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Overview

Today:
I Almost disjoint families: What are they, and why are they important in the

theory of Banach spaces and lattices?
I C(K)-spaces: Some background and recent applications of almost disjoint

families.
I Operator theory: Banach spaces with “few operators”; in particular:

C(K)-spaces with few operators.
I Fundamental facts about the Mrówka space associated with an almost

disjoint family.
I Some consequences of the main theorem: Self-maps, decompositions,

closed operator ideals, characters.

Tomorrow:
I Outline of the proof of the main theorem (joint work with Koszmider).
I Automatic continuity of homomorphisms from B(X ).
I Uniqueness of algebra norm on all quotients of B(X ) by its closed ideals

(joint work with Arnott).

2



Almost disjoint families

Let [N]ω denote the set of infinite subsets of N.

Definition. A family A ⊂ [N]ω is almost disjoint if

|A ∩ B| <∞ (A,B ∈ A, A 6= B).

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist!
In fact, there are almost disjoint families of cardinality c.

Moreover, they are “easy” to construct — once you know the trick!

Construction 1.
Starting point: We may replace N with any countably infinite set. We use Q.

For every r ∈ R \Q, choose a sequence (q
(r)
n )n∈N in Q which converges to r .

Define Ar = {q(r)
n : n ∈ N} ∈ [Q]ω.

Suppose that |Ar ∩ As | =∞ for some r , s ∈ R \Q.

Then (q
(r)
n )n∈N and (q

(s)
n )n∈N have an infinite subsequence in common, so r = s.

Hence |Ar ∩ As | <∞ for r 6= s.

Thus {Ar : r ∈ R \Q} is an almost disjoint family of cardinality c in [Q]ω. 2
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A second construction of an almost disjoint family of cardinality c

We begin with the Cantor cube {0, 1}N =
{
f : N→ {0, 1}

}
.

Given f ∈ {0, 1}N and n ∈ N, define

mn(f ) = 2n−1 +
n−1∑
j=1

f (j)2n−1−j ,

that is, the number whose binary expansion is

1 f (1) f (2) . . . f (n − 2) f (n − 1).

Set M(f ) = {mn(f ) : n ∈ N} ∈ [N]ω.

Claim: The family A =
{
M(f ) : f ∈ {0, 1}N

}
is almost disjoint.

Reason: Suppose that f , g ∈ {0, 1}N are distinct, and let

k = min{j ∈ N : f (j) 6= g(j)}.

Then mn(f ) = mn(g) for n 6 k and mn(f ) 6= mn(g) for n > k, so

|M(f ) ∩M(g)| = k.

In particular, |A| = |{0, 1}N| = c. 2
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Almost disjoint families — applications

Almost disjoint families appear in many different branches of mathematics:
I Perhaps their most natural home is infinite combinatorics.
I They are closely connected with foundations/set theory because often, the

construction of an almost disjoint family with particular properties relies
on additional axioms (outside ZFC).
The continuum hypothesis (CH) — or its negation — are the most
“obvious” examples.

I Almost disjoint families also play a role in topology because every almost
disjoint family A ⊆ [N]ω induces a locally compact Hausdorff space KA.
This connection goes back to Alexandroff and Urysohn (1920’s), who
essentially gave our first construction.

I This links almost disjoint families to functional analysis: Let K = R or
K = C, and let K be a locally compact Hausdorff space. Then

C0(K) =
{
f : K → K : f is continuous and

{t ∈ K : |f (t)| > ε} is compact for every ε > 0
}

is a Banach space/Banach lattice/C∗-algebra.
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The locally compact space induced by an almost disjoint family
(functional analytic approach)

Definition. Given an almost disjoint family A ⊆ [N]ω, define

XA = span{1A : A ∈ A ∪ [N]<ω} ⊆ `∞,

where 1A is the indicator function of A and [N]<ω the set of finite subsets of N.

Check: XA is a self-adjoint subalgebra of `∞.

Gelfand–Naimark Theorem: XA ∼= C0(KA) for some locally compact Hausdorff
space KA.

Origins:
I Banach spaces of the form XA were first studied by Johnson and Linden-

strauss (Israel J. Math. 1974).
I Locally compact Hausdorff spaces of the form KA were first studied by

Alexandroff and Urysohn (1920’s).

Terminology: AU-compactum, (Isbell–)Mrówka space, Ψ-space.
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Mini-break

Any questions?
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The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space KA:
I I shall give a “hands-on” definition later.

I If you prefer abstract methods, you can view KA as the Stone space of the
Boolean subalgebra of P(N) generated by A ∪ [N]<ω.

Remark. ‖1A − 1B‖∞ = 1 for distinct A,B ⊆ N.
Hence, for an almost disjoint family A ⊆ [N]ω,

XA is separable ⇐⇒ A is countable.

Conclusion: In the “interesting” cases, C0(KA) is non-separable.

Terminology. A C(K)-space is a Banach space of the form

C(K) = {f : K → K : f is continuous}

for some compact Hausdorff space K .

Note: All the results I shall discuss are of an isomorphic nature, so I shall often
use the term “C(K)-space” to mean a Banach space which is isomorphic to
C(K) for some compact Hausdorff space K .

We shall see later that C0(KA) is isomorphic to a C(K)-space.
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The isomorphic classification of separable C (K )-spaces

Fundamental fact. For a compact Hausdorff space K ,

C(K) is separable ⇐⇒ K is metrizable.

Theorem. Let K be a compact metric space.

(i) Suppose that K is finite. Then C(K) ∼= `n∞ for n = |K |.
(ii) (Milutin) Suppose that K is uncountable. Then C(K) ∼= C({0, 1}N).

(iii) (Bessaga–Pełczyński, Studia Math. 1960) Suppose that K is countably
infinite. Then there is a unique countable ordinal α such that

C(K) ∼= C [0, ωω
α

],

where [0, ωω
α

] denotes set of all ordinals not exceeding ωω
α

, endowed
with the order topology.

The “modern” way of determining the ordinal α is via the Szlenk index
because

Sz(C [0, ωω
α

]) = ωα+1.

This result is due to Samuel (1983).
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Complemented subspaces of C (K )-spaces

Long-standing open problem: Understand the complemented subspaces of
C(K)-spaces.

Positive results:
I c0 is prime (Pełczyński, Studia Math. 1960), that is, every complemented,
∞-dimensional subspace of c0 is isomorphic to c0.

I More generally, for Γ of arbitrary cardinality, every complemented subspace
of c0(Γ) is isomorphic to c0(∆) for some ∆ ⊆ Γ (Granero, 1998).

I Every complemented, ∞-dimensional subspace of C [0, ωω] is isomorphic
to either c0 or C [0, ωω] (Benyamini, Israel J. Math. 1978).

I `∞ is prime (Lindenstrauss, Israel J. Math. 1967).

Long-standing conjecture: Every complemented subspace of a C(K)-space is
isomorphic to a C(K)-space (not necessarily for the same K).

This conjecture has recently been disproved by Plebanek and Salguero Alarcón:

Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an
uncountable, almost disjoint family A ⊆ [N]ω such that C0(KA) contains a
complemented subspace which is not isomorphic to any C(K)-space.

The conjecture is still open for separable C(K)-spaces.
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Further results: Extensions and some questions of Koszmider

Theorem (Plebanek and Salguero Alarcón, preprint 2021).
There exists an uncountable, almost disjoint family A ⊆ [N]ω admitting an
extension

{0} // c0 // C0(KA) // X // {0},

in which the Banach space is not isomorphic to a C(K)-space.

Theorem (Cabello Sánchez, Castillo, Marciszewski, Plebanek and Salguero
Alarcón, JFA 2020, assuming MA and ¬CH).
Let A,B ⊆ [N]ω be uncountable, almost disjoint families with |A| = |B| < c.
Then

C0(KA) ∼= C0(KB) and C0(KA) ∼= C0(KA)⊕ C0(KA).

Theorem (Cabello Sánchez, Castillo, Marciszewski, Plebanek and Salguero
Alarcón, JFA 2020, building on Marciszewski and Pol, JMMA 2009).
There are 2c non-isomorphic Banach spaces of the form C0(KA), where
A ⊆ [N]ω is an almost disjoint family of cardinality c.
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Background: The CCKY conjecture about extensions involving C (K )-spaces

Cabello Sánchez, Castillo, Kalton and Yost (TAMS 2003) studied extensions of
the form

{0} // C(K) // Y // X // {0}

for separable Banach spaces X and either K = [0, 1] or K = [0, ωω].

They also raised an important question in the non-separable case, motivated by
Sobczyk’s Theorem:

CCKY Question: Let K be a non-metrizable, compact Hausdorff space.
Is it possible that every extension of the form

{0} // c0 // X // C(K) // {0}

splits in the category of Banach spaces?

Conjecture: No!
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Resolution of the CCKY conjecture

Theorem (Marciszewski and Plebanek, JFA 2018, assuming MA and ¬CH).
Let A ⊆ [N]ω be an uncountable, almost disjoint family with |A| < c. Then
every extension of the form

{0} // c0 // X // C0(KA) // {0}

splits in the category of Banach spaces.

Theorem (Avilés, Marciszewski and Plebanek, Adv. Math. 2020, assuming CH).
For every non-metrizable compact Hausdorff space K , there is an extension of
the form

{0} // c0 // X // C(K) // {0}

which does not split in the category of Banach spaces.
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Any questions?
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My motivation: Which operators must exist on an ∞-dimensional Banach
space?

Let X be a Banach space over the scalar field K = R or K = C, and consider
the Banach algebra

B(X ) = {T : X → X : T bounded and linear︸ ︷︷ ︸
“an operator”

}.

Question: How “small” can B(X ) be?
We always have the identity operator Id.
Hahn–Banach ensures there are “many” finite-rank operators.
However, the ideal of finite-rank operators,

F (X ) = {T ∈ B(X ) : dimT [X ] <∞},
is never closed when X is ∞-dimensional.
Theorem. The following 3 conditions are equivalent for a Banach space X :
I F (X ) is closed;
I F (X ) = B(X );
I dimX <∞.

Moreover, when n := dimX <∞, B(X ) ∼= Mn(K), which is simple.

A generalization of the latter fact to arbitrary dimensions: Every non-zero ideal
of B(X ) contains F (X ).
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Banach spaces admitting “few operators”

Question: Is it possible that an ∞-dimensional Banach space X admits no
other operators, so that

B(X ) = K Id + F (X )?

Theorem (Argyros–Haydon, Acta Math. 2011). Yes!

There is a Banach space XAH which has “very few operators”:

B(XAH) = K Id + K (XAH).

Moreover, XAH has a Schauder basis, so that K (XAH) = F (XAH),
and X ∗AH

∼= `1.
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Key ingredients in the construction of the Argyros–Haydon space

This result was the culmination of a long sequence of constructions of “exotic”
Banach spaces initiated by Tsirelson’s construction of a Banach space that
does not contain c0 or `p for 1 6 p <∞ (Funct. Anal. Appl. 1972).

Other key contributions:
I Bourgain and Delbaen found a completely new approach to constructing

preduals of `1 (Acta Math. 1980).

I Schlumprecht modified Tsirelson’s construction to obtain an arbitrarily
distortable Banach space (Israel J. Math. 1991).

I Gowers and Maurey modified Schlumprecht’s contruction to obtain a
hereditarily indecomposable Banach space X (JAMS 1993).
This implies that X admits “few operators” in the sense that

B(X ) = C Id + S (X ),

where S (X ) is the ideal of strictly singular operators.

Definition. An operator S : X → Y is strictly singular if the restriction of
S to any ∞-dimensional subspace of X is not an isomorphic embedding.

In other words, for every ε > 0, every ∞-dimensional subspace of X
contains a unit vector x such that ‖Sx‖ < ε.
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Banach spaces admitting “few operators” within a particular class

Earliest (?) example:

Theorem (Shelah, Israel J. Math. 1978, assuming ♦).
There is a non-separable Banach space X such that

B(X ) = K Id + X (X ),

where X (X ) = {T ∈ B(X ) : T [X ] is separable}.

Further results:
I Shelah and Steprāns (PAMS 1988): example within ZFC.
I Wark (JLMS 2001): reflexive example.
I Wark (Studia Math. 2018): uniformly convex example.

Connection with our topic: C(K)-spaces with few operators.
Note: The results I shall discuss are of an isomorphic nature, so in this context
a “C(K)-space” can be any Banach space which is isomorphic to C(K) for a
compact Hausdorff space K .
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What does it mean that a C (K )-space has “few operators”?

Theorem (Pełczyński, Bull. Acad. Pol. Sci. 1965).
The following 3 conditions are equivalent for an operator T : C(K)→ X ,
where K is a compact Hausdorff space and X is a Banach space:
I T is weakly compact;
I T is strictly singular;
I T does not fix a copy of c0.

Terminology. An operator T : C(K)→ X fixes a copy of c0 if there is an
operator R : c0 → C(K) such that TR is an isomorphic embedding.

Remark (Koszmider–L, 2021). The “few operator” results of Gowers–Maurey
and Argyros–Haydon have no direct analogues for C(K)-spaces because

dim
B(C(K))

W (C(K))
=∞

whenever K is infinite.
In fact B(C(K))/W (C(K)) is non-separable.
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Koszmider’s first C (K )-space with few operators: weak multiplications

Starting point. Every C(K)-space admits multiplication operators:

Mf : g 7→ fg , C(K)→ C(K),

where f ∈ C(K).

Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl.
2004, within ZFC). There is an infinite compact Hausdorff space K such that

B(C(K)) = {Mf : f ∈ C(K)}+ W (C(K)).

Note: C(K) is a Grothendieck space, that is, every weak*-convergent
sequence in C(K)∗ converges weakly.

Consequence: C(K) does not contain any complemented subspaces isomorphic
to c0.
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Koszmider’s second C (K )-space with few operators: the Mrówka space

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider–L, Adv. Math.
2021, within ZFC).
There is an uncountable, almost disjoint family A ⊆ [N]ω such that

B(C0(KA)) = K Id + X (C0(KA)).

I shall outline the proof of this result in tomorrow’s lecture.
Note: It is an exact analogue of Shelah’s space among C(K)-spaces.
Remarks. Let A ⊆ [N]ω be an almost disjoint family. Then:
I C0(KA) contains a complemented copy of c0, so it is not a Grothendieck

space.
I C0(KA) ∼= C(αKA), where αKA is the one-point compactification of KA.

Proof. Write C0(KA) ∼= X ⊕ c0 for some Banach space X . Then

C(αKA) ∼= C0(KA)⊕K ∼= X ⊕ c0 ⊕K ∼= X ⊕ c0 ∼= C0(KA). 2

In particular, C0(KA) is isomorphic to a C(K)-space.
I Every separable subspace of C0(KA) is contained in a subspace isomorphic

to c0, so

X (C0(KA)) =
{
C0(KA)

S−→ c0
T−→ C0(KA) : S ∈ B(C0(KA), c0),

T ∈ B(c0,C0(KA))
}

=: Gc0(C0(KA)).
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Fundamental facts about the Mrówka space KA

Let A ⊆ [N]ω be an almost disjoint family.
I The standard representation of KA:

KA = {xn : n ∈ N} ∪ {yA : A ∈ A},

where xn is isolated for every n ∈ N, and xn −→
A3n→∞

yA for every A ∈ A.
More precisely, the sets

U(A,F ) = {xn : n ∈ A \ F} ∪ {yA}, where F ∈ [N]<ω,

form a neighbourhood basis at yA.
I KA is compact if and only if A and N \

⋃
A are both finite.

I {xn : n ∈ N} is the set of isolated points of KA.
It is dense in KA, so KA is separable. Hence

KA metrizable ⇐⇒ KA second countable ⇐⇒ A countable.

I The subspace KA \ {xn : n ∈ N} = {yA : A ∈ A} is closed and discrete.
I Consequence: KA is scattered; that is, every non-empty subset L contains

a relatively isolated point.
Proof. (i) L contains a relatively isolated point if xn ∈ L for some n ∈ N.
(ii) Suppose that yA ∈ L is not isolated in L for some A ∈ A. Then xn ∈ L
for infinitely many n ∈ A, so (i) applies. 2
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Fundamental facts about C0(KA)

Recall: the locally compact Hausdorff space KA is scattered. This has a
number of important consequences for the Banach space C0(KA).

I C0(KA) is an Asplund space.
That is, every separable subspace of C0(KA) has separable dual.

I Rudin’s Theorem: C0(KA)∗ ∼= `1(KA).

Consequence: For T ∈ B(C0(KA)), f ∈ C0(KA) and s ∈ KA,

T (f )(s) = 〈T (f ), δs〉 = 〈f ,T ∗(δs)〉 =
∑
t∈KA

T ∗(δs)({t})f (t),

where δs ∈ C0(KA)∗ is the point evaluation at s.

We think of
(
T ∗(δs)({t})

)
s,t∈KA

as a “matrix representation” of T .

I LPP Theorem (Lotz–Peck–Porta, Proc. Edinb. Math. Soc. 1979).
C0(KA) is saturated with complemented copies of c0.

That is, every closed, ∞-dimensional subspace of C0(KA) contains a
subspace which is isomorphic to c0 and complemented in C0(KA).
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Complemented and uncomplemented copies of c0 in C0(KA)

Let A ⊆ [N]ω be an almost disjoint family.

If A is countable, then C0(KA) is separable.
Then Sobczyk’s Theorem implies that all copies of c0 are complemented.

Suppose A is uncountable. Then:
I The canonical copy of c0 is not complemented in XA ∼= C0(KA).

I More generally, suppose that T ∈ B(C0(KA)) satisfies T1{xn} = 0 for
every n ∈ N. Then A contains a subset A′ of the same cardinality as A
such that T1U(A,F ) = 0 for every A ∈ A′ and F ∈ [N]<ω. (Horváth–L,
work in progress).

I On the other hand, it is easy to construct a complemented copy of c0 in
C0(KA).

25



Constructing a complemented copy of c0 in C0(KA)

Let A ⊆ [N]ω be an almost disjoint family.

Take A = {a1 < a2 < · · · } ∈ A.
Define Uen = 1{xan} for each n ∈ N, where (en) is the standard basis for c0.

Extend by linearity and continuity to a linear isometry U : c0 → C0(KA).

Define Vf =
(
f (xan )− f (yA)

)
n∈N for each f ∈ C0(KA).

Note: Vf ∈ c0 because xan → yA as n→∞.

Hence V : C0(KA)→ c0.

Clearly V is linear and bounded with norm 2.

For k ∈ N,

VUek =
(
1{xak }(xan )− 1{xak }(yA)

)
n∈N = (δk,n)n∈N = ek ,

so VU = Idc0 .

Therefore UV ∈ B(C0(KA)) is a projection onto a subspace isomorphic to c0.
2
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Consequences of the main theorem: Self-maps and decompositions

Recall:

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider–L, Adv. Math.
2021, within ZFC).
There is an uncountable, almost disjoint family A ⊆ [N]ω such that

B(C0(KA)) = K Id + X (C0(KA)). (∗)

In the next few slides, we assume that A ⊆ [N]ω is an uncountable, almost
disjoint family such that (∗) is satisfied. We shall say that “A admits few
operators”.

Theorem. (Koszmider–L). Let φ : KA → KA be a continuous self-map. Then:
I either φ has countable range,
I or φ fixes all but countably many points of KA.

Theorem (Koszmider 2005). C0(KA) has no non-trivial decompositions. More
precisely, suppose that C0(KA) = X ⊕ Y for some closed, ∞-dimensional
subspaces X and Y . Then X ∼= C0(KA) and Y ∼= c0, or vice versa.
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Proof: C0(KA) has no non-trivial decompositions

Proof. Let P ∈ B(C0(KA)) be a projection with

P[C0(KA)] = X and kerP = Y , where dimX = dimY =∞.

By (∗), P = λ Id +S , where λ ∈ K and S ∈ X (C0(KA)]).
Then

λ Id +S = P = P2 = λ2 Id +2λS + S2,

so
(λ− λ2) Id = (2λ− 1)S + S2 ∈ X (C0(KA)).

Hence λ2 = λ, that is, λ = 0 or λ = 1.

Suppose that λ = 0, so X = P[C0(KA)] is separable.

Then X is contained in a subspace isomorphic to c0, and obviously
complemented in it.

Hence, by a theorem of Pełczyński, X ∼= c0.

By the LPP Theorem, we have Y ∼= c0 ⊕ Z for some subspace Z . Hence

C0(KA) = X ⊕ Y ∼= c0 ⊕ c0 ⊕ Z ∼= c0 ⊕ Z ∼= Y .

The proof for λ = 1 is similar, just with X and Y switching roles. 2
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Consequences of main theorem: Closed ideal structure

Theorem. (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished).
Let A ⊆ [N]ω be an uncountable, almost disjoint family which admits few
operators. Then B(C0(KA)) contains exactly four closed ideals:

{0} ⊂ K (C0(KA)) ⊂ X (C0(KA)) ⊂ B(C0(KA)).

Proof.
I C(K)-spaces have the AP, so K (C0(KA)) = F (C0(KA)) is the smallest

non-zero closed ideal of B(C0(KA)).
I K (X ) ⊆ X (X ) for all Banach spaces X .
I Take a projection P ∈ B(C0(KA)) with P[C0(KA)] ∼= c0. Then

P ∈ X (C0(KA)) \K (C0(KA)).

I X (C0(KA)) is proper because C0(KA) is non-separable. Hence it has
codimension 1 in B(C0(KA)) by hypotehsis, so X (C0(KA)) is maximal.

I It remains to show that X (C0(KA)) is contained in the ideal generated by
any non-compact T ∈ B(C0(KA)).

This will follow from the fact that Idc0 factors through T .
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Proof: Kania–Kochanek’s ideal classification (continued)

Aim: To show that Idc0 factors through every non-compact op. on C0(KA).

First step: K (C0(KA)) = W (C0(KA)).

Proof. Since C0(KA)∗ ∼= `1(KA), it has the Schur property, so

T ∈ K (C0(KA)) ⇐⇒ T ∗ ∈ K (C0(KA)∗) (Schauder’s Thm)

⇐⇒ T ∗ ∈ W (C0(KA)∗) (Schur property)

⇐⇒ T ∈ W (C0(KA)) (Gantmacher’s Thm)

⇐⇒ T does not fix c0 (Pełczyński’s Thm). 2

Hence, for T ∈ B(C0(KA)) \K (C0(KA)), we can find R : c0 → C0(KA) such
that TR is an isomorphic embedding.

Then TR[C0(KA)] is closed and ∞-dimensional.

By the LPP Theorem: TR[C0(KA)] contains a subspace Z such that:
I there is an isomorphism U : c0 → Z ;
I there is a projection P : C0(KA)→ Z .

Let W = (TR)−1[Z ] ⊆ c0.

The restriction of TR to W is an isomorphism onto Z , with inverse S : Z →W .

Conclusion: Idc0 = (U−1P)T (RJWSU), where JW : W → c0 is the inclusion. 2
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Consequences of main theorem: The existence of a character

Let A ⊆ [N]ω be an uncountable, almost disjoint family such that

B(C0(KA)) = K Id + X (C0(KA)). (∗)

Then the ideal X (C0(KA)) has codimension 1 in B(C0(KA)).

Such ideals play a special role in the theory of Banach algebras.

Definition. Let B be a Banach algebra. A non-zero algebra homomorphism
(= a non-zero multiplicative linear functional) ϕ : B → K is a character.

Remarks. Let ϕ : B → K be a character. Then:
I ϕ is continuous.
I kerϕ is a closed, maximal ideal of codimension 1 in B.
I Conversely, suppose that I is a closed ideal of codimension 1 in B. Then

B/I ∼= K,

and so the quotient map induces a character on B.
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Characters on B(X )

Characters on B(X ) are “unusual” due to following result:

Theorem. Let X be a Banach space which contains a complemented subspace
isomorphic to X ⊕ X . Then B(X ) has no closed ideals of finite codimension,
and therefore no characters.

However, characters are known to exist on B(X ) in a number of cases:
I X = Jp (the pth quasi-reflexive James space) for 1 < p <∞

(Berkson–Porta, JFA 1969; Edelstein–Mityagin, Funct. Anal. Appl. 1970).
I X = C [0, ω1] (Edelstein–Mityagin, Funct. Anal. Appl. 1970; implicit in

Semadeni, Bull. Acad. Pol. Sci. 1960).
I X being any of the previously described “few operator” spaces of

Argyros–Haydon, Gowers–Maurey, Shelah, Steprāns, Wark.

Remark. Let ψ : B(XAH)→ K be the character, where XAH is the Banach
space of Argyros–Haydon. Then

kerψ = F (XAH)

is as small as it can be.
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Consequences of the main theorem:
A character on B(C (K )) with smallest possible kernel

Let A ⊆ [N]ω be an uncountable, almost disjoint family which admits few
operators, and recall that B(C0(KA)) admits a character ϕ with

kerϕ = X (C0(KA)) = Gc0(C0(KA))

=
{
C0(KA)

S−→ c0
T−→ C0(KA) : S ∈ B(C0(KA), c0), T ∈ B(c0,C0(KA))

}
.

Analogous to the Argyros–Haydon space, this is the smallest the kernel of a
character can be in the context of C(K)-spaces. More precisely, we have:

Theorem (Koszmider–L). Let K be an infinite compact Hausdorff space such
that B(C(K)) admits a character ψ : B(C(K))→ K. Then

Gc0(C(K)) ⊆ kerψ.

Corollary. B(C0(KA)) admits only one character.
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Proof of the theorem

Set-up: K is an infinite compact Hausdorff space and ψ : B(C(K))→ K is a
character. We seek to prove that

Gc0(C(K)) ⊆ kerψ.

Take S ∈ Gc0(C(K)). We consider two cases:

Case 1: C(K) is a Grothendieck space. Then:
I Diestel (1972): S is weakly compact because it has separable range.
I Pełczyński: S is strictly singular.
I L (Proc. Edinb. Math. Soc. 2002): S belongs to every maximal ideal of

B(C(K)).
I Hence S ∈ kerψ.

Case 2: C(K) is not a Grothendieck space. Then:
I Schachermayer (Diss. Math. 1982): There is a projection P ∈ B(C(K))

with P[C(K)] ∼= c0.
I B(c0) admits no characters, so ψ(P) = 0.
I Write S = TPR for some R,T ∈ B(C(K)). Then

ψ(S) = ψ(T )ψ(P)ψ(R) = 0. 2
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To be continued tomorrow. . .

Thank you!
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