C(K)-spaces associated with almost disjoint families (Part I)

Niels Laustsen

Lancaster University, UK

Workshop on Banach spaces and Banach lattices II

ICMAT, Madrid

11th May 2022

Main parts: joint work with Piotr Koszmider (IMPAN, Warsaw) and with Max Arnott (Lancaster)

1

Today:

- Almost disjoint families: What are they, and why are they important in the theory of Banach spaces and lattices?
- C(K)-spaces: Some background and recent applications of almost disjoint families.
- Operator theory: Banach spaces with "few operators"; in particular: C(K)-spaces with few operators.
- Fundamental facts about the Mrówka space associated with an almost disjoint family.
- Some consequences of the main theorem: Self-maps, decompositions, closed operator ideals, characters.

Tomorrow:

- Outline of the proof of the main theorem (joint work with Koszmider).
- Automatic continuity of homomorphisms from $\mathscr{B}(X)$.
- Uniqueness of algebra norm on all quotients of *B(X)* by its closed ideals (joint work with Arnott).

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N} .

Definition. A family $\mathcal{A} \subset [\mathbb{N}]^{\omega}$ is almost disjoint if

```
|A \cap B| < \infty (A, B \in \mathcal{A}, A \neq B).
```

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality c.

Moreover, they are "easy" to construct — once you know the trick!

Construction 1.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q} . For every $r \in \mathbb{R} \setminus \mathbb{Q}$, choose a sequence $(q_n^{(r)})_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r. Define $A_r = \{q_n^{(r)} : n \in \mathbb{N}\} \in [\mathbb{Q}]^{\omega}$.

Suppose that $|A_r \cap A_s| = \infty$ for some $r, s \in \mathbb{R} \setminus \mathbb{Q}$.

Then $(q_n^{(r)})_{n \in \mathbb{N}}$ and $(q_n^{(s)})_{n \in \mathbb{N}}$ have an infinite subsequence in common, so r = s. Hence $|A_r \cap A_s| < \infty$ for $r \neq s$.

Thus $\{A_r : r \in \mathbb{R} \setminus \mathbb{Q}\}$ is an almost disjoint family of cardinality \mathfrak{c} in $[\mathbb{Q}]^{\omega}$. \Box

A second construction of an almost disjoint family of cardinality ${\mathfrak c}$

We begin with the *Cantor cube* $\{0,1\}^{\mathbb{N}} = \{f : \mathbb{N} \to \{0,1\}\}$. Given $f \in \{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, define

$$m_n(f) = 2^{n-1} + \sum_{j=1}^{n-1} f(j) 2^{n-1-j},$$

that is, the number whose binary expansion is

$$1 f(1) f(2) \dots f(n-2) f(n-1).$$

Set $M(f) = \{m_n(f) : n \in \mathbb{N}\} \in [\mathbb{N}]^{\omega}$.

Claim: The family $\mathcal{A} = \{M(f) : f \in \{0,1\}^{\mathbb{N}}\}\$ is almost disjoint. Reason: Suppose that $f, g \in \{0,1\}^{\mathbb{N}}$ are distinct, and let

$$k = \min\{j \in \mathbb{N} : f(j) \neq g(j)\}.$$

Then $m_n(f) = m_n(g)$ for $n \leq k$ and $m_n(f) \neq m_n(g)$ for n > k, so

$$|M(f)\cap M(g)|=k.$$

In particular, $|\mathcal{A}| = |\{0,1\}^{\mathbb{N}}| = \mathfrak{c}$.

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC). The continuum hypothesis (CH) — or its negation — are the most

"obvious" examples.

- ► Almost disjoint families also play a role in **topology** because every almost disjoint family A ⊆ [N]^ω induces a locally compact Hausdorff space K_A. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave our first construction.
- This links almost disjoint families to **functional analysis**: Let $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and let K be a locally compact Hausdorff space. Then

 $C_0(K) = \{f \colon K \to \mathbb{K} : f \text{ is continuous and} \\ \{t \in K : |f(t)| \ge \varepsilon\} \text{ is compact for every } \varepsilon > 0\}$

is a Banach space/Banach lattice/ C^* -algebra.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$, define

$$X_{\mathcal{A}} = \overline{\operatorname{span}} \{ 1_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \cup [\mathbb{N}]^{<\omega} \} \subseteq \ell_{\infty},$$

where 1_A is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N} .

Check: X_A is a self-adjoint subalgebra of ℓ_{∞} .

Gelfand–Naimark Theorem: $X_{\mathcal{A}} \cong C_0(K_{\mathcal{A}})$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form X_A were first studied by Johnson and Lindenstrauss (*Israel J. Math.* 1974).
- Locally compact Hausdorff spaces of the form K_A were first studied by Alexandroff and Urysohn (1920's).

Terminology: AU-compactum, (Isbell–)Mrówka space, Ψ -space.

Any questions?

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space K_A :

- ► I shall give a "hands-on" definition later.
- If you prefer abstract methods, you can view K_A as the Stone space of the Boolean subalgebra of 𝒫(ℕ) generated by A ∪ [ℕ]^{<ω}.

Remark. $||1_A - 1_B||_{\infty} = 1$ for distinct $A, B \subseteq \mathbb{N}$. Hence, for an almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$,

 $X_{\mathcal{A}}$ is separable $\iff \mathcal{A}$ is countable.

Conclusion: In the "interesting" cases, $C_0(K_A)$ is non-separable.

Terminology. A C(K)-space is a Banach space of the form

 $C(K) = \{f \colon K \to \mathbb{K} : f \text{ is continuous}\}$

for some compact Hausdorff space K.

Note: All the results I shall discuss are of an isomorphic nature, so I shall often use the term "C(K)-space" to mean a Banach space which is **isomorphic** to C(K) for some compact Hausdorff space K.

We shall see later that $C_0(K_A)$ is isomorphic to a C(K)-space.

8

Fundamental fact. For a compact Hausdorff space K,

C(K) is separable $\iff K$ is metrizable.

Theorem. Let K be a compact metric space.

- (i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for n = |K|.
- (ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C(\{0,1\}^{\mathbb{N}})$.
- (iii) (Bessaga–Pełczyński, Studia Math. 1960) Suppose that K is countably infinite. Then there is a unique countable ordinal α such that

$$C(K)\cong C[0,\omega^{\omega^{lpha}}],$$

where $[0, \omega^{\omega^{\alpha}}]$ denotes set of all ordinals not exceeding $\omega^{\omega^{\alpha}}$, endowed with the order topology.

The "modern" way of determining the ordinal α is via the Szlenk index because

$$Sz(C[0, \omega^{\omega^{\alpha}}]) = \omega^{\alpha+1}$$

This result is due to Samuel (1983).

Complemented subspaces of C(K)-spaces

Long-standing open problem: Understand the complemented subspaces of C(K)-spaces.

Positive results:

- ► c_0 is **prime** (Pełczyński, *Studia Math.* 1960), that is, every complemented, ∞ -dimensional subspace of c_0 is isomorphic to c_0 .
- More generally, for Γ of arbitrary cardinality, every complemented subspace of $c_0(\Gamma)$ is isomorphic to $c_0(\Delta)$ for some $\Delta \subseteq \Gamma$ (Granero, 1998).
- Every complemented, ∞ -dimensional subspace of $C[0, \omega^{\omega}]$ is isomorphic to either c_0 or $C[0, \omega^{\omega}]$ (Benyamini, *Israel J. Math.* 1978).
- ▶ ℓ_{∞} is prime (Lindenstrauss, *Israel J. Math.* 1967).

Long-standing conjecture: Every complemented subspace of a C(K)-space is isomorphic to a C(K)-space (not necessarily for the same K).

This conjecture has recently been **disproved** by Plebanek and Salguero Alarcón:

Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that $C_0(K_{\mathcal{A}})$ contains a complemented subspace which is not isomorphic to any C(K)-space.

The conjecture is still open for separable C(K)-spaces.

Theorem (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ admitting an extension

$$\{0\} \longrightarrow c_0 \longrightarrow C_0(K_{\mathcal{A}}) \longrightarrow X \longrightarrow \{0\},\$$

in which the Banach space is not isomorphic to a C(K)-space.

Theorem (Cabello Sánchez, Castillo, Marciszewski, Plebanek and Salguero Alarcón, *JFA* 2020, assuming MA and \neg CH). Let $\mathcal{A}, \mathcal{B} \subseteq [\mathbb{N}]^{\omega}$ be uncountable, almost disjoint families with $|\mathcal{A}| = |\mathcal{B}| < \mathfrak{c}$. Then

 $C_0(K_A) \cong C_0(K_B)$ and $C_0(K_A) \cong C_0(K_A) \oplus C_0(K_A)$.

Theorem (Cabello Sánchez, Castillo, Marciszewski, Plebanek and Salguero Alarcón, JFA 2020, building on Marciszewski and Pol, JMMA 2009). There are 2^c non-isomorphic Banach spaces of the form $C_0(K_A)$, where $A \subseteq [\mathbb{N}]^{\omega}$ is an almost disjoint family of cardinality c.

Background: The CCKY conjecture about extensions involving C(K)-spaces

Cabello Sánchez, Castillo, Kalton and Yost (*TAMS* 2003) studied extensions of the form

 $\{0\} \longrightarrow C(K) \longrightarrow Y \longrightarrow X \longrightarrow \{0\}$

for separable Banach spaces X and either K = [0, 1] or $K = [0, \omega^{\omega}]$.

They also raised an important question in the non-separable case, motivated by Sobczyk's Theorem:

CCKY Question: Let K be a non-metrizable, compact Hausdorff space. Is it possible that every extension of the form

$$\{0\} \longrightarrow c_0 \longrightarrow X \longrightarrow C(K) \longrightarrow \{0\}$$

splits in the category of Banach spaces?

Conjecture: No!

Theorem (Marciszewski and Plebanek, JFA 2018, assuming MA and \neg CH). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family with $|\mathcal{A}| < \mathfrak{c}$. Then every extension of the form

$$\{0\} \longrightarrow c_0 \longrightarrow X \longrightarrow C_0(K_{\mathcal{A}}) \longrightarrow \{0\}$$

splits in the category of Banach spaces.

Theorem (Avilés, Marciszewski and Plebanek, *Adv. Math.* 2020, assuming CH). For every non-metrizable compact Hausdorff space K, there is an extension of the form

$$\{0\} \longrightarrow c_0 \longrightarrow X \longrightarrow C(K) \longrightarrow \{0\}$$

which does not split in the category of Banach spaces.

Any questions?

My motivation: Which operators must exist on an $\infty\mbox{-dimensional}$ Banach space?

Let X be a Banach space over the scalar field $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and consider the Banach algebra

 $\mathscr{B}(X) = \{T : X \to X : T \text{ bounded and linear}\}.$ "an operator"

Question: How "small" can $\mathscr{B}(X)$ be?

We always have the identity operator Id.

Hahn-Banach ensures there are "many" finite-rank operators.

However, the ideal of finite-rank operators,

$$\mathscr{F}(X) = \{T \in \mathscr{B}(X) : \dim T[X] < \infty\},\$$

is never closed when X is ∞ -dimensional.

Theorem. The following 3 conditions are equivalent for a Banach space X:

• $\mathscr{F}(X)$ is closed;

$$\blacktriangleright \mathscr{F}(X) = \mathscr{B}(X);$$

• dim
$$X < \infty$$
.

Moreover, when $n := \dim X < \infty$, $\mathscr{B}(X) \cong M_n(\mathbb{K})$, which is simple.

A generalization of the latter fact to arbitrary dimensions: Every non-zero ideal of $\mathscr{B}(X)$ contains $\mathscr{F}(X)$.

Question: Is it possible that an ∞ -dimensional Banach space X admits no other operators, so that

$$\mathscr{B}(X) = \mathbb{K} \operatorname{\mathsf{Id}} + \overline{\mathscr{F}(X)}?$$

Theorem (Argyros–Haydon, Acta Math. 2011). Yes! There is a Banach space X_{AH} which has "very few operators":

 $\mathscr{B}(X_{\mathsf{AH}}) = \mathbb{K} \operatorname{\mathsf{Id}} + \mathscr{K}(X_{\mathsf{AH}}).$

Moreover, X_{AH} has a Schauder basis, so that $\mathscr{K}(X_{AH}) = \overline{\mathscr{F}(X_{AH})}$, and $X_{AH}^* \cong \ell_1$.

Key ingredients in the construction of the Argyros-Haydon space

This result was the culmination of a long sequence of constructions of "exotic" Banach spaces initiated by Tsirelson's construction of a Banach space that does not contain c_0 or ℓ_p for $1 \leq p < \infty$ (Funct. Anal. Appl. 1972).

Other key contributions:

- Bourgain and Delbaen found a completely new approach to constructing preduals of ℓ_1 (*Acta Math.* 1980).
- Schlumprecht modified Tsirelson's construction to obtain an arbitrarily distortable Banach space (*Israel J. Math.* 1991).
- Gowers and Maurey modified Schlumprecht's contruction to obtain a hereditarily indecomposable Banach space X (JAMS 1993). This implies that X admits "few operators" in the sense that

 $\mathscr{B}(X) = \mathbb{C} \operatorname{Id} + \mathscr{S}(X),$

where $\mathscr{S}(X)$ is the ideal of strictly singular operators.

Definition. An operator $S: X \to Y$ is *strictly singular* if the restriction of S to any ∞ -dimensional subspace of X is not an isomorphic embedding. In other words, for every $\varepsilon > 0$, every ∞ -dimensional subspace of X contains a unit vector x such that $||Sx|| < \varepsilon$. Earliest (?) example:

Theorem (Shelah, *Israel J. Math.* 1978, assuming \diamondsuit). *There is a non-separable Banach space X such that*

$$\mathscr{B}(X) = \mathbb{K} \operatorname{Id} + \mathscr{X}(X),$$

where $\mathscr{X}(X) = \{T \in \mathscr{B}(X) : T[X] \text{ is separable}\}.$

Further results:

- Shelah and Steprāns (PAMS 1988): example within ZFC.
- ► Wark (*JLMS* 2001): reflexive example.
- Wark (Studia Math. 2018): uniformly convex example.

Connection with our topic: C(K)-spaces with few operators.

Note: The results I shall discuss are of an isomorphic nature, so in this context a "C(K)-space" can be any Banach space which is isomorphic to C(K) for a compact Hausdorff space K.

Theorem (Pełczyński, Bull. Acad. Pol. Sci. 1965). The following 3 conditions are equivalent for an operator $T: C(K) \rightarrow X$, where K is a compact Hausdorff space and X is a Banach space:

- T is weakly compact;
- T is strictly singular;
- T does not fix a copy of c_0 .

Terminology. An operator $T: C(K) \to X$ *fixes a copy of* c_0 if there is an operator $R: c_0 \to C(K)$ such that TR is an isomorphic embedding.

Remark (Koszmider–L, 2021). The "few operator" results of Gowers–Maurey and Argyros–Haydon have no direct analogues for C(K)-spaces because

$$\dim \frac{\mathscr{B}(C(K))}{\mathscr{W}(C(K))} = \infty$$

whenever K is infinite. In fact $\mathscr{B}(C(K))/\mathscr{W}(C(K))$ is non-separable. **Starting point.** Every C(K)-space admits *multiplication operators*:

$$M_f: g \mapsto fg, \ C(K) \to C(K),$$

where $f \in C(K)$.

Theorem (Koszmider, *Math. Ann.* 2004, assuming CH; Plebanek, *Top. Appl.* 2004, within ZFC). *There is an infinite compact Hausdorff space K such that*

$$\mathscr{B}(C(K)) = \{M_f : f \in C(K)\} + \mathscr{W}(C(K)).$$

Note: C(K) is a **Grothendieck space**, that is, every weak*-convergent sequence in $C(K)^*$ converges weakly.

Consequence: C(K) does not contain any complemented subspaces isomorphic to c_0 .

Koszmider's second C(K)-space with few operators: the Mrówka space

Theorem (Koszmider, *PAMS* 2005, assuming CH; Koszmider–L, *Adv. Math.* 2021, within ZFC).

There is an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$

I shall outline the proof of this result in tomorrow's lecture.

Note: It is an exact analogue of Shelah's space among C(K)-spaces.

Remarks. Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_0(K_A)$ contains a complemented copy of c_0 , so it is not a Grothendieck space.
- $C_0(K_A) \cong C(\alpha K_A)$, where αK_A is the one-point compactification of K_A . *Proof.* Write $C_0(K_A) \cong X \oplus c_0$ for some Banach space X. Then

 $C(\alpha K_{\mathcal{A}}) \cong C_0(K_{\mathcal{A}}) \oplus \mathbb{K} \cong X \oplus c_0 \oplus \mathbb{K} \cong X \oplus c_0 \cong C_0(K_{\mathcal{A}}).$

In particular, $C_0(K_A)$ is isomorphic to a C(K)-space.

Every separable subspace of C₀(K_A) is contained in a subspace isomorphic to c₀, so

$$\mathscr{X}(C_0(K_{\mathcal{A}})) = \left\{ C_0(K_{\mathcal{A}}) \xrightarrow{S} c_0 \xrightarrow{T} C_0(K_{\mathcal{A}}) : S \in \mathscr{B}(C_0(K_{\mathcal{A}}), c_0), \\ T \in \mathscr{B}(c_0, C_0(K_{\mathcal{A}})) \right\} =: \mathscr{G}_{c_0}(C_0(K_{\mathcal{A}})).$$

Any questions?

Fundamental facts about the Mrówka space K_A

Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family.

• The standard representation of $K_{\mathcal{A}}$:

$$K_{\mathcal{A}} = \{x_n : n \in \mathbb{N}\} \cup \{y_A : A \in \mathcal{A}\},\$$

where x_n is isolated for every $n \in \mathbb{N}$, and $x_n \xrightarrow[A \ni n \to \infty]{} y_A$ for every $A \in \mathcal{A}$. More precisely, the sets

 $U(A, F) = \{x_n : n \in A \setminus F\} \cup \{y_A\}, \text{ where } F \in [\mathbb{N}]^{<\omega},$

form a neighbourhood basis at y_A .

- $K_{\mathcal{A}}$ is compact if and only if \mathcal{A} and $\mathbb{N} \setminus \bigcup \mathcal{A}$ are both finite.
- ▶ $\{x_n : n \in \mathbb{N}\}$ is the set of isolated points of K_A . It is dense in K_A , so K_A is separable. Hence

 $K_{\mathcal{A}}$ metrizable $\iff K_{\mathcal{A}}$ second countable $\iff \mathcal{A}$ countable.

- ▶ The subspace $K_A \setminus \{x_n : n \in \mathbb{N}\} = \{y_A : A \in A\}$ is closed and discrete.
- Consequence: K_A is scattered; that is, every non-empty subset L contains a relatively isolated point.

Proof. (i) *L* contains a relatively isolated point if $x_n \in L$ for some $n \in \mathbb{N}$. (ii) Suppose that $y_A \in L$ is **not** isolated in *L* for some $A \in A$. Then $x_n \in L$ for infinitely many $n \in A$, so (i) applies. Recall: the locally compact Hausdorff space K_A is scattered. This has a number of important consequences for the Banach space $C_0(K_A)$.

• $C_0(K_A)$ is an **Asplund space**.

That is, every separable subspace of $C_0(K_A)$ has separable dual.

• Rudin's Theorem:
$$C_0(K_A)^* \cong \ell_1(K_A)$$
.

Consequence: For $T \in \mathscr{B}(C_0(K_A))$, $f \in C_0(K_A)$ and $s \in K_A$,

$$T(f)(s) = \langle T(f), \delta_s \rangle = \langle f, T^*(\delta_s) \rangle = \sum_{t \in K_A} T^*(\delta_s)(\{t\})f(t),$$

where $\delta_s \in C_0(K_A)^*$ is the point evaluation at s. We think of $(T^*(\delta_s)(\{t\}))_{s,t\in K_A}$ as a "matrix representation" of T.

▶ LPP Theorem (Lotz–Peck–Porta, Proc. Edinb. Math. Soc. 1979). $C_0(K_A)$ is saturated with complemented copies of c_0 .

That is, every closed, ∞ -dimensional subspace of $C_0(K_A)$ contains a subspace which is isomorphic to c_0 and complemented in $C_0(K_A)$.

Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family.

If \mathcal{A} is countable, then $C_0(K_{\mathcal{A}})$ is separable.

Then Sobczyk's Theorem implies that all copies of c_0 are complemented.

Suppose ${\mathcal A}$ is uncountable. Then:

- The canonical copy of c_0 is **not** complemented in $X_A \cong C_0(K_A)$.
- ▶ More generally, suppose that $T \in \mathscr{B}(C_0(K_A))$ satisfies $T1_{\{x_n\}} = 0$ for every $n \in \mathbb{N}$. Then \mathcal{A} contains a subset \mathcal{A}' of the same cardinality as \mathcal{A} such that $T1_{U(A,F)} = 0$ for every $A \in \mathcal{A}'$ and $F \in [\mathbb{N}]^{<\omega}$. (Horváth–L, work in progress).

On the other hand, it is easy to construct a complemented copy of c₀ in C₀(K_A).

Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an almost disjoint family.

Take
$$A = \{a_1 < a_2 < \cdots\} \in \mathcal{A}$$
.

Define $Ue_n = 1_{\{x_{a_n}\}}$ for each $n \in \mathbb{N}$, where (e_n) is the standard basis for c_0 . Extend by linearity and continuity to a linear isometry $U: c_0 \to C_0(K_A)$. Define $Vf = (f(x_{a_n}) - f(y_A))_{n \in \mathbb{N}}$ for each $f \in C_0(K_A)$. Note: $Vf \in c_0$ because $x_{a_n} \to y_A$ as $n \to \infty$. Hence $V: C_0(K_A) \to c_0$. Clearly V is linear and bounded with norm 2. For $k \in \mathbb{N}$,

$$VUe_k = (1_{\{x_{a_k}\}}(x_{a_n}) - 1_{\{x_{a_k}\}}(y_A))_{n \in \mathbb{N}} = (\delta_{k,n})_{n \in \mathbb{N}} = e_k,$$

so $VU = Id_{c_0}$.

Therefore $UV \in \mathscr{B}(C_0(K_A))$ is a projection onto a subspace isomorphic to c_0 .

Any questions?

Recall:

Theorem (Koszmider, *PAMS* 2005, assuming CH; Koszmider–L, *Adv. Math.* 2021, within ZFC).

There is an uncountable, almost disjoint family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ such that

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$
(*)

In the next few slides, we assume that $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that (*) is satisfied. We shall say that " \mathcal{A} admits few operators".

Theorem. (Koszmider–L). Let $\phi: K_{\mathcal{A}} \to K_{\mathcal{A}}$ be a continuous self-map. Then:

- \blacktriangleright either ϕ has countable range,
- or ϕ fixes all but countably many points of $K_{\mathcal{A}}$.

Theorem (Koszmider 2005). $C_0(K_A)$ has no non-trivial decompositions. More precisely, suppose that $C_0(K_A) = X \oplus Y$ for some closed, ∞ -dimensional subspaces X and Y. Then $X \cong C_0(K_A)$ and $Y \cong c_0$, or vice versa.

Proof: $C_0(K_A)$ has no non-trivial decompositions

Proof. Let
$$P \in \mathscr{B}(C_0(K_A))$$
 be a projection with
 $P[C_0(K_A)] = X$ and ker $P = Y$, where dim $X = \dim Y = \infty$.
By (*), $P = \lambda \operatorname{Id} + S$, where $\lambda \in \mathbb{K}$ and $S \in \mathscr{X}(C_0(K_A)]$.
Then

$$\lambda \operatorname{Id} + S = P = P^2 = \lambda^2 \operatorname{Id} + 2\lambda S + S^2,$$

SO

$$(\lambda - \lambda^2) \operatorname{\mathsf{Id}} = (2\lambda - 1)S + S^2 \in \mathscr{X}(C_0(K_{\mathcal{A}})).$$

Hence $\lambda^2 = \lambda$, that is, $\lambda = 0$ or $\lambda = 1$.

Suppose that $\lambda = 0$, so $X = P[C_0(K_A)]$ is separable.

Then X is contained in a subspace isomorphic to c_0 , and obviously complemented in it.

Hence, by a theorem of Pełczyński, $X \cong c_0$.

By the LPP Theorem, we have $Y \cong c_0 \oplus Z$ for some subspace Z. Hence

$$C_0(\mathcal{K}_{\mathcal{A}}) = X \oplus Y \cong c_0 \oplus c_0 \oplus Z \cong c_0 \oplus Z \cong Y.$$

The proof for $\lambda = 1$ is similar, just with X and Y switching roles.

 \square

Consequences of main theorem: Closed ideal structure

Theorem. (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished). Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then $\mathscr{B}(C_0(K_{\mathcal{A}}))$ contains exactly four closed ideals:

$$\{0\} \subset \mathscr{K}(C_0(K_{\mathcal{A}})) \subset \mathscr{K}(C_0(K_{\mathcal{A}})) \subset \mathscr{B}(C_0(K_{\mathcal{A}})).$$

Proof.

- ► C(K)-spaces have the AP, so $\mathscr{K}(C_0(K_A)) = \overline{\mathscr{F}(C_0(K_A))}$ is the smallest non-zero closed ideal of $\mathscr{B}(C_0(K_A))$.
- $\mathscr{K}(X) \subseteq \mathscr{X}(X)$ for all Banach spaces X.
- ▶ Take a projection $P \in \mathscr{B}(C_0(K_A))$ with $P[C_0(K_A)] \cong c_0$. Then

 $P \in \mathscr{X}(C_0(K_{\mathcal{A}})) \setminus \mathscr{K}(C_0(K_{\mathcal{A}})).$

- ▶ $\mathscr{X}(C_0(K_A))$ is proper because $C_0(K_A)$ is non-separable. Hence it has codimension 1 in $\mathscr{B}(C_0(K_A))$ by hypotehsis, so $\mathscr{X}(C_0(K_A))$ is maximal.
- ▶ It remains to show that $\mathscr{X}(C_0(K_A))$ is contained in the ideal generated by any non-compact $T \in \mathscr{B}(C_0(K_A))$.

This will follow from the fact that Id_{c_0} factors through T.

Proof: Kania–Kochanek's ideal classification (continued)

Aim: To show that Id_{c_0} factors through every non-compact op. on $C_0(K_A)$. First step: $\mathscr{K}(C_0(K_A)) = \mathscr{W}(C_0(K_A))$.

Proof. Since $C_0(K_A)^* \cong \ell_1(K_A)$, it has the Schur property, so

$$T \in \mathscr{K}(C_0(K_{\mathcal{A}})) \iff T^* \in \mathscr{K}(C_0(K_{\mathcal{A}})^*) \qquad (\text{Schauder's Thm}) \\ \iff T^* \in \mathscr{W}(C_0(K_{\mathcal{A}})^*) \qquad (\text{Schur property}) \\ \iff T \in \mathscr{W}(C_0(K_{\mathcal{A}})) \qquad (\text{Gantmacher's Thm}) \\ \iff T \text{ does not fix } c_0 \qquad (\text{Pełczyński's Thm}). \qquad \Box$$

Hence, for $T \in \mathscr{B}(C_0(K_A)) \setminus \mathscr{K}(C_0(K_A))$, we can find $R: c_0 \to C_0(K_A)$ such that TR is an isomorphic embedding.

Then $TR[C_0(K_A)]$ is closed and ∞ -dimensional.

By the LPP Theorem: $TR[C_0(K_A)]$ contains a subspace Z such that:

- there is an isomorphism $U: c_0 \rightarrow Z;$
- there is a projection $P: C_0(K_A) \to Z$.

Let $W = (TR)^{-1}[Z] \subseteq c_0$.

The restriction of *TR* to *W* is an isomorphism onto *Z*, with inverse $S: Z \to W$. Conclusion: $Id_{c_0} = (U^{-1}P)T(RJ_WSU)$, where $J_W: W \to c_0$ is the inclusion. \Box

Any questions?

Let $\mathcal{A} \subseteq [\mathbb{N}]^\omega$ be an uncountable, almost disjoint family such that

$$\mathscr{B}(C_0(K_{\mathcal{A}})) = \mathbb{K} \operatorname{Id} + \mathscr{X}(C_0(K_{\mathcal{A}})).$$
(*)

Then the ideal $\mathscr{X}(C_0(K_{\mathcal{A}}))$ has codimension 1 in $\mathscr{B}(C_0(K_{\mathcal{A}}))$.

Such ideals play a special role in the theory of Banach algebras.

Definition. Let \mathscr{B} be a Banach algebra. A non-zero algebra homomorphism (= a non-zero multiplicative linear functional) $\varphi \colon \mathscr{B} \to \mathbb{K}$ is a *character*.

Remarks. Let $\varphi \colon \mathscr{B} \to \mathbb{K}$ be a character. Then:

- $\blacktriangleright \varphi$ is continuous.
- \blacktriangleright ker φ is a closed, maximal ideal of codimension 1 in \mathscr{B} .
- Conversely, suppose that \mathscr{I} is a closed ideal of codimension 1 in \mathscr{B} . Then

$$\mathscr{B}/\mathscr{I}\cong\mathbb{K},$$

and so the quotient map induces a character on \mathcal{B} .

Characters on $\mathscr{B}(X)$ are "unusual" due to following result:

Theorem. Let X be a Banach space which contains a complemented subspace isomorphic to $X \oplus X$. Then $\mathscr{B}(X)$ has no closed ideals of finite codimension, and therefore no characters.

However, characters are known to exist on $\mathscr{B}(X)$ in a number of cases:

- X = J_p (the pth quasi-reflexive James space) for 1 (Berkson–Porta, JFA 1969; Edelstein–Mityagin, Funct. Anal. Appl. 1970).
- X = C[0, ω₁] (Edelstein–Mityagin, *Funct. Anal. Appl.* 1970; implicit in Semadeni, *Bull. Acad. Pol. Sci.* 1960).
- X being any of the previously described "few operator" spaces of Argyros-Haydon, Gowers-Maurey, Shelah, Steprans, Wark.

Remark. Let $\psi : \mathscr{B}(X_{AH}) \to \mathbb{K}$ be the character, where X_{AH} is the Banach space of Argyros–Haydon. Then

$$\ker \psi = \overline{\mathscr{F}(X_{\mathsf{AH}})}$$

is as small as it can be.

Let $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators, and recall that $\mathscr{B}(C_0(K_{\mathcal{A}}))$ admits a character φ with

$$\ker \varphi = \mathscr{X}(C_0(K_{\mathcal{A}})) = \mathscr{G}_{c_0}(C_0(K_{\mathcal{A}}))$$
$$= \{C_0(K_{\mathcal{A}}) \xrightarrow{S} c_0 \xrightarrow{T} C_0(K_{\mathcal{A}}) : S \in \mathscr{B}(C_0(K_{\mathcal{A}}), c_0), \ T \in \mathscr{B}(c_0, C_0(K_{\mathcal{A}}))\}.$$

Analogous to the Argyros–Haydon space, this is the smallest the kernel of a character can be in the context of C(K)-spaces. More precisely, we have:

Theorem (Koszmider–L). Let K be an infinite compact Hausdorff space such that $\mathscr{B}(C(K))$ admits a character $\psi : \mathscr{B}(C(K)) \to \mathbb{K}$. Then

$$\mathscr{G}_{c_0}(\mathcal{C}(\mathcal{K})) \subseteq \ker \psi.$$

Corollary. $\mathscr{B}(C_0(K_A))$ admits only one character.

Proof of the theorem

Set-up: *K* is an infinite compact Hausdorff space and $\psi : \mathscr{B}(C(K)) \to \mathbb{K}$ is a character. We seek to prove that

 $\mathscr{G}_{c_0}(\mathcal{C}(\mathcal{K})) \subseteq \ker \psi.$

Take $S \in \mathscr{G}_{c_0}(C(K))$. We consider two cases:

Case 1: C(K) is a Grothendieck space. Then:

- Diestel (1972): S is weakly compact because it has separable range.
- Pełczyński: S is strictly singular.
- L (Proc. Edinb. Math. Soc. 2002): S belongs to every maximal ideal of *B*(C(K)).
- Hence $S \in \ker \psi$.

Case 2: C(K) is **not** a Grothendieck space. Then:

- Schachermayer (Diss. Math. 1982): There is a projection P ∈ ℬ(C(K)) with P[C(K)] ≅ c₀.
- $\mathscr{B}(c_0)$ admits no characters, so $\psi(P) = 0$.
- ▶ Write S = TPR for some $R, T \in \mathscr{B}(C(K))$. Then

$$\psi(S) = \psi(T)\psi(P)\psi(R) = 0.$$

Thank you!