $\left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0} \oplus c_0(\Gamma)$

Theorem (Arnott–L). Let Γ be an uncountable set, and set

$$Y = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0} \oplus c_0(\Gamma).$$

Every quotient algebra of $\mathscr{B}(Y)$ by a closed ideal has a unique algebra norm.

Key ingredient: The classification of the closed operator ideals on Y (Arnott–L, JMAA 2021).

Remark. We have similar results for the dual space

$$Y^* = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{\ell_1} \oplus \ell_1(\Gamma).$$

The lattice of closed operator ideals on $Y = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0} \oplus c_0(\Gamma)$

Explanation of the notation used in the diagram

- An arrow from an ideal \mathscr{I} to an ideal \mathscr{J} means that $\mathscr{I} \subsetneqq \mathscr{J}$, with no closed ideals of $\mathscr{B}(Y)$ strictly contained in between \mathscr{I} and \mathscr{J} .
- $\mathscr{K}_{\kappa}(Y)$ denotes the ideal of κ -compact operators for a cardinal $\kappa \ge \aleph_1$.
- ► As before, set $X = \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{c_0}$. For a cardinal $\aleph_2 \leq \kappa \leq \Gamma^+$,

$$\mathscr{J}_{\kappa}(Y) = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(Y) : T_{1,1} \in \overline{\mathscr{G}_{c_0}}(X), \\ T_{1,2} \in \mathscr{B}(c_0(\Gamma), X), \ T_{2,1} \in \mathscr{B}(X, c_0(\Gamma)), \ T_{2,2} \in \mathscr{K}_{\kappa}(c_0(\Gamma)) \right\}.$$

Outline of proof strategy:

- Calkin algebra: Use Ware's results for direct sums.
- Other quotients: Use the fact that the quotient algebra splits as a direct sum

$$\frac{\mathscr{B}(X)}{\mathscr{I}}\oplus \frac{\mathscr{B}(c_0(\Gamma))}{\mathscr{J}},$$

together with uniform factorization of idempotents.

Thank you!