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Overview

Today:
I An addition to yesterday’s talk.
I Outline of the proof of the main theorem (joint work with Koszmider).
I Automatic continuity of homomorphisms from B(X ).
I Uniqueness of algebra norm on all quotients of B(X ) by its closed ideals

(joint work with Arnott).
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C (K )-spaces for which all complemented subspaces are known

Yesterday I gave the following list:

I c0 is prime (Pełczyński, Studia Math. 1960), that is, every complemented,
∞-dimensional subspace of c0 is isomorphic to c0.

I More generally, for Γ of arbitrary cardinality, every complemented subspace
of c0(Γ) is isomorphic to c0(∆) for some ∆ ⊆ Γ (Granero, 1998).

I Every complemented, ∞-dimensional subspace of C [0, ωω] is isomorphic
to either c0 or C [0, ωω] (Benyamini, Israel J. Math. 1978).

I `∞ is prime (Lindenstrauss, Israel J. Math. 1967).

However, this list is incomplete. Additional results are:
I C0(KA), where A ⊆ [N]ω is an uncountable, almost disjoint family

admitting few operators.
Suppose that C0(KA) = X ⊕ Y for some closed, ∞-dimensional
subspaces X and Y . Then X ∼= C0(KA) and Y ∼= c0, or vice versa
(Koszmider, PAMS 2005).

I `c∞(Γ) for any uncountable set Γ.
Every ∞-dimensional complemented subspace of `c∞(Γ) is isomorphic to
either `∞ or `c∞(∆) for some uncountable ∆ ⊆ Γ
(Johnson–Kania–Schechtman, PAMS 2016). (to be continued)
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C (K )-spaces for which all complemented subspaces are known (continued)

Finally, all complemented subspaces are known for any C(K)-space of the form

C(K t L) ∼= C(K)⊕ C(L),

where K is scattered and C(L) is a Grothendieck space, and all the
complemented subspaces of C(K) and C(L) are classified
(Johnson–Kania–Schechtman, PAMS 2016).

Specifically, this result applies in the following cases:

I C(K) = c0(Γ) for infinite Γ, or C(K) = C [0, ωω], or C0(KA) for A ⊆ [N]ω

an uncountable, almost disjoint family admitting few operators; and
I C(L) = `∞ or C(L) = `c∞(Υ) for Υ uncountable.
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Proof of the main theorem (joint work with Piotr Koszmider)

Aim: Outline the main steps of the proof of following result.

Theorem (Koszmider–L, Adv. Math. 2021, working within ZFC).
There is an uncountable, almost disjoint family A ⊆ [N]ω such that

B(C0(KA)) = K Id + X (C0(KA)),

where

X (C0(KA)) = {T ∈ B(C0(KA)) : T has separable range}.

Recall: Since KA is scattered, for T ∈ B(C0(KA)), f ∈ C0(KA) and s ∈ KA,
we have

T (f )(s) = 〈T (f ), δs〉 = 〈f ,T ∗(δs)〉 =
∑
t∈KA

T ∗(δs)({t})f (t),

where δs ∈ C0(KA)∗ is the point evaluation at s.

We regard
(
T ∗(δs)({t})

)
s,t∈KA

as a “matrix representation” of T .
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Using N× N-matrices to analyze operators on C0(KA)

Recall:
I
(
T ∗(δs)({t})

)
s,t∈KA

is a matrix representation of T ∈ B(C0(KA)).

I KA = {xn : n ∈ N} ∪ {yA : A ∈ A}, where xn is isolated for every n ∈ N
and xn −→

A3n→∞
yA for every A ∈ A.

Definition. The reduced matrix of T ∈ B(C0(KA)) is

M red
T =

(
T ∗(δxk )({xn})

)
k,n∈N.

Fact. M red
T ∈ M, where

M =

{
M = (mk,n)k,n∈N : ‖M‖ := sup

k∈N

∑
n∈N

|mk,n| <∞
}
.

These are precisely the matrices representing operators c0 → `∞ via

(Mf )(k) =
∑
n∈N

mk,nf (n) (k ∈ N)

for f ∈ c0 and M = (mk,n)k,n∈N ∈ M.

Note: The above formula makes sense for f ∈ `∞.

Fact. The matrices in M are the transposes of operators on `1, or in other
words the weak*-continuous operators on `∞.
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An illustrative calculation

Let T ∈ B(C0(KA)) for some almost disjoint family A ⊆ [N]ω, and take
A,B ∈ A. Then 1U(A) ∈ C0(KA), where U(A) = {xn : n ∈ A} ∪ {yA}, and

xk −→
B3k→∞

yB , so (T1U(A))(xk) −→
B3k→∞

(T1U(A))(yB).

Now

(T1U(A))(xk) = 〈T1U(A), δxk 〉 = 〈1U(A),T
∗δxk 〉 =

∑
t∈KA

(T ∗δxk )({t})1U(A)(t)

=
∑

t∈U(A)

(T ∗δxk )({t}) =
∑
n∈A

(T ∗δxk )({xn})︸ ︷︷ ︸
= (Mred

T
)k,n

+ (T ∗δxk )({yA}).

Recall: T ∗δxk ∈ C0(KA)∗ ∼= `1(KA), so

AT :=
⋃
k∈N

{A ∈ A : (T ∗δxk )({yA}) 6= 0} is countable.

For A ∈ A \ AT ,

(T1U(A))(yB) ←−
B3k→∞

(T1U(A))(xk) =
∑
n∈A

(M red
T )k,n = (M red

T 1A)(k).

Conclusion:
(
(M red

T 1A)(k)
)
k∈B converges for all but countably many A,B ∈ A.
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The Reduction Lemma

Let A ⊆ [N]ω be an almost disjoint family such that, for every M ∈ M, one of
the following three conditions holds:

(i) There are uncountably many A ∈ A that reject M, in the sense that(
(M1A)(k)

)
k∈A diverges.

(ii) Or there are uncountably many A ∈ A that undermine M, in the sense
that there is n ∈ N such that

(M1{n})(k) 6−→
A3k→∞

0.

(iii) Or there are λ ∈ K and a countable subset A′ ⊆ A such that A \ A′
admits M − λI , in the sense that

((M − λI )1A)(k) −→
B3k→∞

0 (A,B ∈ A \ A′),

where I = (δk,n)k,n∈N ∈ M.

Then
B(C0(KA)) = K Id +X (C0(KA)).

Task: Construct an uncountable almost disjoint family A ⊆ [N]ω as above.
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The notion of acceptance

Recall: A admits M ∈ M if

(M1A)(k) −→
B3k→∞

0 (A,B ∈ A).

Problem: This notion is not closed under finite unions, or subsets.

Definition. For A ∈ [N]ω, M = (mk,n)k,n∈N ∈ M and j ∈ N, define

MA
j = (m′k,n)k,n∈N ∈ M, where m′k,n =

{
mk,n if k, n ∈ A and n > j

0 otherwise.

The set A accepts M if

‖MA
j ‖ → 0 as j →∞.

Note: This is equivalent to saying that the operator T : c0 → `∞ induced by
compressing the matrix M to the set A is compact because

T is compact ⇐⇒ TPj → T as j →∞.

Definition. An almost disjoint family A ⊆ [N]ω accepts M ∈ M if the set
A ∪ B accepts M for every A,B ∈ A.
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Outline proof of the main result

Begin with an uncountable almost disjoint family C ⊆ [N]ω such that
{1C : C ∈ C} is a Borel subset of the Cantor cube {0, 1}N, and define

M′ = {M ∈ M : ∃λM ∈ K, CM ⊂ C countable: C \ CM accepts M − λM I}.

If M′ = M, set A = C and go straight to Case 2 (next slide).

Otherwise enumerate M \M′ as

M \M′ = {Mξ : ξ < c}

with each matrix repeated continuum many times.

By transfinite recursion on ξ < c, choose Bξ,Cξ ∈ C such that
I there is Aξ ∈ [Bξ ∪ Cξ]ω which rejects Mξ,
I and {Bη,Cη} ∩ {Bξ,Cξ} = ∅ for every η < ξ < c.

That this is possible relies on a classical theorem of Alexandroff and Hausdorff:

Every uncountable Borel subset of {0, 1}N has cardinality c.

Define A = {Aξ : ξ < c}.

Check: Every M ∈ M satisfies one of the conditions (i)–(iii) in the Reduction
Lemma with respect to this choice of A.
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Outline proof of the main result (continued)

The Reduction Lemma. Let A ⊆ [N]ω be an almost disjoint family such that,
for every M ∈ M, one of the following three conditions holds:

(i) There are uncountably many A ∈ A that reject M.

(ii) Or there are uncountably many A ∈ A that undermine M.

(iii) Or there are λ ∈ K and a countable subset A′ ⊆ A such that A \ A′
admits M − λI .

Then
B(C0(KA)) = K Id +X (C0(KA)).

Recall:
I M \M′ = {Mξ : ξ < c}, with each matrix repeated continuum many times;
I A = {Aξ : ξ < c}, where Aξ rejects Mξ.

Case 1. If M ∈ M \M′, then M = Mξ for continuum many ξ < c, and Aξ ∈ A
rejects M for each of these ξ, so condition (i) in the Reduction Lemma holds.

Case 2. If
A′ := {A ∈ A : A undermines M}

is uncountable, then condition (ii) in the Reduction Lemma is satisfied.
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Outline proof of the main result (continued)

Case 3. It remains to consider the case where

A′ := {A ∈ A : A undermines M}

is countable and M ∈ M′; that is, there are CM ⊆ C countable and λM ∈ K
such that C \ CM accepts M − λM I .

Recall: Every A ∈ A is contained in B ∪ C for some B,C ∈ C.
Observe: B ∈ CM or C ∈ CM for only countably many A ∈ A.
Since “acceptance” passes to subsets of finite unions,

∃A′′ ⊆ A countable: A \ A′′ accepts M − λM I .

Note: no A ∈ A \ A′ undermines M − λM I because, for every n ∈ N,

(M − λM I )(1{n})(k) = M(1{n})(k)− λM1{n}(k) −→
A3k→∞

0− 0 = 0.

Hence

A \ (A′ ∪ A′′) accepts M − λM I

no A ∈ A \ (A′ ∪ A′′) undermines M − λM I

}
⇒ A\(A′∪A′′) admitsM−λM I ,

so condition (iii) in the Reduction Lemma is satisfied. 2
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Any questions?

Two questions from Koszmider–L:
I Is there within ZFC a maximal almost disjoint family A ⊆ [N]ω such that

B(C0(KA))/X (C0(KA)) ∼= K ?

I Which unital Banach algebras of density at most c are isomorphic to

B(C0(KA))/X (C0(KA))

for some uncountable almost disjoint family A ⊆ [N]ω?

We propose this as a counterpart for Mrówka spaces of the

Calkin algebra question: Which unital Banach algebras are isomorphic to
the quotient B(X )/K (X ) for some Banach space X?

Mini-break
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Automatic continuity of homomorphisms

Terminology. “Homomorphism” means algebra homomorphism.

Theorem. (Koszmider–L). Let A ⊆ [N]ω be an uncountable, almost disjoint
family such that

B(C0(KA)) = K Id + X (C0(KA)).

Then every homomorphism from B(C0(KA)) into a Banach algebra is
continuous.

In fact, this result is an immediate consequence of a more general result:

Theorem. (Koszmider–L). Let A ⊆ [N]ω be an almost disjoint family. Then
every homomorphism from X (C0(KA)) into a Banach algebra is continuous.

Question. Is there an uncountable, almost disjoint family A ⊆ [N]ω such that
B(C0(KA)) admits a discontinuous homomorphism into a Banach algebra?

The automatic continuity of homomorphisms (or lack thereof) is one of the
oldest lines of research in the theory of Banach algebras.
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Automatic continuity of homomorphisms from B(X )

The seminal automatic-continuity result for B(X ) is due to B.E. Johnson
(JLMS, 1967):

Theorem. Let X be a Banach space which is isomorphic to its square X ⊕ X .
Then every homomorphism from B(X ) into a Banach algebra is continuous.

Remark. The hypothesis X ∼= X ⊕ X can be weakened somewhat.

The conclusion that every homomorphism from B(X ) into a Banach algebra is
continuous remains true for many Banach spaces X for which the hypothesis
X ∼= X ⊕ X fails (as well as any possible weakenings of it), notably:

I X = Jp (the pth quasi-reflexive James space) for 1 < p <∞
(Willis, Studia Math. 1995).

I X = C [0, ω1] (Ogden, JLMS 1996; simplified proof in
Kania–Koszmider–L, TLMS 2014).

Question. Let X be the Argyros–Haydon space (or the Gowers–Maurey space).
Is every homomorphism from B(X ) into a Banach algebra continuous?
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Discontinuous homomorphisms from B(X )

Within ZFC, not many Banach spaces X are known for which B(X ) admits a
discontinuous homomorphism into a Banach algebra.

The most important example is Read’s Banach space XR such that B(XR)
admits a discontinuous “point derivation”. (Read, JLMS 1989).

In fact, it has a stronger property:

Let `∼2 be the unitization of the Hilbert space `2 endowed with the trivial
product; that is, `∼2 = `2 ⊕K1 as a vector space,

‖x + s1‖ = ‖x‖2 + |s|

and
(x + s1)(y + t1) = tx + sy + st1 (x , y ∈ `2, s, t ∈ K).

Theorem (L–Skillicorn, Studia Math. 2017). There is a continuous, surjective
homomorphism ψ : B(XR)→ `∼2 with kerψ = W (XR) such that the extension

{0} // W (XR) // B(XR)
ψ // `∼2 // {0}

splits in the category of Banach algebras.
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Discontinuous homomorphisms from B(X ) (assuming CH)

Theorem (Dales, Am. J. Math. 1979; Esterle, PLMS 1978; assuming CH).
Let K be an infinite compact Hausdorff space. Then C(K) admits a
discontinuous homomorphism into a Banach algebra.

Corollary (Assuming CH). Let X be a Banach space such that B(X ) admits a
continuous, surjective homomorphism onto C(K) for some infinite compact
Hausdorff space K . Then B(X ) admits a discontinuous homomorphism into a
Banach algebra.

It is highly non-trivial that Banach spaces exist which satisfy the hypothesis of
this corollary. Examples include:

I (Mankiewicz, Israel J. Math. 1989; Dales–Loy–Willis, JFA 1994)
There is a Banach space X such that B(X ) admits a continuous,
surjective homomorphism onto `∞ ∼= C(βN).

I (Motakis, Puglisi and Zisimopoulou, Indiana Univ. Math. J. 2016)
For every countably infinite, compact metric space K , there is a Banach
space X for which there is a continuous, surjective homomorphism
ϕ : B(X )→ C(K). Moreover, kerϕ = K (X ).

I (Motakis, preprint 2021). Same, but without requiring that the compact
metric space K be countably infinite.
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Banach spaces X for which C (K ) is a quotient of B(X ) (continued)

I Koszmider’s “first” C(K)-space with few operators.

Recall: K is an infinite, compact Hausdorff space such that

B(C(K)) = {Mf : f ∈ C(K)}+ W (C(K)),

where Mf is the multiplication operator Mf (g) = fg .

For this space, there is a continuous, surjective homomorphism
ϕ : B(C(K))→ C(K) with kerϕ = W (C(K)).

In fact, the extension

{0} // W (C(K)) // B(C(K))
ϕ // C(K) // {0}

splits in the category of Banach algebras provided K has no isolated points.

Question. Within ZFC, is there a compact Hausdorff space K such that
B(C(K)) admits a discontinuous homomorphism into a Banach algebra?
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Mini-break

Any questions?
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Uniqueness of algebra norm (joint work with Max Arnott)

Aim: For a Banach space X , decide whether every quotient of B(X ) by a
closed ideal has a unique algebra norm.

Main result (Arnott–L, in preparation). Let A ⊆ [N]ω be an uncountable,
almost disjoint family such that

B(C0(KA)) = K Id + X (C0(KA)).

Then every quotient of B(C0(KA)) by a closed ideal has a unique algebra norm.

Definition. A submultiplicative norm on an algebra B is an algebra norm;
that is,

‖ab‖ 6 ‖a‖ ‖b‖ for every a, b ∈ B.

We say that B has a unique algebra norm (up to equivalence) if every pair of
algebra norms ‖ · ‖ and ||| · ||| on B are equivalent, that is, there are constants
C , c > 0 such that

c‖a‖ 6 |||a||| 6 C‖a‖ for every a ∈ B.

Remark. When B is unital, one usually requires that an algebra norm must
satisfy ‖1‖ = 1. However, for simplicity, we ignore that convention. This will
not cause problems because one can always pass to an equivalent algebra norm
which satisfies ‖1‖ = 1.
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Maximality of the norm

Recall: B has a unique algebra norm if, for every pair of algebra norms ‖ · ‖
and ||| · |||, there are constants C , c > 0 such that

c‖a‖ 6 |||a||| 6 C‖a‖ for every a ∈ B. (†)

Remarks.
I It is more common to study whether B has a unique complete algebra

norm (up to equivalence). To do so, it suffices to establish either of the
two inqualities in (†) by the Banach Isomorphism Theorem.

I We shall study the two inequalities in (†) separately.

Definition. An algebra norm ‖ · ‖ on an algebra B is maximal if, for every
algebra norm ||| · ||| on B, there is a constant C > 0 such that

|||a||| 6 C‖a‖ for every a ∈ B.

Proposition. The following conditions are equivalent for a Banach algebra B :

(a) Its norm ‖ · ‖ is maximal.
(b) Every homomorphism from B into a Banach algebra is continuous.
(c) For every closed ideal I of B, the quotient norm on B/I is maximal.
(d) For every closed ideal I of B, every homomorphism from B/I into a

Banach algebra is continuous.
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Maximality of the norm (continued)

Proposition. The following conditions are equivalent for a Banach algebra B :

(a) Its norm ‖ · ‖ is maximal; that is, for every algebra norm ||| · ||| on B, there
is a constant C > 0 such that |||a||| 6 C‖a‖ for every a ∈ B.

(b) Every homomorphism from B into a Banach algebra is continuous.

(c) For every closed ideal I of B, the quotient norm on B/I is maximal.

(d) For every closed ideal I of B, every homomorphism from B/I into a
Banach algebra is continuous.

Proof. (a)⇒(b). Given a homomorphism ϕ : B → C ,

|||a||| = max
{
‖a‖, ‖ϕ(a)‖

}
for a ∈ B

defines an algebra norm on B. By hypothesis, there is C > 0 such that

‖ϕ(a)‖ 6 |||a||| 6 C‖a‖ for every a ∈ B,

so ϕ is continuous.

(b)⇒(a). Given an algebra norm ||| · ||| on B, let C be the completion of B with
respect to ||| · |||, and consider the inclusion map a 7→ a, B → C .

(c)⇔(d). Apply (a)⇔(b) with B/I instead of B.

(b)⇒(d). Apply the Open Mapping Theorem. (d)⇒(b). Clear! 2
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Minimality of the norm

Definition. An algebra norm ‖ · ‖ on an algebra B is minimal if, for every
algebra norm ||| · ||| on B, there is a constant C > 0 such that

‖a‖ 6 C |||a||| for every a ∈ B.

Proposition. The following conditions are equivalent for a Banach algebra B :

(a) Its norm ‖ · ‖ is minimal.

(b) Every injective homomorphism from B into a Banach algebra is bounded
below.

Proof. (a)⇒(b). Given an injective homomorphism ϕ : B → C ,

|||a||| = ‖ϕ(a)‖ for a ∈ B

defines an algebra norm on B. By hypothesis, there is C > 0 such that

‖a‖ 6 C |||a||| = C‖ϕ(a)‖ for every a ∈ B,

so ϕ is bounded below by 1/C .

(b)⇒(a). Given an algebra norm ||| · ||| on B, let C be the completion of B with
respect to ||| · |||, and consider the inclusion map a 7→ a, B → C . 2
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Characterization of uniqueness of algebra norm for all quotients

Corollary. The following conditions are equivalent for a Banach algebra B :

(a) Every quotient algebra of B by a closed ideal has a unique algebra norm.

(b) Every homomorphism from B into a Banach algebra is continuous and has
closed range.

Proof. (a)⇒(b). Let ϕ : B → C be a homomorphism.
It is continuous because the norm on B is maximal.
In particular, the ideal kerϕ is closed, so the quotient norm on B/ kerϕ is
minimal.
Let ϕ̃ : B/ kerϕ→ C be the induced homomorphism, which satisfies:
I ϕ̃[B/ kerϕ] = ϕ[B].
I ϕ̃ is injective, hence bounded below.
I ϕ̃ is continuous, hence it has closed range, and therefore so does ϕ.

(b)⇒(a). Let I be a closed ideal of B. The quotient norm on B/I is
maximal because homomorphisms from B are continuous.
To see that it is minimal, let ϕ : B/I → C be an injective homomorphism.
By hypothesis ϕ ◦ π is continuous and has closed range, where π : B → B/I
is the quotient homomorphism.
Hence ϕ is continuous and has closed range, so ϕ is bounded below. 2
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Mini-break

Any questions?
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Key known results for B(X )

Theorem (Yood, Pacific Math. J. 1954).
The operator norm on B(X ) is minimal for every Banach space X .

Corollary. Let X be a Banach space. Then:

B(X ) has a unique algebra norm ⇐⇒
every homomorphism from B(X ) into a Banach algebra is continuous.

For all the Banach spaces X we consider, the latter condition will be satisfied,
usually by Johnson’s Theorem: Suppose that X ∼= X ⊕ X . Then every
homomorphism from B(X ) into a Banach algebra is continuous.

Theorem (Meyer, BLMS 1992). Let X = c0 or X = `p for some p ∈ [1,∞).
Then B(X )/K (X ) has a unique algebra norm.

Since K (X ) is the only non-trivial closed ideal of K (X ) for X = c0 and
X = `p for some p ∈ [1,∞), it follows that every quotient algebra of B(X ) by
a closed ideal has a unique algebra norm.

Generalization (Ware, PhD thesis 2014). Let Γ be an uncountable index set,
and let X = c0(Γ) or X = `p(Γ) for some p ∈ [1,∞). Then every quotient
algebra of B(X ) by a closed ideal has a unique algebra norm.
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Daws’ classification of the closed operator ideals on c0(Γ) and `p(Γ) for
1 6 p <∞

Recall:

Generalization (Ware, PhD thesis 2014). Let Γ be an uncountable index set,
and let X = c0(Γ) or X = `p(Γ) for some p ∈ [1,∞). Then every quotient
algebra of B(X ) by a closed ideal has a unique algebra norm.

Key ingredient: Daws’ classification of the closed ideals of B(X )
(Math. Proc. Cambr. Phil. Soc. 2006):

{0} ( K (X ) ( Kℵ1(X ) ( · · · ( Kκ(X ) ( Kκ+ (X ) ( · · ·
· · · ( KΓ(X ) ( KΓ+ (X ) = B(X ),

where Kκ(X ) is the ideal of “κ-compact operators” for a cardinal κ > ℵ1.

Daws’ result generalizes results of Gramsch (J. Reine Angew. Math. 1967) and
Luft (Czech. Math. J. 1968) for X = `2(Γ).

See also Johnson–Kania–Schechtman (PAMS 2016) and Horváth–Kania (Q. J.
Math. 2021).
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Key known results for B(X ) (continued)

Ware’s main focus: Uniquenenss of algebra norm for the Calkin algebra.

Theorem (Ware, “thesis highlights”). B(X )/K (X ) has a unique algebra norm
in each of the following cases:
I X = `p1 ⊕ · · · ⊕ `pn for any n ∈ N and 1 6 p1 < · · · < pn <∞.

(One can also add c0.)
I X =

(⊕∞
n=1 `

n
p

)
c0

and X =
(⊕∞

n=1 `
n
p

)
`q

for 1 6 p 6∞ and 1 6 q <∞.

I X = Jp for 1 < p <∞, the pth quasi-reflexive James space.
I X = T , the Tsirelson space.

Banach spaces X such that the quotient norm on B(X )/K (X ) is not minimal
were first found by Astala–Tylli (JFA 1987) and Tylli (Israel J. Math. 1995).

Theorem (Johnson–Phillips–Schechtman, in preparation). Let Lp = Lp[0, 1] for
some 1 < p <∞. Then:
I The Calkin algebra B(Lp)/K (Lp) has a unique algebra norm.

More generally, this is true for every complemented subspace of Lp.
I Suppose that p 6= 2. Then B(Lp) contains a closed ideal I for which the

quotient norm on B(Lp)/I is not minimal.
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Minimality via uniform factorization of idempotents

There is a simple way of proving that a maximal norm on a Banach algebra B
is also minimal (and therefore B has a unique algebra norm). It can be found
in the works of Meyer and Johnson–Phillips–Schechtman.

Lemma. Let ‖ · ‖ be a maximal algebra norm on an algebra B. Suppose that
there is a constant K > 1 such that, for every b ∈ B with ‖b‖ = 1, there are
a, c ∈ B with ‖a‖ ‖c‖ 6 K such that abc is a non-zero idempotent.
Then ‖ · ‖ is minimal, and therefore B has a unique algebra norm.

Proof. Given an algebra norm ||| · ||| on B, choose C > 0 such that ||| · ||| 6 C‖ · ‖.
Given b ∈ B \ {0}, choose a, c ∈ B with ‖a‖ ‖c‖ 6 K such that abc/‖b‖ is a
non-zero idempotent. Then ∣∣∣∣∣∣∣∣∣∣∣∣abc‖b‖

∣∣∣∣∣∣∣∣∣∣∣∣ > 1,

so

‖b‖ 6 |||abc||| 6 |||a||| |||b||| |||c||| 6 C 2‖a‖ |||b||| ‖c‖ 6 C 2K |||b|||. 2
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Any questions?
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New results I: Uniqueness of algebra norm on quotients of B(C0(KA))

Theorem (Arnott–L, in preparation). Let A ⊆ [N]ω be an uncountable, almost
disjoint family such that

B(C0(KA)) = K Id + X (C0(KA)).

Then every quotient of B(C0(KA)) by a closed ideal has a unique algebra norm.

Recall: Kania–Kochanek’s closed ideal classification:

{0} ⊂ K (C0(KA)) ⊂ X (C0(KA)) ⊂ B(C0(KA)).

Maximality of the quotient norms follows from the automatic continuity of
homormorphisms from B(C0(KA)).

To do: Show that the quotient norm on B(C0(KA))/K (C0(KA)) is minimal.

One can view this as a quantitative version of the key step in the proof of K–K:
For T ∈ B(C0(KA)) \K (C0(KA)), there are U,V ∈ B(C0(KA)) such that

Idc0 = VTU.

We do the same but, assuming ‖T + K (C0(KA))‖ = 1, we need a uniform
bound on ‖U‖ ‖V ‖. This will follow from two more general results.
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The two main steps

Step 1. A “blueprint” for proving minimality of the quotient norm of the Calkin
algebra of C(K) for K scattered.

Theorem. (Arnott–L). Let T ∈ B(C0(K)) for a scattered, locally compact
Hausdorff space K , and suppose that BC0(K) contains a disjoint sequence
(fn)n∈N such that

δ := inf
{
‖Tfn‖ : n ∈ N

}
> 0. (‡)

Then, for every C > 1, there is an operator U ∈ B(C0(K)) with ‖U‖ 6 C/δ
such that TU is a projection whose image is C -isomorphic to c0.

Key ingredients: Quantitative versions of theorems of Rosenthal and Dowling–
Randrianantoanina–Turett.

Step 2. We show that (‡) is satisfied (for δ < 1/4) whenever K = KA for an
an uncountable, almost disjoint family A ⊆ [N]ω.

This is a somewhat involved recursive construction.

Work in progress:
Can we verify (‡) for other scattered spaces, such as K = [0, ωω)?

It would imply that the Calkin algebra of C0[0, ωω) has a unique algebra norm.
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New results II: The Banach space X =
(⊕∞

n=1 `
n
2
)
c0

and its dual

Let X =
(⊕∞

n=1 `
n
2
)
c0
. Note: X ∗ =

(⊕∞
n=1 `

n
2
)
`1
.

Theorem (Arnott–L, in preparation). Every quotient algebra of B(X ) and of
B(X ∗) by a closed ideal has a unique algebra norm.

Key ingredient:
Theorem (L–Loy–Read, JFA 2004). B(X ) constains exactly four closed ideals,
namely

{0} ⊂ K (X ) ⊂ Gc0(X ) ⊂ B(X ),

where Gc0(X ) =
{
X

S−→ c0
T−→ X : S ∈ B(X , c0) and T ∈ B(c0,X )

}
.

I X ∼= X ⊕ X , giving maximality by Johnson’s Theorem.
I Minimality for B(X ) follows from Yood’s Theorem.
I Ware handled B(X )/K (X ).
I Only minimality of the quotient norm of B(X )/Gc0(X ) remains. It follows

from the previous result because the proof of LLR shows that IdX factors
through every operator T ∈ B(X ) \ Gc0(X ) with control over the norms.

Theorem (L–Schlumprecht–Zsák, J. Op. Th. 2006). B(X ∗) contains exactly
four closed ideals, namely

{0} ⊂ K (X ∗) ⊂ G`1(X ∗) ⊂ B(X ∗).
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New results III: The direct sum
(⊕∞

n=1 `
n
2
)
c0
⊕ c0(Γ)

Theorem (Arnott–L). Let Γ be an uncountable set, and set

Y =
( ∞⊕

n=1

`n2

)
c0
⊕ c0(Γ).

Every quotient algebra of B(Y ) by a closed ideal has a unique algebra norm.

Key ingredient: The classification of the closed operator ideals on Y
(Arnott–L, JMAA 2021).

Remark. We have similar results for the dual space

Y ∗ =
( ∞⊕

n=1

`n2

)
`1
⊕ `1(Γ).
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The lattice of closed operator ideals on Y =
(⊕∞

n=1 `
n
2
)
c0
⊕ c0(Γ)

{0}

��
K (Y )

��
Gc0(Y )

vv ((
Kℵ1(Y )

��

Jℵ2(Y )

rr ��
Kℵ2(Y )

��

Jℵ3(Y )

��rr
Kℵ3(Y )

��
Jℵ4(Y )

��
...

��

...

��
KΓ(Y )

((

JΓ+ (Y )

vv
B(Y )
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Explanation of the notation used in the diagram

I An arrow from an ideal I to an ideal J means that I $ J ,
with no closed ideals of B(Y ) strictly contained in between I and J .

I Kκ(Y ) denotes the ideal of κ-compact operators for a cardinal κ > ℵ1.

I As before, set X =
(⊕∞

n=1 `
n
2
)
c0
. For a cardinal ℵ2 6 κ 6 Γ+,

Jκ(Y ) =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(Y ) : T1,1 ∈ Gc0(X ),

T1,2 ∈ B(c0(Γ),X ), T2,1 ∈ B(X , c0(Γ)), T2,2 ∈ Kκ(c0(Γ))

}
.

Outline of proof strategy:
I Calkin algebra: Use Ware’s results for direct sums.

I Other quotients: Use the fact that the quotient algebra splits as a direct
sum

B(X )

I
⊕ B(c0(Γ))

J
,

together with uniform factorization of idempotents.
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The end

Thank you!
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