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Overview

Today:
» An addition to yesterday's talk.
» Outline of the proof of the main theorem (joint work with Koszmider).
» Automatic continuity of homomorphisms from Z(X).

» Uniqueness of algebra norm on all quotients of Z(X) by its closed ideals
(joint work with Arnott).



C(K)-spaces for which all complemented subspaces are known

Yesterday | gave the following list:

» o is prime (Petczynski, Studia Math. 1960), that is, every complemented,
oo-dimensional subspace of ¢p is isomorphic to ¢o.

» More generally, for I of arbitrary cardinality, every complemented subspace
of co(IN) is isomorphic to co(A) for some A C I (Granero, 1998).

» Every complemented, co-dimensional subspace of C[0,w”] is isomorphic
to either co or C[0,w”] (Benyamini, Israel J. Math. 1978).

» ( is prime (Lindenstrauss, Israel J. Math. 1967).

However, this list is incomplete. Additional results are:
» Co(Ka), where A C [N]*¥ is an uncountable, almost disjoint family
admitting few operators.

Suppose that Co(K4) = X @ Y for some closed, oo-dimensional
subspaces X and Y. Then X =2 CGy(K4) and Y = ¢, or vice versa
(Koszmider, PAMS 2005).

» (. (T) for any uncountable set T.

Every co-dimensional complemented subspace of /¢ (') is isomorphic to
either /o or £ (A) for some uncountable A C T
(Johnson—Kania—Schechtman, PAMS 2016). (to be continued)
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C(K)-spaces for which all complemented subspaces are known (continued)

Finally, all complemented subspaces are known for any C(K)-space of the form
C(KUL)=C(K)e C(L),

where K is scattered and C(L) is a Grothendieck space, and all the
complemented subspaces of C(K) and C(L) are classified
(Johnson—Kania—Schechtman, PAMS 2016).

Specifically, this result applies in the following cases:

» C(K) = co(lN) for infinite I', or C(K) = C[0,w”], or Co(K4) for A C [N]”
an uncountable, almost disjoint family admitting few operators; and

» C(L) =/l or C(L) = 05,(T) for T uncountable.



Proof of the main theorem (joint work with Piotr Koszmider)

Aim: Outline the main steps of the proof of following result.

Theorem (Koszmider—L, Adv. Math. 2021, working within ZFC).
There is an uncountable, almost disjoint family A C [N]* such that

PB(Co(Ka)) = Kld+ Z7(Co(Ka)),
where

X (Co(Ka)) ={T € B(Co(Ka)): T has separable range}.

Recall: Since K4 is scattered, for T € AB(Co(Ka)), f € Co(Ka) and s € K4,
we have

T(f)(s) = (T(f).d) = (F, T"(&:)) = Y T (d)({e})f(2),

tEKA

where ds € Co(K4)™ is the point evaluation at s.

We regard (T*(ds)({t})) as a "‘matrix representation” of T.

S,tEK_A



Using N x N-matrices to analyze operators on Co(K4)

Recall:
> (T7(d:)({t})). reK s is a matrix representation of T € ZB(Co(K4)).

> Ka={xn:neN}U{ya:Aec A}, where x, is isolated for every n € N

and x, —— ya forevery Ac A.
ASDn— oo

Definition. The reduced matrix of T € 2B(Co(K4)) is
M5 = (T7 (05 ) (50 ) o e

Fact. M= € M, where

M= { M = (e M 1= sup 3 | < oo
keN nEN

These are precisely the matrices representing operators ¢y — £~ Vvia
(MF)(k) =) miaf(n)  (k€N)
neN
for f € co and M = (mk,n)k,neN e M.
Note: The above formula makes sense for f € /.

Fact. The matrices in M are the transposes of operators on #¢1, or in other
words the weak*-continuous operators on /..
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An illustrative calculation

Let T € #(Co(K4)) for some almost disjoint family A C [N]¥, and take
A,B € A. Then 1y € Co(Ka), where U(A) = {x, : n € A} U {ya}, and

Xk o= ye, o so (Tlyw)) == (Tluw)(ye)-
Now
(TLuwa) () = (Tluwy, ) = (Luay, T 6x) = > (T4 ){ 1) 1uea)(2)
= > (T"5)({t}) = ZST*CSXk)({Xn}Z + (T76x)({ya}).
tcU(A) neA v
= (M=)

Recall: T*d,, € Co(Ka)® = ¢1(Ka), so
Ar = | J{A€ A: (T"6,)({ya}) #0} is countable.

keN
For Ac A\ Ar,
(TLum)ye) 6=  (Tluw)(x) = D> (MFin = (MFU1a)(K).

neA

red

Conclusion: ((M5 1A)(k))k€B converges for all but countably many A, B € A.
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The Reduction Lemma

Let A C [N]¥ be an almost disjoint family such that, for every M € M, one of
the following three conditions holds:

(i) There are uncountably many A € A that reject M, in the sense that

((M1a)(K)),., diverges.

(ii) Or there are uncountably many A € A that undermine M, in the sense
that there is n € N such that

(ML)(K) 0.

Sk— o0

(iii) Or there are A € K and a countable subset A" C A such that A\ A’
admits M — \I, in the sense that

(M= XN1x) (k) — 0 (A,Be A\ A),

B>k— o0

where | = (5k,n)k,n€N e M.

Then
c%(Co(KA)) = Kld +%(C0(KA))

Task: Construct an uncountable almost disjoint family A C [N]“ as above.
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The notion of acceptance

Recall: A admits M € M if

(M1A4)(k) — 0 (A Be A.

B>k— oo
Problem: This notion is not closed under finite unions, or subsets.

Definition. For A € [N]*, M = (mk.n)k.neny € M and j € N, define

mg, ifk.neAandn>j
MJA = (M n)k,nen € M,  where my , = g ! . J
0 otherwise.
The set A accepts M if
||MjA|| — 0 as j — oo.

Note: This is equivalent to saying that the operator T: co — £~ induced by
compressing the matrix M to the set A is compact because

T iscompact <= TP;— T as j— oo.

Definition. An almost disjoint family A C [N]¥ accepts M € M if the set
AU B accepts M for every A, B € A.



Outline proof of the main result

Begin with an uncountable almost disjoint family C C [N]* such that
{1c: C €} is a Borel subset of the Cantor cube {0,1}", and define

M = {M e M: 3y €K, Cuy C C countable: C\ Cy accepts M — Apl}.
If M" = M, set A =C and go straight to Case 2 (next slide).

Otherwise enumerate M\ M’ as
M\M,:{Mg Z£<C}
with each matrix repeated continuum many times.

By transfinite recursion on & < ¢, choose B¢, C¢ € C such that
» there is As € [Be U C¢]” which rejects Mg,
» and {B,,C,} N{B¢, Cc} =0 for every n < £ < c.
That this is possible relies on a classical theorem of Alexandroff and Hausdorff:

Every uncountable Borel subset of {0,1}" has cardinality c.

Define A = {A¢ : £ < ¢}.

Check: Every M € M satisfies one of the conditions (i)—(iii) in the Reduction
Lemma with respect to this choice of A.
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Outline proof of the main result (continued)

The Reduction Lemma. Let A C [N]¥ be an almost disjoint family such that,
for every M € M, one of the following three conditions holds:

(i) There are uncountably many A € A that reject M.
(ii) Or there are uncountably many A € A that undermine M.

(iii) Or there are A € K and a countable subset A" C A such that A\ A’
admits M — \l.

Then
%(Co(KA)) = KlId +3?//'(C0(K_A))

Recall:
> M\ M = {M; : £ < ¢}, with each matrix repeated continuum many times;

> A= {A:: & <}, where A¢ rejects M.

Case 1. If M € M\ M, then M = M for continuum many £ < ¢, and A¢ € A
rejects M for each of these £, so condition (i) in the Reduction Lemma holds.

Case 2. If
A" :={A e A: A undermines M}

is uncountable, then condition (ii) in the Reduction Lemma is satisfied.
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Outline proof of the main result (continued)

Case 3. It remains to consider the case where
A" :={A € A: A undermines M}

is countable and M € M’; that is, there are Cy C C countable and \yy € K
such that C \ Cv accepts M — A\yl.

Recall: Every A € A is contained in BU C for some B, C € C.
Observe: B € Cp or C € Cp for only countably many A € A.

Since “acceptance’ passes to subsets of finite unions,
3A" C A countable: A\ A" accepts M — Ayl.
Note: no A€ A\ A" undermines M — Ay because, for every n € N,

(M — Aml)(1iny )(k) = M(1gny)(k) — Amliny(k) — 0—-0=0.

ASk— o0

Hence

AN\ (A" U A") accepts M — Ayl

no A e .A\ (A/ UAN) undermines M — )\MI}:> .A\(.A uA )admlts M—)\MI,

so condition (iii) in the Reduction Lemma is satisfied. O
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Any questions?

Two questions from Koszmider—L:
» |s there within ZFC a maximal almost disjoint family A C [N]“ such that

HB(Co(Ka))/ X (Co(Ka)) =K7
» Which unital Banach algebras of density at most ¢ are isomorphic to
PB(Co(Ka))/ X (Co(Ka))

for some uncountable almost disjoint family A C [N]*?
We propose this as a counterpart for Mréwka spaces of the

Calkin algebra question: Which unital Banach algebras are isomorphic to
the quotient #(X)/# (X) for some Banach space X?

Mini-break
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Automatic continuity of homomorphisms

Terminology. “Homomorphism” means algebra homomorphism.

Theorem. (Koszmider-L). Let A C [N]* be an uncountable, almost disjoint
family such that

%(Co(KA)) = Kld+ %(CO(KA))
Then every homomorphism from %(Co(K4)) into a Banach algebra is

continuous.

In fact, this result is an immediate consequence of a more general result:

Theorem. (Koszmider—L). Let A C [N]* be an almost disjoint family. Then
every homomorphism from 2 (Co(Ka)) into a Banach algebra is continuous.

Question. Is there an uncountable, almost disjoint family .4 C [N]* such that
AB(Co(K.4)) admits a discontinuous homomorphism into a Banach algebra?

The automatic continuity of homomorphisms (or lack thereof) is one of the
oldest lines of research in the theory of Banach algebras.
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Automatic continuity of homomorphisms from Z(X)

The seminal automatic-continuity result for Z(X) is due to B.E. Johnson
(JLMS, 1967):

Theorem. Let X be a Banach space which is isomorphic to its square X & X.
Then every homomorphism from 98(X) into a Banach algebra is continuous.

Remark. The hypothesis X =2 X & X can be weakened somewhat.

The conclusion that every homomorphism from %(X) into a Banach algebra is
continuous remains true for many Banach spaces X for which the hypothesis
X =2 X @ X fails (as well as any possible weakenings of it), notably:

> X = J, (the p™ quasi-reflexive James space) for 1 < p < o
(Willis, Studia Math. 1995).

» X = C[0,w1] (Ogden, JLMS 1996; simplified proof in
Kania—Koszmider-L, TLMS 2014).

Question. Let X be the Argyros—Haydon space (or the Gowers—Maurey space).
Is every homomorphism from %(X) into a Banach algebra continuous?
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Discontinuous homomorphisms from Z(X)

Within ZFC, not many Banach spaces X are known for which #(X) admits a
discontinuous homomorphism into a Banach algebra.

The most important example is Read’s Banach space Xg such that Z(Xgr)
admits a discontinuous “point derivation”. (Read, JLMS 1989).

In fact, it has a stronger property:

Let /5" be the unitization of the Hilbert space /> endowed with the trivial
product; that is, /5" = /> @& K1 as a vector space,

Ix + 51 = [[x][2 +s]

and
(x + s1)(y 4+ t1) = tx + sy + stl (x,y € £, s, t € K).

Theorem (L—Skillicorn, Studia Math. 2017). There is a continuous, surjective
homomorphism : B(Xr) — ¢35 with keri) = #'(Xr) such that the extension

{0} ————= #'(Xgr) ——— B(XR) v 2y {0}

splits in the category of Banach algebras.
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Discontinuous homomorphisms from %(X) (assuming CH)

Theorem (Dales, Am. J. Math. 1979; Esterle, PLMS 1978; assuming CH).
Let K be an infinite compact Hausdorff space. Then C(K) admits a
discontinuous homomorphism into a Banach algebra.

Corollary (Assuming CH). Let X be a Banach space such that 8(X) admits a
continuous, surjective homomorphism onto C(K) for some infinite compact

Hausdorff space K. Then %(X) admits a discontinuous homomorphism into a
Banach algebra.

It is highly non-trivial that Banach spaces exist which satisfy the hypothesis of
this corollary. Examples include:

» (Mankiewicz, Israel J. Math. 1989; Dales—Loy-Willis, JFA 1994)
There is a Banach space X such that #(X) admits a continuous,
surjective homomorphism onto /. = C(SN).

» (Motakis, Puglisi and Zisimopoulou, Indiana Univ. Math. J. 2016)
For every countably infinite, compact metric space K, there is a Banach
space X for which there is a continuous, surjective homomorphism
w: B(X) — C(K). Moreover, ker p = % (X).

» (Motakis, preprint 2021). Same, but without requiring that the compact
metric space K be countably infinite.

17



Banach spaces X for which C(K) is a quotient of Z(X) (continued)

» Koszmider's “first” C(K)-space with few operators.

Recall: K is an infinite, compact Hausdorff space such that

H(C(K)) = {Mr: f € C(K)} + 7(C(K)),

where My is the multiplication operator M¢(g) = fg.

For this space, there is a continuous, surjective homomorphism
w: B(C(K)) = C(K) with kerp = 7 (C(K)).
In fact, the extension

{0} —— #(C(K)) ——= B(C(K)) — = C(K) —— {0}

splits in the category of Banach algebras provided K has no isolated points.

Question. Within ZFC, is there a compact Hausdorff space K such that
AB(C(K)) admits a discontinuous homomorphism into a Banach algebra?
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Any questions?
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Uniqueness of algebra norm (joint work with Max Arnott)

Aim: For a Banach space X, decide whether every quotient of #Z(X) by a
closed ideal has a unique algebra norm.

Main result (Arnott-L, in preparation). Let A C [N]* be an uncountable,
almost disjoint family such that

B(Co(Ka)) = KId+ 27 (Co(Ka)).

Then every quotient of 8(Co(Ka)) by a closed ideal has a unique algebra norm.

Definition. A submultiplicative norm on an algebra % is an algebra norm;
that is,
|ab|| < ||a|| ||p|| for every a,be A.

We say that A has a unique algebra norm (up to equivalence) if every pair of
algebra norms || - || and || - || on A are equivalent, that is, there are constants
C, c > 0 such that

cllall < llall < Clla|| for every ac .

Remark. When £ is unital, one usually requires that an algebra norm must
satisfy ||1|| = 1. However, for simplicity, we ignore that convention. This will
not cause problems because one can always pass to an equivalent algebra norm
which satisfies ||1|| = 1.
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Maximality of the norm

Recall: % has a unique algebra norm if, for every pair of algebra norms || - ||
and || - ||, there are constants C,c > 0 such that

cllall < llall < Cllal|  for every ac 2. (1)

Remarks.

» It is more common to study whether % has a unique complete algebra
norm (up to equivalence). To do so, it suffices to establish either of the
two inqualities in () by the Banach Isomorphism Theorem.

» We shall study the two inequalities in (}) separately.

Definition. An algebra norm || - || on an algebra # is maximal if, for every
algebra norm || - || on A, there is a constant C > 0 such that

lal| < C|la|| for every a € A.

Proposition. The following conditions are equivalent for a Banach algebra 2
(a) Its norm || - || is maximal.

(b) Every homomorphism from 9 into a Banach algebra is continuous.

(c) For every closed ideal .# of A, the quotient norm on /.7 is maximal.

(d) For every closed ideal .% of %, every homomorphism from 2 /.7 into a
Banach algebra is continuous.
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Maximality of the norm (continued)

Proposition. The following conditions are equivalent for a Banach algebra % :

(a) Its norm || - || is maximal; that is, for every algebra norm || - || on A, there
is a constant C > 0 such that ||a| < C||a|| for every a € A.

(b) Every homomorphism from % into a Banach algebra is continuous.
(c) For every closed ideal .7 of %, the quotient norm on /. is maximal.

(d) For every closed ideal .# of %, every homomorphism from %/.7 into a
Banach algebra is continuous.

Proof. (a)=-(b). Given a homomorphism ¢: % — €,
lall = max{|lal, [le(a)ll} for ae€ 2z

defines an algebra norm on 4. By hypothesis, there is C > 0 such that
le(a)ll < flafl < Cllal| for every a€ %,

SO ( Is continuous.

(b)=-(a). Given an algebra norm || - || on £, let € be the completion of # with
respect to || - ||, and consider the inclusion map a — a, & — %.

(c)<=(d). Apply (a)<(b) with #/.7 instead of A.
(b)=>(d). Apply the Open Mapping Theorem. (d)=-(b). Clear! O
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Minimality of the norm

Definition. An algebra norm || - || on an algebra & is minimal if, for every
algebra norm || - || on A, there is a constant C > 0 such that

|a|| < C|la|| for every ae A.

Proposition. The following conditions are equivalent for a Banach algebra % -
(a) Its norm || - || is minimal.

(b) Every injective homomorphism from 8 into a Banach algebra is bounded
below.

Proof. (a)=-(b). Given an injective homomorphism ¢: % — €,
lall = fle(a)ll  for aec %
defines an algebra norm on %. By hypothesis, there is C > 0 such that
lall < Cllall = Clle(a)|| for every ae Z,

so ¢ is bounded below by 1/C.

(b)=-(a). Given an algebra norm || - || on £, let € be the completion of & with
respect to || - ||, and consider the inclusion map a— a,  — ¥ . O
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Characterization of uniqueness of algebra norm for all quotients

Corollary. The following conditions are equivalent for a Banach algebra A
(a) Every quotient algebra of % by a closed ideal has a unique algebra norm.

(b) Every homomorphism from % into a Banach algebra is continuous and has
closed range.

Proof. (a)=(b). Let ¢: 8 — € be a homomorphism.

It is continuous because the norm on % is maximal.

In particular, the ideal ker ¢ is closed, so the quotient norm on %/ ker ¢ is
minimal.

Let ©: B/ ker p — € be the induced homomorphism, which satisfies:

> plB/ ker g = p|H].
» o is injective, hence bounded below.

»  is continuous, hence it has closed range, and therefore so does .

(b)=-(a). Let .# be a closed ideal of A. The quotient norm on /.7 is
maximal because homomorphisms from 4 are continuous.

To see that it is minimal, let ¢: /. — € be an injective homomorphism.
By hypothesis ¢ o 7 is continuous and has closed range, where 7: 8 — #/.9
is the quotient homomorphism.

Hence ¢ is continuous and has closed range, so ¢ is bounded below. O
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Any questions?
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Key known results for Z(X)

Theorem (Yood, Pacific Math. J. 1954).
The operator norm on %(X) is minimal for every Banach space X.

Corollary. Let X be a Banach space. Then:

A(X) has a unique algebra norm <=

every homomorphism from %(X) into a Banach algebra is continuous.

For all the Banach spaces X we consider, the latter condition will be satisfied,
usually by Johnson’s Theorem: Suppose that X = X & X. Then every
homomorphism from 2(X) into a Banach algebra is continuous.

Theorem (Meyer, BLMS 1992). Let X = ¢ or X = £, for some p € [1,00).
Then AB(X) /% (X) has a unique algebra norm.

Since £ (X) is the only non-trivial closed ideal of J#(X) for X = ¢, and
X =¥, for some p € [1,0), it follows that every quotient algebra of Z(X) by
a closed ideal has a unique algebra norm.

Generalization (Ware, PhD thesis 2014). Let I be an uncountable index set,
and let X = co(I") or X = £,(I") for some p € [1,00). Then every quotient
algebra of 28(X) by a closed ideal has a unique algebra norm.
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Daws’ classification of the closed operator ideals on cp(I') and £,(I") for

1< p<x

Recall:

Generalization (Ware, PhD thesis 2014). Let I be an uncountable index set,
and let X = co(I") or X = £,(I") for some p € [1,00). Then every quotient
algebra of #(X) by a closed ideal has a unique algebra norm.

Key ingredient: Daws’ classification of the closed ideals of Z(X)
(Math. Proc. Cambr. Phil. Soc. 2006):

{0} C A (X) C Ay (X) G- C Ha(X)  Hir(X) € -+
S HHX) C A (X) = BX),
where 7, (X) is the ideal of “k-compact operators” for a cardinal k > Nj.

Daws' result generalizes results of Gramsch (J. Reine Angew. Math. 1967) and
Luft (Czech. Math. J. 1968) for X = £2(I").

See also Johnson—Kania—Schechtman (PAMS 2016) and Horvath—Kania (Q. J.
Math. 2021).
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Key known results for Z(X) (continued)

Ware's main focus: Uniquenenss of algebra norm for the Calkin algebra.
Theorem (Ware, “thesis highlights”). %(X)/ 2 (X) has a unique algebra norm
in each of the following cases:
> X =4y @ DLy, foranyneNandl < p1 < - < pp <00,
(One can also add «.)
> X = (@2016”)(:0 and X = (@;’016”)% for 1 < p<ooandl<qg<oo.

> X =J, for1 < p < oo, the p*' quasi-reflexive James space.
» X = T, the Tsirelson space.

Banach spaces X such that the quotient norm on #(X)/# (X) is not minimal
were first found by Astala—Tylli (JFA 1987) and Tylli (/srael J. Math. 1995).

Theorem (Johnson—Phillips—Schechtman, in preparation). Let L, = L,[0, 1] for
some 1l < p < oo. Then:

» The Calkin algebra (L,)/# (L,) has a unique algebra norm.
More generally, this is true for every complemented subspace of L.

» Suppose that p # 2. Then %B(L,) contains a closed ideal .7 for which the
quotient norm on #(L,)/¥ is not minimal.
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Minimality via uniform factorization of idempotents

There is a simple way of proving that a maximal norm on a Banach algebra %
is also minimal (and therefore % has a unique algebra norm). It can be found
in the works of Meyer and Johnson—Phillips—Schechtman.

Lemma. Let || - || be a maximal algebra norm on an algebra 8. Suppose that
there is a constant K > 1 such that, for every b € A with ||b|| = 1, there are
a,c € # with ||a||||c|| < K such that abc is a non-zero idempotent.

Then || - || is minimal, and therefore 8 has a unique algebra norm.

Proof. Given an algebra norm || - || on A, choose C > 0 such that ||- || < C||- ||

Given b € £\ {0}, choose a,c € % with ||a|| ||c|| < K such that abc/||b|| is a
non-zero idempotent. Then
abc

IB]

> 1,

SO

16l < labell < flall ol el < Cllall 1ol <]l < C*K]Ib]. O
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Any questions?
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New results |: Uniqueness of algebra norm on quotients of Z(Co(K4))

Theorem (Arnott-L, in preparation). Let A C [N]* be an uncountable, almost
disjoint family such that

B(Co(Ka)) =Kld+ Z(Co(Ka)).
Then every quotient of 8(Co(Ka)) by a closed ideal has a unique algebra norm.
Recall: Kania—Kochanek’s closed ideal classification:
{0} C H(Go(Ka)) C Z(Co(Ka)) C B(Co(Ka)).

Maximality of the quotient norms follows from the automatic continuity of
homormorphisms from Z(Co(K4)).

To do: Show that the quotient norm on B(Co(Ka))/ # (Co(Ka)) is minimal.

One can view this as a quantitative version of the key step in the proof of K—K:
For T € (Co(Ka)) \ # (Co(Ka)), there are U,V € Z(Co(K4)) such that

lde, = VTU.

We do the same but, assuming || T + J#(Co(K4))|| = 1, we need a uniform
bound on ||U]| ||V]|. This will follow from two more general results.
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The two main steps

Step 1. A "blueprint” for proving minimality of the quotient norm of the Calkin
algebra of C(K) for K scattered.

Theorem. (Arnott—-L). Let T € A(Co(K)) for a scattered, locally compact
Hausdorff space K, and suppose that B¢, (k) contains a disjoint sequence
(f2)nen such that

6 :=inf{||TH|| : n€ N} > 0. (1)

Then, for every C > 1, there is an operator U € #(Co(K)) with ||U|| < C/6
such that TU is a projection whose image is C-isomorphic to co.

Key ingredients: Quantitative versions of theorems of Rosenthal and Dowling—
Randrianantoanina—Turett.

Step 2. We show that (1) is satisfied (for 6 < 1/4) whenever K = K4 for an
an uncountable, almost disjoint family A C [N]“.

This is a somewhat involved recursive construction.

Work in progress:
Can we verify (1) for other scattered spaces, such as K = [0, w*)?

It would imply that the Calkin algebra of Cp[0,w®) has a unique algebra norm.
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New results II: The Banach space X = (5,2 ¢5) and its dual

co

Let X = (B2, KS)CO. Note: X* = (D72, eg)el.

Theorem (Arnott-L, in preparation). Every quotient algebra of %(X) and of
AB(X™) by a closed ideal has a unique algebra norm.

Key ingredient:

Theorem (L-Loy—Read, JFA 2004). %A(X) constains exactly four closed ideals,
namely

{0} C (X)) C Yo (X) C AB(X),
where 9, (X) = {X s X:S€EB(X, ) and T € PB(co, X)}.

> X = X P X, giving maximality by Johnson's Theorem.

» Minimality for Z(X) follows from Yood's Theorem.

» Ware handled #(X) /% (X).

» Only minimality of the quotient norm of #(X)/¥,(X) remains. It follows
from the previous result because the proof of LLR shows that Idx factors
through every operator T € #(X) \ 9, (X) with control over the norms.

Theorem (L-Schlumprecht-Zsak, J. Op. Th. 2006). #(X™) contains exactly
four closed ideals, namely

{0} € A (XT) C Y, (X*) C B(XT).
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New results IIl: The direct sum (D57, €5)C0 @ co(l')

Theorem (Arnott-L). Let [ be an uncountable set, and set

Y = (é eg) o co(T).

co

Every quotient algebra of 4(Y) by a closed ideal has a unique algebra norm.

Key ingredient: The classification of the closed operator ideals on Y
(Arnott-L, JMAA 2021).

Remark. We have similar results for the dual space
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The lattice of closed operator ideals on Y = (@20:1 5’2’) ® co(lN)

co

10}

2(Y)

Geo (V)

%1(\/) /NZ(Y)

%2(\/) /N3(Y)

Hs (Y) /N;(Y)
l l
(YY) Ir+(Y)

A(Y)
35



Explanation of the notation used in the diagram

> An arrow from an ideal .# to an ideal # means that ¥ & #,
with no closed ideals of Z(Y') strictly contained in between .# and ¢.

» %.(Y) denotes the ideal of k-compact operators for a cardinal k > Nj.

> As before, set X = (.2, ¢5) . For a cardinal No <k < T,

Co

B Ti1 Tip2 _ —
2 ={(T P2) e A T e Tu(x)

T1,2 c %(Co(r),X), T2,1 c c%()(, Co(r)), Tz,z c %(Co(r))}

Outline of proof strategy:
» Calkin algebra: Use Ware's results for direct sums.

» Other quotients: Use the fact that the quotient algebra splits as a direct
sum

A(X) , #c()
54 P2

together with uniform factorization of idempotents.
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Thank you!
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