Stopping-time spaces and their operators

Tomasz Kania

IM UJ / MU AV ČR

Workshop on Banach spaces and Banach lattices II, ICMAT (Madrid) joint work with R. Lechner (Linz), arXiv:2112.12534

1

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ○ Q ○

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X. Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940): $X \cong Y$ as Banach spaces $\iff B(X) \cong B(Y)$ as rings

 $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

・ロト・4 団ト・4 国ト・4 国・ つへ(?)

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $X \cong Y$ as Banach spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as rings $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

0 → ℋ(ℓ₂) → ℬ(ℓ₂) (Calkin).
other classical spaces:
0 → ℋ(X) → ℬ(X), where X = c₀ or X = ℓ_p for p ∈ [1,∞).
0 → ℋ(X) → ℋ^ℵ₀(X) → ℋ^ℵ₁(X) → ... → ℬ(X), where X = c₀(Γ) or X = ℓ_p(Γ) for p ∈ [1,∞) and any set Γ; 𝔅^λ(X) ideal of ops having range of density at most λ.

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $X \cong Y$ as Banach spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as rings $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

0 → ℋ(ℓ₂) → ℬ(ℓ₂) (Calkin).
other classical spaces:
0 → ℋ(X) → ℬ(X), where X = c₀ or X = ℓ_p for p ∈ [1,∞).
0 → ℋ(X) → ℋ^N₀(X) → ℋ^N₁(X) → ... → ℬ(X), where X = c₀(Γ) or X = ℓ_p(Γ) for p ∈ [1,∞) and any set Γ; ℋ^λ(X) ideal of ops having range of density at most λ.
c₀- and ℓ₁-sums of ℓⁿ₂ as n → ∞ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $X \cong Y$ as Banach spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as rings $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

0 ↔ 𝔅(ℓ₂) ↔ 𝔅(ℓ₂) (Calkin).
other classical spaces:
0 ↔ 𝔅(𝔅) ↔ 𝔅(𝔅), where 𝔅 = 𝔅₀ or 𝔅 = ℓ_p for 𝑘 ∈ [1,∞).
0 ↔ 𝔅(𝔅) ↔ 𝔅^𝔅₀(𝔅) ↔ 𝔅^𝔅¹(𝔅) ↔ ... ↔ 𝔅(𝔅), where 𝔅 = 𝔅₀(Γ) or 𝔅 = ℓ_p(Γ) for 𝑘 ∈ [1,∞) and any set Γ; 𝔅^𝔅(𝔅) ideal of ops having range of density at most 𝔅.
𝔅₀- and ℓ₁-sums of ℓⁿ₂ as 𝑘 → ∞ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).
Koszmider's 𝔅(𝔅)-space from an AD family that exists under CH + a recent new ZFC construction by Koszmider-Laustsen.

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $X \cong Y$ as Banach spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as rings $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin).
- other classical spaces:
 - ▶ 0 $\hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.
 - $\blacktriangleright \ 0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$
 - where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .
 - ► c_0 and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).
- Koszmider's C(K)-space from an AD family that exists under CH + a recent new ZFC construction by Koszmider–Laustsen.
- Argyros-Haydon's scalar-plus-compact space, sums of finitely many incomparable copies thereof, some variants due to Tarbard and further variants (Motakis-Puglisi-Zisimopoulou, Motakis, and more).

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem in the light of Eidelheit's thm (1940):

 $X \cong Y$ as Banach spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as rings $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin).
- other classical spaces:
 - $0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.
 - $\blacktriangleright 0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$
 - where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .
 - ► c_0 and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).
- Koszmider's C(K)-space from an AD family that exists under CH + a recent new ZFC construction by Koszmider–Laustsen.
- Argyros-Haydon's scalar-plus-compact space, sums of finitely many incomparable copies thereof, some variants due to Tarbard and further variants (Motakis-Puglisi-Zisimopoulou, Motakis, and more).
- ► $Z = X_{AH} \oplus$ suitably constructed subspace (K.-Laustsen),

A perspective.

< ロ > < 団 > < 三 > < 三 > < 三 < の <

Maximal ideals

A perspective.

 $\mathfrak{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\checkmark}{\searrow} \frac{\mathcal{M}_1 \searrow}{\mathcal{M}_2} \mathcal{B}(Z)$$

▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ○ Q ○

Maximal ideals

A perspective.

 $\mathcal{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\nearrow}{\searrow} \frac{\mathcal{M}_{1} \searrow}{\mathcal{M}_{2}} \mathcal{B}(Z)$$

This behaviour is rather rare.

$$\mathcal{M}_X = \{T \in \mathcal{B}(X) \colon I_X \neq ATB \ (A, B \in \mathcal{B}(X))\}$$

is the **unique** maximal ideal of $\mathcal{B}(X) \iff \mathcal{M}_X$ closed under addition.

< ロ > < 団 > < 三 > < 三 > < 三 > < ○

Maximal ideals

A perspective.

 $\mathcal{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\nearrow}{\searrow} \frac{\mathcal{M}_1 \searrow}{\mathcal{M}_2} \mathcal{B}(Z)$$

This behaviour is rather rare.

$$\mathfrak{M}_X = \{T \in \mathfrak{B}(X) \colon I_X \neq ATB \ (A, B \in \mathfrak{B}(X))\}$$

is the **unique** maximal ideal of $\mathcal{B}(X) \iff \mathcal{M}_X$ closed under addition.

- c₀, ℓ_p (here p = ∞ is included, btw. ℓ_∞ ≃ L_∞);
 L_p[0,1] for p ∈ [1,∞].
 c₀(Γ), ℓ_p(Γ) for p ∈ [1,∞)
 ℓ_∞/c₀, ℓ^c_∞(Γ) for any set Γ (but not every L_∞(μ) is in this class!)
 c₀- and ℓ_p-sums of ℓⁿ₂s or ℓⁿ_∞s as well as more general sums.
 Lorentz sequence spaces determined by a decreasing, non-summable sequence and p ∈ [1,∞).
- certain Orlicz spaces.
- $C[0,1], C[0,\omega^{\omega}], C[0,\omega_1]$, and the list goes on.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A shameless advertisement: IWOTA2022 in Kraków, September 6-10, 2022 iwota2022.urk.edu.pl

UAK / IWOTA2022 / Announcement

IWOTA 2022 KRAKÓW, SEPTEMBER 6-10, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

 \mathcal{A}

Second Announcement

Since the COVID situation is improving, we hope that the pandemic will not disrupt IWOTA 2022, and we plan a fully on-site conference.

Below we give some useful information concerning the conference.

» REGISTRATION

The registration is now open. A regular registration will close on **May 31**, **2022**. Once you have filled in the above registration form, please pay

You may be interested in the panel session in Special Session *Operator ideals and operators on Banach spaces* run by Niels Laustsen, Kevin Beanland, and I.

4

L¹[0,1] and C[0,1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.

- L¹[0,1] and C[0,1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.
- Rosenthal introduced in an unpublished manuscript an analogue of L¹[0, 1], the space S¹ that admits an unconditional basis.

- L¹[0,1] and C[0,1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.
- Rosenthal introduced in an unpublished manuscript an analogue of L¹[0, 1], the space S¹ that admits an unconditional basis.

(S^1 is an analogue of $L^1(\Delta)$, where $\Delta = \{-1, 1\}^{\mathbb{N}}$ is endowed with the Haar measure, the product of coin-toss measures on $\{-1, 1\}$; this space is isometric to $L^1[0, 1]$, though.)

- L¹[0, 1] and C[0, 1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.
- Rosenthal introduced in an unpublished manuscript an analogue of L¹[0, 1], the space S¹ that admits an unconditional basis.

(S^1 is an analogue of $L^1(\Delta)$, where $\Delta = \{-1, 1\}^{\mathbb{N}}$ is endowed with the Haar measure, the product of coin-toss measures on $\{-1, 1\}$; this space is isometric to $L^1[0, 1]$, though.)

• S^1 naturally comes in tandem with a space denoted by B, which is a space with an unconditional basis that resembles in many ways $C(\Delta)$.

- L¹[0,1] and C[0,1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.
- Rosenthal introduced in an unpublished manuscript an analogue of L¹[0, 1], the space S¹ that admits an unconditional basis.

(S^1 is an analogue of $L^1(\Delta)$, where $\Delta = \{-1, 1\}^{\mathbb{N}}$ is endowed with the Haar measure, the product of coin-toss measures on $\{-1, 1\}$; this space is isometric to $L^1[0, 1]$, though.)

- ► S^1 naturally comes in tandem with a space denoted by B, which is a space with an unconditional basis that resembles in many ways $C(\Delta)$.
- Buehler considered the space S² that may be viewed as a certain convexification of S¹ and proved that ℓ^p does not embed therein for p ∈ [1,2).
- ▶ S^2 is a member of a broader scale of spaces S^p ($p \in [1, \infty)$). Schechtman:
 - S^1 contains isometric copies of ℓ^p for all $p \in [1, \infty)$,
 - S^p $(p \in [1,\infty))$ contains isometric copies of ℓ^q for $q \ge p$.

- \blacktriangleright $L^1[0,1]$ and C[0,1] do not have an unconditional Schauder basis; neither space embeds into a space with an u.b.
- Rosenthal introduced in an unpublished manuscript an analogue of $L^{1}[0, 1]$, the space S^{1} that admits an unconditional basis.

(S^1 is an analogue of $L^1(\Delta)$, where $\Delta = \{-1, 1\}^{\mathbb{N}}$ is endowed with the Haar measure, the product of coin-toss measures on $\{-1, 1\}$; this space is isometric to $L^{1}[0, 1]$, though.)

- \triangleright S¹ naturally comes in tandem with a space denoted by *B*, which is a space with an unconditional basis that resembles in many ways $C(\Delta)$.
- Buehler considered the space S^2 that may be viewed as a certain convexification of S^1 and proved that ℓ^p does not embed therein for $p \in [1, 2).$
- ▶ S^2 is a member of a broader scale of spaces S^p ($p \in [1, \infty)$). Schechtman:

 - S¹ contains isometric copies of l^p for all p ∈ [1,∞),
 S^p (p ∈ [1,∞)) contains isometric copies of l^q for q ≥ p.
- \triangleright S¹ contains isomorphic copies Orlicz sequence spaces ℓ^M for a rather wide class of Orlicz functions M.

▲□▶ ▲□▶ ▲ = ▶ ▲ = • ○ Q @

S¹ is complementably homogeneous: every isomorphic copy of S¹ in S¹ contains a further copy of S¹ that is complemented in S¹;

6

S¹ is complementably homogeneous: every isomorphic copy of S¹ in S¹ contains a further copy of S¹ that is complemented in S¹;

6

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ● ● ● ● ● ● ●

• if $T: X \to S^1$ fixes a copy of S^1 , then I_{S^1} factors through $T: I_{S^1} = ATB$ for some $A: S^1 \to X$ and $B: X \to S^1$;

- S¹ is complementably homogeneous: every isomorphic copy of S¹ in S¹ contains a further copy of S¹ that is complemented in S¹;
- if $T: X \to S^1$ fixes a copy of S^1 , then I_{S^1} factors through $T: I_{S^1} = ATB$ for some $A: S^1 \to X$ and $B: X \to S^1$;
- If S¹ is isomorphic to the ℓ¹-sum of a sequence of Banach spaces, then at least one summand is isomorphic to S¹—in particular, S¹ is primary.

6

- S¹ is complementably homogeneous: every isomorphic copy of S¹ in S¹ contains a further copy of S¹ that is complemented in S¹;
- if $T: X \to S^1$ fixes a copy of S^1 , then I_{S^1} factors through $T: I_{S^1} = ATB$ for some $A: S^1 \to X$ and $B: X \to S^1$;
- If S¹ is isomorphic to the ℓ¹-sum of a sequence of Banach spaces, then at least one summand is isomorphic to S¹—in particular, S¹ is primary.

The above results provide yet another example of resemblance between S^1 and L^1 as Enflo & Starbird proved that I_{L^1} factors through every operator $T: L^1 \to L^1$ that fixes a copy of L^1 .

▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ○ Q ○

A stochastic process (X_n)[∞]_{n=0} on (Ω, 𝔅, P) is 𝔽-adapted, whenever X_n is 𝔅_n measurable (n ∈ ℕ).

- A stochastic process (X_n)[∞]_{n=0} on (Ω, 𝔅, P) is 𝔽-adapted, whenever X_n is 𝔅_n measurable (n ∈ ℕ).
- A stopping time is an N ∪ {∞}-valued random variable T on (Ω, 𝔅, P) s.t. for each n, we have [T = n] ∈ 𝔅_n. 𝔅 denotes the family of all stopping times on (Ω, 𝔅, P) w.r.t. 𝔅.

- A stochastic process (X_n)[∞]_{n=0} on (Ω, 𝔅, P) is 𝔽-adapted, whenever X_n is 𝔅_n measurable (n ∈ ℕ).
- A stopping time is an N ∪ {∞}-valued random variable T on (Ω, 𝔅, P) s.t. for each n, we have [T = n] ∈ 𝔅_n. 𝔅 denotes the family of all stopping times on (Ω, 𝔅, P) w.r.t. 𝔅.
- ► $S^p_{\mathbb{F}}$ $(p \in [1, \infty))$ is the completion of the space of all eventually null *p*-integrable processes $X = (X_n)_{n=0}^{\infty}$ w.r.t.

$$\|X\|_{S^{p}_{\mathbb{F}}} = (\sup_{T \in \mathcal{T}} \mathsf{E}|X_{T}|^{p})^{1/p}.$$
 (1)

- A stochastic process (X_n)[∞]_{n=0} on (Ω, 𝔅, P) is 𝔽-adapted, whenever X_n is 𝔅_n measurable (n ∈ ℕ).
- A stopping time is an N ∪ {∞}-valued random variable T on (Ω, 𝔅, P) s.t. for each n, we have [T = n] ∈ 𝔅_n. 𝔅 denotes the family of all stopping times on (Ω, 𝔅, P) w.r.t. 𝔅.
- ▶ $S^p_{\mathbb{F}}$ ($p \in [1, \infty)$) is the completion of the space of all eventually null *p*-integrable processes $X = (X_n)_{n=0}^{\infty}$ w.r.t.

$$\|X\|_{S^p_{\mathbb{F}}} = (\sup_{T \in \mathcal{T}} \mathsf{E}|X_T|^p)^{1/p}. \tag{1}$$

• Let
$$\mathcal{F}_n = \sigma\{\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]: 1 \leq j \leq 2^n\}, \mathbb{F}_d = (\mathcal{F}_n)_{n=0}^{\infty}.$$

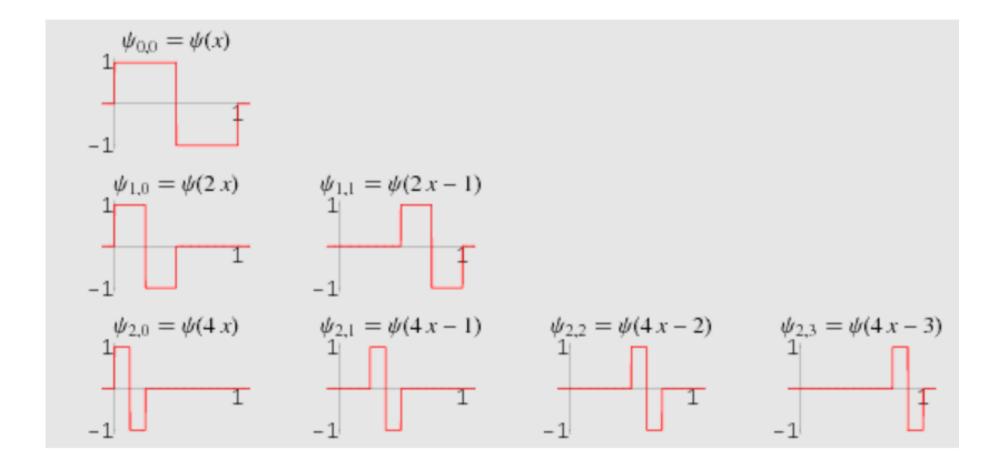
- A stochastic process (X_n)[∞]_{n=0} on (Ω, 𝔅, P) is 𝔽-adapted, whenever X_n is 𝔅_n measurable (n ∈ ℕ).
- A stopping time is an N ∪ {∞}-valued random variable T on (Ω, 𝔅, P) s.t. for each n, we have [T = n] ∈ 𝔅_n. 𝔅 denotes the family of all stopping times on (Ω, 𝔅, P) w.r.t. 𝔅.
- ▶ $S^p_{\mathbb{F}}$ ($p \in [1, \infty)$) is the completion of the space of all eventually null *p*-integrable processes $X = (X_n)_{n=0}^{\infty}$ w.r.t.

$$\|X\|_{S^p_{\mathbb{F}}} = (\sup_{T \in \mathcal{T}} \mathsf{E}|X_T|^p)^{1/p}. \tag{1}$$

• Let
$$\mathcal{F}_n = \sigma\{\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]: 1 \leq j \leq 2^n\}, \mathbb{F}_d = (\mathcal{F}_n)_{n=0}^{\infty}.$$

In a sense only the 'dyadic-tree filtration' is useful.

Haar/Rademacher functions



< ロ > < 団 > < 三 > < 三 > < 三 > < ○ < ○

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

B may be viewed as the space with a minimal 1-unconditional basis that dominates the Haar basis in C(Δ).

It is the completion $c_{00}(2^{<\omega})$ (span of $\{h_t : t \in 2^{<\omega}\}$ in $C(\Delta)$) w.r.t.

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\Big\|\sum_{t\in 2^{<\omega}} a_t\varepsilon_t h_t\Big\|_{C(\Delta)} \colon t\in 2^{<\omega}, |\varepsilon_t|=1\Big\}.$$

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

B may be viewed as the space with a minimal 1-unconditional basis that dominates the Haar basis in C(Δ).
It is the main of the

It is the completion $c_{00}(2^{<\omega})$ (span of $\{h_t: t \in 2^{<\omega}\}$ in $C(\Delta)$) w.r.t.

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\Big\|\sum_{t\in 2^{<\omega}}a_t\varepsilon_th_t\Big\|_{C(\Delta)}\colon t\in 2^{<\omega}, |\varepsilon_t|=1\Big\}.$$

 \blacktriangleright The norm in *B* may be isometrically realised as

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\sum_{t\in \mathcal{A}} |a_t| : \mathcal{A} \text{ is a branch of } 2^{<\omega}\Big\}.$$

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

B may be viewed as the space with a minimal 1-unconditional basis that dominates the Haar basis in C(Δ).

It is the completion $c_{00}(2^{<\omega})$ (span of $\{h_t : t \in 2^{<\omega}\}$ in $C(\Delta)$) w.r.t.

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\Big\|\sum_{t\in 2^{<\omega}}a_t\varepsilon_th_t\Big\|_{C(\Delta)}\colon t\in 2^{<\omega}, |\varepsilon_t|=1\Big\}.$$

► The norm in *B* may be isometrically realised as

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\sum_{t\in \mathcal{A}} |a_t| \colon \mathcal{A} \text{ is a branch of } 2^{<\omega}\Big\}.$$

▶ The norm in S^p $(p \in [1,\infty))$ can be realised as

$$\|((a_t)_{t\in 2^{<\omega}}\|_{S^p}=\sup\Big\{(\sum_{s\in\mathcal{A}}|a_s|^p)^{1/p}\colon\mathcal{A}\subset 2^{<\omega}\ ext{ is an antichain}\Big\}.$$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 • • ○ へ ⊙

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

B may be viewed as the space with a minimal 1-unconditional basis that dominates the Haar basis in C(Δ).

It is the completion $c_{00}(2^{<\omega})$ (span of $\{h_t: t \in 2^{<\omega}\}$ in $C(\Delta)$) w.r.t.

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\Big\|\sum_{t\in 2^{<\omega}}a_t\varepsilon_th_t\Big\|_{C(\Delta)}\colon t\in 2^{<\omega}, |\varepsilon_t|=1\Big\}.$$

▶ The norm in *B* may be isometrically realised as

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\sum_{t\in\mathcal{A}} |a_t| \colon \mathcal{A} \text{ is a branch of } 2^{<\omega}\Big\}.$$

▶ The norm in S^p $(p \in [1,\infty))$ can be realised as

$$\|((a_t)_{t\in 2^{<\omega}}\|_{S^p}=\sup\Big\{(\sum_{s\in\mathcal{A}}|a_s|^p)^{1/p}\colon\mathcal{A}\subset 2^{<\omega}\ \text{ is an antichain}\Big\}.$$

▶ The standard u.v.b. $(e_t)_{t \in 2^{<\omega}}$ of c_{00} is then a 1-unconditional basis of S^p .

<□> <□> <□> <=> <=> <=> <=> <=> <=> <</p>

Stopping time spaces – the tree approach

 $2^{<\omega}$: the binary tree, which indexes the Haar basis $(h_t)_{t \in 2^{<\omega}}$ of $C(\Delta)$.

B may be viewed as the space with a minimal 1-unconditional basis that dominates the Haar basis in C(Δ).
It is the space of C(Δ).

It is the completion $c_{00}(2^{<\omega})$ (span of $\{h_t : t \in 2^{<\omega}\}$ in $C(\Delta)$) w.r.t.

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\Big\|\sum_{t\in 2^{<\omega}}a_t\varepsilon_th_t\Big\|_{C(\Delta)}\colon t\in 2^{<\omega}, |\varepsilon_t|=1\Big\}.$$

▶ The norm in *B* may be isometrically realised as

$$\|(a_t)_{t\in 2^{<\omega}}\|_B = \sup\Big\{\sum_{t\in\mathcal{A}} |a_t| \colon \mathcal{A} \text{ is a branch of } 2^{<\omega}\Big\}.$$

▶ The norm in S^p ($p \in [1, \infty)$) can be realised as

$$\|((a_t)_{t\in 2^{<\omega}}\|_{S^p} = \sup\Big\{(\sum_{s\in\mathcal{A}} |a_s|^p)^{1/p} \colon \mathcal{A}\subset 2^{<\omega} \text{ is an antichain}\Big\}.$$

- The standard u.v.b. $(e_t)_{t \in 2^{<\omega}}$ of c_{00} is then a 1-unconditional basis of S^p .
- ► If $(e_t^*)_{t \in 2^{<\omega}}$ denotes the coordinate functionals associated to $(e_t)_{t \in 2^{<\omega}}$, then *B* may be viewed as a subspace of $D = (S^1)^*_{\Box}$ spanned by $(e_t^*)_{t \in 2^{<\omega}}$.

Let E be a space with a 1-subsymmetric Schauder basis.

- For $\mathcal{A} \subseteq 2^{<\omega}$, let $P_{\mathcal{A}}$ denote the projection on \mathcal{A} .
- S^E and B^E as completions of c₀₀ with respect to the norms of (a_t)_{t∈2^{≤ω}} ∈ c₀₀(2^{≤ω}):

$$\begin{aligned} \|(a_t)_{t\in 2^{<\omega}}\|_{S^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is an antichain} \Big\}, \\ \|(a_t)_{t\in 2^{<\omega}}\|_{B^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is a branch} \Big\}, \end{aligned}$$

Let E be a space with a 1-subsymmetric Schauder basis.

- For $\mathcal{A} \subseteq 2^{<\omega}$, let $P_{\mathcal{A}}$ denote the projection on \mathcal{A} .
- ► S^E and B^E as completions of c_{00} with respect to the norms of $(a_t)_{t \in 2^{<\omega}} \in c_{00}(2^{<\omega})$:

$$\begin{aligned} \|(a_t)_{t\in 2^{<\omega}}\|_{S^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is an antichain} \Big\}, \\ \|(a_t)_{t\in 2^{<\omega}}\|_{B^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is a branch} \Big\}, \end{aligned}$$

- ► B^{ℓ^1} corresponds to *B*. We put $D^E = (S^E)^*$.
- For a space E with a 1-subsymmetric basis indexed by 2^{<ω} we denote by
 (e_t)_{t∈2^{<ω}} the standard Schauder basis in S^E or B^E,

Let E be a space with a 1-subsymmetric Schauder basis.

- For $\mathcal{A} \subseteq 2^{<\omega}$, let $P_{\mathcal{A}}$ denote the projection on \mathcal{A} .
- S^E and B^E as completions of c₀₀ with respect to the norms of (a_t)_{t∈2^{≤ω}} ∈ c₀₀(2^{≤ω}):

$$\begin{aligned} \|(a_t)_{t\in 2^{<\omega}}\|_{S^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is an antichain} \Big\}, \\ \|(a_t)_{t\in 2^{<\omega}}\|_{B^E} &= \sup \Big\{ \|P_{\mathcal{A}}(a_t)_{t\in 2^{<\omega}}\|_E \colon \mathcal{A} \subset 2^{<\omega} \text{ is a branch} \Big\}, \end{aligned}$$

- B^{ℓ^1} corresponds to B. We put $D^E = (S^E)^*$. • For a space E with a 1 subsymmetric basis indexed by
- For a space E with a 1-subsymmetric basis indexed by 2^{<ω} we denote by
 (e_t)_{t∈2^{<ω}} the standard Schauder basis in S^E or B^E,
 - $(f_t)_{t \in 2 \le \omega}$ the coordinate functionals in X^* for $X = S^E$ or $X = B^E$.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$: \blacktriangleright is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ $(\gamma_1, \gamma_2 \in \Gamma)$.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

► is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ ($\gamma_1, \gamma_2 \in \Gamma$).

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$: \blacktriangleright is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ $(\gamma_1, \gamma_2 \in \Gamma)$.

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

• If $Y = X^*$ ($\sigma(X, X^*)$) is the weak topology), by Mazur's weak basis theorem, we recover the usual notion of a *Schauder basis*.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

► is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ ($\gamma_1, \gamma_2 \in \Gamma$).

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

- If Y = X^{*} (σ(X, X^{*}) is the weak topology), by Mazur's weak basis theorem, we recover the usual notion of a Schauder basis.
- For the weak* topology $\sigma(X^*, X)$, we talk about weak* Schauder bases.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

► is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ ($\gamma_1, \gamma_2 \in \Gamma$).

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

- If Y = X^{*} (σ(X, X^{*}) is the weak topology), by Mazur's weak basis theorem, we recover the usual notion of a Schauder basis.
- For the weak* topology $\sigma(X^*, X)$, we talk about weak* Schauder bases.
- ► $(x_n)_{n=1}^{\infty}$ is *C*-dominated by $(\xi_n)_{n=1}^{\infty}$ if for all scalar sequences $(a_n)_{n=1}^{\infty}$

$$\sum_{n=1}^{\infty} a_n x_n \text{ converges whenever } \sum_{n=1}^{\infty} a_n \xi_n \text{ converges}$$

and for all $(a_n)_{n=1}^{\infty}$ s.t. $\sum_{n=1}^{\infty} a_n \xi_n$ converges w.r.t $\sigma(X, Y)$ we have

$$\left\|\sum_{n=1}^{\infty}a_nx_n\right\|\leqslant C\left\|\sum_{n=1}^{\infty}a_n\xi_n\right\|.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

► is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ ($\gamma_1, \gamma_2 \in \Gamma$).

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

- If Y = X^{*} (σ(X, X^{*}) is the weak topology), by Mazur's weak basis theorem, we recover the usual notion of a Schauder basis.
- For the weak* topology $\sigma(X^*, X)$, we talk about weak* Schauder bases.
- ► $(x_n)_{n=1}^{\infty}$ is *C*-dominated by $(\xi_n)_{n=1}^{\infty}$ if for all scalar sequences $(a_n)_{n=1}^{\infty}$

$$\sum_{n=1}^{\infty} a_n x_n \text{ converges whenever } \sum_{n=1}^{\infty} a_n \xi_n \text{ converges}$$

and for all $(a_n)_{n=1}^{\infty}$ s.t. $\sum_{n=1}^{\infty} a_n \xi_n$ converges w.r.t $\sigma(X, Y)$ we have

$$\left\|\sum_{n=1}^{\infty}a_nx_n\right\|\leqslant C\left\|\sum_{n=1}^{\infty}a_n\xi_n\right\|.$$

▶ If $(x_n)_{n=1}^{\infty}$ is *C*-dominated by $(\xi_n)_{n=1}^{\infty}$ and $(\xi_n)_{n=1}^{\infty}$ is *C*-dominated by $(x_n)_{n=1}^{\infty}$, then we say that $(x_n)_{n=1}^{\infty}$ is *C*-equivalent to $(\xi_n)_{n=1}^{\infty}$.

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. $((e_{\gamma}, f_{\gamma}))_{\gamma \in \Gamma}$ in $X \times Y$:

► is *biorthogonal*, whenever $\langle e_{\gamma_1}, f_{\gamma_2} \rangle = \delta_{\gamma_1, \gamma_2}$ ($\gamma_1, \gamma_2 \in \Gamma$).

Bases. $(e_n)_{n=1}^{\infty}$ is a *basis of X w.r.t.* $\sigma(X, Y)$, whenever for every $x \in X$ there exists a unique scalar sequence $(a_n)_{n=1}^{\infty}$ s.t. $x = \sum_{n=1}^{\infty} a_n e_n$, in $\sigma(X, Y)$.

- If Y = X^{*} (σ(X, X^{*}) is the weak topology), by Mazur's weak basis theorem, we recover the usual notion of a Schauder basis.
- For the weak* topology $\sigma(X^*, X)$, we talk about weak* Schauder bases.
- ► $(x_n)_{n=1}^{\infty}$ is *C*-dominated by $(\xi_n)_{n=1}^{\infty}$ if for all scalar sequences $(a_n)_{n=1}^{\infty}$

$$\sum_{n=1}^{\infty} a_n x_n \text{ converges whenever } \sum_{n=1}^{\infty} a_n \xi_n \text{ converges}$$

and for all $(a_n)_{n=1}^{\infty}$ s.t. $\sum_{n=1}^{\infty} a_n \xi_n$ converges w.r.t $\sigma(X, Y)$ we have

$$\left\|\sum_{n=1}^{\infty}a_nx_n\right\|\leqslant C\left\|\sum_{n=1}^{\infty}a_n\xi_n\right\|.$$

▶ If $(x_n)_{n=1}^{\infty}$ is *C*-dominated by $(\xi_n)_{n=1}^{\infty}$ and $(\xi_n)_{n=1}^{\infty}$ is *C*-dominated by $(x_n)_{n=1}^{\infty}$, then we say that $(x_n)_{n=1}^{\infty}$ is *C*-equivalent to $(\xi_n)_{n=1}^{\infty}$.

Let *E* be a space with a normalised basis indexed by $2^{<\omega}$, say $(e_t)_{t\in 2^{<\omega}}$. Then $(e_t)_{t\in 2^{<\omega}}$ is

► 1-unconditional, whenever for all finitely supported sequences of scalars (a_t)_{t∈2}<∞ and (γ_t)_{t∈2}<∞ one has</p>

$$\left\|\sum_{t\in 2^{<\omega}}\gamma_t a_t e_t\right\|_E \leqslant \sup_{t\in 2^{<\omega}}|\gamma_t| \left\|\sum_{t\in 2^{<\omega}}a_t e_t\right\|_E.$$

Let *E* be a space with a normalised basis indexed by $2^{<\omega}$, say $(e_t)_{t \in 2^{<\omega}}$. Then $(e_t)_{t \in 2^{<\omega}}$ is

► 1-unconditional, whenever for all finitely supported sequences of scalars (a_t)_{t∈2}<∞ and (γ_t)_{t∈2}<∞ one has</p>

$$\left\|\sum_{t\in 2^{<\omega}}\gamma_t a_t e_t\right\|_E \leqslant \sup_{t\in 2^{<\omega}}|\gamma_t| \left\|\sum_{t\in 2^{<\omega}}a_t e_t\right\|_E$$

► 1-spreading, if (e_t)_{t∈2<∞} is 1-equivalent to each of its increasing subsequences (with respect to the standard linear order), *i.e.*, if for all finitely supported sequences of scalars (a_t)_{t∈2}<∞</p>

$$\left\|\sum_{t\in 2^{<\omega}}a_te_t\right\|_E=\left\|\sum_{t\in 2^{<\omega}}a_te_{s_t}\right\|_E,$$

where $(s_t)_{t \in 2^{<\omega}}$ is such that $s_{t_1} < s_{t_2}$ if $t_1 < t_2$.

Let *E* be a space with a normalised basis indexed by $2^{<\omega}$, say $(e_t)_{t \in 2^{<\omega}}$. Then $(e_t)_{t \in 2^{<\omega}}$ is

► 1-unconditional, whenever for all finitely supported sequences of scalars (a_t)_{t∈2}<∞ and (γ_t)_{t∈2}<∞ one has</p>

$$\left\|\sum_{t\in 2^{<\omega}}\gamma_t a_t e_t\right\|_E \leqslant \sup_{t\in 2^{<\omega}}|\gamma_t| \left\|\sum_{t\in 2^{<\omega}}a_t e_t\right\|_E$$

► 1-spreading, if (e_t)_{t∈2<∞} is 1-equivalent to each of its increasing subsequences (with respect to the standard linear order), *i.e.*, if for all finitely supported sequences of scalars (a_t)_{t∈2}<∞</p>

$$\left\|\sum_{t\in 2^{<\omega}}a_te_t\right\|_E=\left\|\sum_{t\in 2^{<\omega}}a_te_{s_t}\right\|_E,$$

where $(s_t)_{t \in 2^{<\omega}}$ is such that $s_{t_1} < s_{t_2}$ if $t_1 < t_2$.

1-subsymmetric if it is 1-unconditional as well as 1-spreading.

Let *E* be a Banach space with a normalised basis $(e_n)_{n=1}^{\infty}$.

Let *E* be a Banach space with a normalised basis $(e_n)_{n=1}^{\infty}$.

It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).
- ► We derive positive answer for spaces such as BMO, SL[∞], ℓ^p(ℓ^q), and other. (BMO, SL[∞] are defined in terms of Haar functions.)

Let *E* be a Banach space with a normalised basis $(e_n)_{n=1}^{\infty}$.

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).
- ► We derive positive answer for spaces such as BMO, SL[∞], ℓ^p(ℓ^q), and other. (BMO, SL[∞] are defined in terms of Haar functions.)

Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. A system $((e_n, f_n))_{n \in \mathbb{N}} \subset X \times Y$

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).
- ► We derive positive answer for spaces such as BMO, SL[∞], ℓ^p(ℓ^q), and other. (BMO, SL[∞] are defined in terms of Haar functions.)
- Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. A system $((e_n, f_n))_{n \in \mathbb{N}} \subset X \times Y$
 - ▶ has the *positive factorisation property* (in $X \times Y$), whenever for every $T \in \mathcal{B}(X)$ with $\inf_n \langle Te_n, f_n \rangle > 0$ one has $T \notin \mathcal{M}_X$.

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).
- ► We derive positive answer for spaces such as BMO, SL[∞], ℓ^p(ℓ^q), and other. (BMO, SL[∞] are defined in terms of Haar functions.)
- Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. A system $((e_n, f_n))_{n \in \mathbb{N}} \subset X \times Y$
 - ▶ has the *positive factorisation property* (in $X \times Y$), whenever for every $T \in \mathcal{B}(X)$ with $\inf_n \langle Te_n, f_n \rangle > 0$ one has $T \notin \mathcal{M}_X$.
 - ▶ is almost annihilating for a set $\mathcal{A} \subset \mathcal{B}(X)$, if for $T \in \mathcal{A}$ and $\eta > 0$ there are $(x_n)_{n=1}^{\infty}$ in X and $(y_n)_{n=1}^{\infty}$ in Y, respectively, such that

- It is tempting to speculate that for an operator T ∈ B(E), the condition inf_n |⟨Te_n, e^{*}_n⟩| > 0 is a sufficient condition for factoring the identity, *i.e.*, I_E = ATB for some A, B ∈ B(E).
- Using Gowers' space with an unconditional basis, one can construct a counterexample (Laustsen–Lechner–Müller).
- ► We derive positive answer for spaces such as BMO, SL[∞], ℓ^p(ℓ^q), and other. (BMO, SL[∞] are defined in terms of Haar functions.)
- Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of B. spaces. A system $((e_n, f_n))_{n \in \mathbb{N}} \subset X \times Y$
 - ▶ has the *positive factorisation property* (in $X \times Y$), whenever for every $T \in \mathcal{B}(X)$ with $\inf_n \langle Te_n, f_n \rangle > 0$ one has $T \notin \mathcal{M}_X$.
 - ▶ is almost annihilating for a set $\mathcal{A} \subset \mathcal{B}(X)$, if for $T \in \mathcal{A}$ and $\eta > 0$ there are $(x_n)_{n=1}^{\infty}$ in X and $(y_n)_{n=1}^{\infty}$ in Y, respectively, such that
 - (i) $(x_n)_{n=1}^{\infty}$ is dominated by $(e_n)_{n=1}^{\infty}$;
 - (ii) $(y_n)_{n=1}^{\infty}$ is dominated by $(f_n)_{n=1}^{\infty}$;
 - (iii) $\inf_{n\in\mathbb{N}}\langle x_n, y_n\rangle \ge 1;$
 - (iv) $\sup_{n\in\mathbb{N}}\langle Tx_n, y_n\rangle \leqslant \eta$.

Theorem. Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of Banach spaces. Suppose that

- $(e_n)_{n=1}^{\infty}$ be a basis for X w.r.t. the $\sigma(X, Y)$ topology,
- ► $(f_n)_{n=1}^{\infty}$ be a basis for space Y w.r.t. the $\sigma(Y, X)$ topology,
- there is c > 0 s.t.

$$c\|x\| \leq \sup_{\|y\| \leq 1} \langle x, y \rangle \leq \|x\|$$
 $(x \in X).$ (2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

lf

▶ $((e_n, f_n))_{n=1}^{\infty}$ almost annihilates

 $\mathcal{M}_{X} = \{ T \colon I \neq ATB \ (A, B \in \mathcal{B}(X)) \}$

has the positive factorisation property then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Proof

- ▶ Let $0 < \eta < 1$, $S \in \mathcal{M}_X$, $T \in \mathcal{B}(X)$ and $S + T \notin \mathcal{M}_X$.
- ▶ Then there are $A, B \in \mathcal{B}(X)$ s.t. $I_X = B(S + T)A$.
- Since BSA must be in M_X and ((e_n, f_n))[∞]_{n=1} is almost annihilating for M_X, we can find sequences (x_n)[∞]_{n=1} in X dominated by (e_n)[∞]_{n=1} and (y_n)[∞]_{n=1} in Y dominated by (f_n)[∞]_{n=1} s.t.

$$\langle x_n, y_n \rangle \geqslant 1$$
 and $\langle BSAx_n, y_n \rangle \leqslant \eta$ $(n \in \mathbb{N}).$

►
$$1 \leq \langle x_n, y_n \rangle = \langle B(S+T)Ax_n, y_n \rangle \leq \eta + \langle BTAx_ny_n \rangle$$
 $(n \in \mathbb{N}).$

• We set $L: X \to X$ and $R: Y \to Y$ as the linear extensions of

$$Le_n = x_n$$
 and $Rf_n = y_n$ $(n \in \mathbb{N}).$

Next, put $U = R^*BTAL$, where R^* denotes the unique operator such that $\langle R^*x, y \rangle = \langle x, Ry \rangle$ for all $x \in X$, $y \in Y$; $R^* \in \mathcal{B}(X)$ and

$$\inf_{n} \langle Ue_n, f_n \rangle = \inf_{n} \langle BTAx_n, y_n \rangle \ge 1 - \eta > 0.$$

((e_n, f_n))[∞]_{n=1} has the positive factorisation prop. so U ∉ M_X, so T ∉ M_X.
 M_X is closed under addition (hence the unique maximal ideal of B(X)).

First applicable main result

Theorem Let $(X, Y, \langle \cdot, \cdot \rangle)$ be a dual pair of Banach spaces. Suppose that

- $(e_n)_{n=1}^{\infty}$ is a basis of X with respect to the topology $\sigma(X, Y)$,
- $(f_n)_{n=1}^{\infty}$ is a basis of Y with respect to the topology $\sigma(Y, X)$,
- the system $((e_n, f_n))_{n=1}^{\infty}$ is biorthogonal,
- there exists c > 0 such that

$$c\|x\| \leq \sup_{\|y\| \leq 1} \langle x, y \rangle \leq \|x\|$$
 ($x \in X$), (3)

- $((e_n, f_n))_{n=1}^{\infty}$ is strategically supporting,
- ▶ $((e_n, f_n))_{n=1}^{\infty}$ has the positive factorisation property.

Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Strategic reproducibility

X is either S^E or B^E with basis $(e_s)_{s \in 2^{<\omega}}$ and coordinate functionals $(e_s^*)_{s \in 2^{<\omega}}$.

Definition Let $C \ge 1$ and consider the following two-player game $\operatorname{Rep}_{(X,(e_s))}(C)$. For $t \in 2^{<\omega}$, turn t is played out in three steps.

- 1. Player (I) chooses $\eta_t > 0$, $W_t \in cof(X)$, and $G_t \in cof_{w^*}(X^*)$,
- 2. Player (II) chooses a finite subset E_t of $2^{<\omega}$ and sequences of non-negative real numbers $(\lambda_s^{(t)})_{s \in E_t}$, $(\mu_s^{(t)})_{s \in E_t}$ satisfying $\sum_{s \in E_t} \lambda_s^{(t)} \mu_s^{(t)} = 1$.
- 3. Player (I) chooses $(\varepsilon_s^{(t)})_{s \in E_t}$ in $\{-1, 1\}^{E_t}$.

Player (II) has a winning strategy in $\operatorname{Rep}_{(X,(e_s))}(C)$ if he can force the following properties on the result: For all $t \in 2^{<\omega}$ setting:

$$b_t = \sum_{s \in E_t} \varepsilon_s^{(t)} \lambda_s^{(t)} e_s$$
 and $b_t^* = \sum_{s \in E_t} \varepsilon_s^{(t)} \mu_s^{(t)} e_s^*$

(i) the sequences $(b_t)_{t\in 2^{<\omega}}$ and $(e_t)_{t\in 2^{<\omega}}$ are $(1/\sqrt{C},\sqrt{C})$ -equivalent,

- (ii) the sequences $(b_t^*)_{t\in 2^{<\omega}}$ and $(e_t^*)_{t\in 2^{<\omega}}$ are $(1/\sqrt{C},\sqrt{C})$ -equivalent,
- (iii) for all $t \in \mathbb{N}$ we have $\operatorname{dist}(b_t, W_t) < \eta_t$, and

(iv) for all $t \in \mathbb{N}$ we have $\operatorname{dist}(b_t^*, G_t) < \eta_t$.

 $(e_s)_{s \in 2^{<\omega}}$ is *C*-strategically reproducible in X if for every $\eta > 0$ player II has a winning strategy in the game $\operatorname{Rep}_{(X,(e_s))}(C + \eta)$.

Hard work

Thm 1. $(e_t)_{t \in 2^{<\omega}}$ is 1-strategically reproducible both in S^E and B^E .

Thm 2. If $1 \leq p, p' \leq \infty$, $1 < q, q' < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$, then $((e_{ij}, f_{ij}): i, j \in \mathbb{N})$ has the positive factorisation property in $\ell^{p}(\ell^{q}) \times \ell^{p'}(\ell^{q'})$.

Thm 3. Let $1 \leq p, q \leq \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$. Then $((e_{ij}, f_{ij}): i, j \in \mathbb{N})$ is strategically supporting in $\ell^p(\ell^q) \times \ell^{p'}(\ell^{q'})$.

Cor. Let $1 \leq p \leq \infty$ and $1 < q < \infty$. Then $\mathcal{M}_{\ell^p(\ell^q)}$ is the unique closed proper maximal ideal of $\mathcal{B}(\ell^p(\ell^q))$.

Third main theorem Let X be any Banach space and let E denote a space with a normalised 1-subsymmetric Schauder basis. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$ in the following cases:

- $\blacktriangleright X = S^E, X = B^E;$
- $X = \ell^p(S^E)$ or $X = \ell^p(B^E)$, $1 \leq p \leq \infty$;
- ► $X = D^E = (S^E)^*$, whenever the 1-subsymmetric Schauder basis of *E* is incomparably non-*c*₀ on antichains.

Consequently, the spaces $\ell^{p}(S^{E})$, $\ell^{p}(B^{E})$ $(1 \leq p \leq \infty)$ are primary.