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Overview

B(X ) the Banach algebra of all bdd ops on a B. space X .

Goal: to understand the lattice of closed ideals (∼= representations) of B(X ).

This is an isomorphic problem in the light of Eidelheit’s thm (1940):
X ∼= Y as Banach spaces ⇐⇒ B(X ) ∼= B(Y ) as rings

⇐⇒ B(X ) ∼= B(Y ) as B. algebras.

Full classification exists for:
▶ 0 ↪→ K(ℓ2) ↪→ B(ℓ2) (Calkin).

▶ other classical spaces:

▶ 0 ↪→ K(X ) ↪→ B(X ), where X = c0 or X = ℓp for p ∈ [1,∞).
▶ 0 ↪→ K(X ) ↪→ Xℵ0 (X ) ↪→ Xℵ1 (X ) ↪→ . . . ↪→ B(X ),

where X = c0(Γ) or X = ℓp(Γ) for p ∈ [1,∞) and any set Γ;
Xλ(X ) ideal of ops having range of density at most λ.

▶ c0- and ℓ1-sums of ℓn2 as n → ∞
(Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák).

▶ Koszmider’s C(K)-space from an AD family that exists under CH
+ a recent new ZFC construction by Koszmider–Laustsen.

▶ Argyros–Haydon’s scalar-plus-compact space, sums of finitely many
incomparable copies thereof, some variants due to Tarbard and further
variants (Motakis–Puglisi–Zisimopoulou, Motakis, and more).

▶ Z = XAH⊕ suitably constructed subspace (K.–Laustsen).
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Maximal ideals

A perspective.

B(Z) has precisely two maximal ideals.

0 ↪→ K(Z) ↪→ E(Z) ↪→↪→
M1

M2

↪→
↪→B(Z)

This behaviour is rather rare.

MX = {T ∈ B(X ) : IX ̸= ATB (A,B ∈ B(X ))}

is the unique maximal ideal of B(X ) ⇐⇒ MX closed under addition.

▶ c0, ℓp (here p = ∞ is included, btw. ℓ∞ ∼= L∞);
▶ Lp[0, 1] for p ∈ [1,∞].
▶ c0(Γ), ℓp(Γ) for p ∈ [1,∞)
▶ ℓ∞/c0, ℓc∞(Γ) for any set Γ (but not every L∞(µ) is in this class!)
▶ c0- and ℓp-sums of ℓn2s or ℓn∞s as well as more general sums.
▶ Lorentz sequence spaces

determined by a decreasing, non-summable sequence and p ∈ [1,∞).
▶ certain Orlicz spaces.
▶ C [0, 1],C [0, ωω],C [0, ω1], and the list goes on.
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A shameless advertisement: IWOTA2022 in Kraków, September 6-10, 2022
iwota2022.urk.edu.pl

You may be interested in the panel session in Special Session Operator ideals
and operators on Banach spaces run by Niels Laustsen, Kevin Beanland, and I.
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Stopping-time spaces

▶ L1[0, 1] and C [0, 1] do not have an unconditional Schauder basis; neither
space embeds into a space with an u.b.

▶ Rosenthal introduced in an unpublished manuscript an analogue of
L1[0, 1], the space S1 that admits an unconditional basis.
(S1 is an analogue of L1(∆), where ∆ = {−1, 1}N is endowed with the Haar measure, the product of

coin-toss measures on {−1, 1}; this space is isometric to L1 [0, 1], though.)

▶ S1 naturally comes in tandem with a space denoted by B, which is a space
with an unconditional basis that resembles in many ways C(∆).

▶ Buehler considered the space S2 that may be viewed as a certain
convexification of S1 and proved that ℓp does not embed therein for
p ∈ [1, 2).

▶ S2 is a member of a broader scale of spaces Sp (p ∈ [1,∞)).
Schechtman:
▶ S1 contains isometric copies of ℓp for all p ∈ [1,∞),
▶ Sp (p ∈ [1,∞)) contains isometric copies of ℓq for q ⩾ p.

▶ S1 contains isomorphic copies Orlicz sequence spaces ℓM for a rather wide
class of Orlicz functions M.
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What’s known?

Apatsidis studied operators from a space X with an unconditional basis into S1

and proved, among other things, that:

▶ S1 is complementably homogeneous: every isomorphic copy of S1 in S1

contains a further copy of S1 that is complemented in S1;
▶ if T : X → S1 fixes a copy of S1, then IS1 factors through T :

IS1 = ATB for some A : S1 → X and B : X → S1;
▶ if S1 is isomorphic to the ℓ1-sum of a sequence of Banach spaces, then at
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Stopping time spaces

(Ω,F,P) a probability space and F = (Fn)
∞
n=0 a fixed filtration in F.

▶ A stochastic process (Xn)
∞
n=0 on (Ω,F,P) is F-adapted, whenever Xn is Fn

measurable (n ∈ N).
▶ A stopping time is an N ∪ {∞}-valued random variable T on (Ω,F,P) s.t.

for each n, we have [T = n] ∈ Fn. T denotes the family of all stopping
times on (Ω,F,P) w.r.t. F.

▶ Sp
F (p ∈ [1,∞)) is the completion of the space of all eventually null

p-integrable processes X = (Xn)
∞
n=0 w.r.t.

∥X∥Sp
F
= (sup

T∈T

E|XT |p)1/p. (1)

▶ Let Fn = σ{[ j−1
2n , j

2n ] : 1 ⩽ j ⩽ 2n}, Fd = (Fn)
∞
n=0.

In a sense only the ‘dyadic-tree filtration’ is useful.
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Haar/Rademacher functions
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Stopping time spaces – the tree approach

2<ω: the binary tree, which indexes the Haar basis (ht)t∈2<ω of C(∆).

▶ B may be viewed as the space with a minimal 1-unconditional basis that
dominates the Haar basis in C(∆).
It is the completion c00(2

<ω) (span of {ht : t ∈ 2<ω} in C(∆)) w.r.t.

∥(at)t∈2<ω∥B = sup
{∥∥ ∑

t∈2<ω

atεtht
∥∥
C(∆)

: t ∈ 2<ω, |εt | = 1
}
.

▶ The norm in B may be isometrically realised as

∥(at)t∈2<ω∥B = sup
{∑

t∈A

|at | : A is a branch of 2<ω
}
.

▶ The norm in Sp (p ∈ [1,∞)) can be realised as

∥((at)t∈2<ω∥Sp = sup
{
(
∑
s∈A

|as |p)1/p : A ⊂ 2<ω is an antichain
}
.

▶ The standard u.v.b. (et)t∈2<ω of c00 is then a 1-unconditional basis of Sp.
▶ If (e∗t )t∈2<ω denotes the coordinate functionals associated to (et)t∈2<ω ,

then B may be viewed as a subspace of D = (S1)∗ spanned by (e∗t )t∈2<ω .
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General case

Let E be a space with a 1-subsymmetric Schauder basis.
▶ For A ⊆ 2<ω, let PA denote the projection on A.
▶ SE and BE as completions of c00 with respect to the norms of

(at)t∈2<ω ∈ c00(2
<ω):

∥(at)t∈2<ω∥SE = sup
{
∥PA(at)t∈2<ω∥E : A ⊂ 2<ω is an antichain

}
,

∥(at)t∈2<ω∥BE = sup
{
∥PA(at)t∈2<ω∥E : A ⊂ 2<ω is a branch

}
,

▶ Bℓ1 corresponds to B. We put DE = (SE )∗.
▶ For a space E with a 1-subsymmetric basis indexed by 2<ω we denote by

▶ (et)t∈2<ω the standard Schauder basis in SE or BE ,
▶ (ft)t∈2<ω the coordinate functionals in X∗ for X = SE or X = BE .
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A recap on bases

Let (X ,Y , ⟨·, ·⟩) be a dual pair of B. spaces. ((eγ , fγ))γ∈Γ in X × Y :

▶ is biorthogonal, whenever ⟨eγ1 , fγ2⟩ = δγ1,γ2 (γ1, γ2 ∈ Γ).

Bases. (en)∞n=1 is a basis of X w.r.t. σ(X ,Y ), whenever for every x ∈ X there
exists a unique scalar sequence (an)

∞
n=1 s.t. x =

∑∞
n=1 anen, in σ(X ,Y ).

▶ If Y = X ∗ (σ(X ,X ∗) is the weak topology), by Mazur’s weak basis
theorem, we recover the usual notion of a Schauder basis.

▶ For the weak* topology σ(X ∗,X ), we talk about weak* Schauder bases.
▶ (xn)

∞
n=1 is C -dominated by (ξn)

∞
n=1 if for all scalar sequences (an)

∞
n=1

∞∑
n=1

anxn converges whenever
∞∑
n=1

anξn converges

and for all (an)∞n=1 s.t.
∑∞

n=1 anξn converges w.r.t σ(X ,Y ) we have∥∥∥ ∞∑
n=1

anxn
∥∥∥ ⩽ C

∥∥∥ ∞∑
n=1

anξn
∥∥∥.

▶ If (xn)∞n=1 is C -dominated by (ξn)
∞
n=1 and (ξn)

∞
n=1 is C -dominated by

(xn)
∞
n=1, then we say that (xn)

∞
n=1 is C -equivalent to (ξn)

∞
n=1.
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Bases, ctd.

Let E be a space with a normalised basis indexed by 2<ω, say (et)t∈2<ω . Then
(et)t∈2<ω is
▶ 1-unconditional, whenever for all finitely supported sequences of scalars

(at)t∈2<ω and (γt)t∈2<ω one has∥∥∥ ∑
t∈2<ω

γtatet
∥∥∥
E
⩽ sup

t∈2<ω

|γt |
∥∥∥ ∑

t∈2<ω

atet
∥∥∥
E
.

▶ 1-spreading, if (et)t∈2<ω is 1-equivalent to each of its increasing
subsequences (with respect to the standard linear order), i.e., if for all
finitely supported sequences of scalars (at)t∈2<ω∥∥∥ ∑

t∈2<ω

atet
∥∥∥
E
=

∥∥∥ ∑
t∈2<ω

atest

∥∥∥
E
,

where (st)t∈2<ω is such that st1 < st2 if t1 < t2.
▶ 1-subsymmetric if it is 1-unconditional as well as 1-spreading.
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Factoring the identity

Let E be a Banach space with a normalised basis (en)
∞
n=1.

▶ It is tempting to speculate that for an operator T ∈ B(E), the condition
infn |⟨Ten, e∗n ⟩| > 0 is a sufficient condition for factoring the identity, i.e.,
IE = ATB for some A,B ∈ B(E).

▶ Using Gowers’ space with an unconditional basis, one can construct a
counterexample (Laustsen–Lechner–Müller).

▶ We derive positive answer for spaces such as BMO, SL∞, ℓp(ℓq), and
other. (BMO, SL∞ are defined in terms of Haar functions.)

Let (X ,Y , ⟨·, ·⟩) be a dual pair of B. spaces. A system ((en, fn))n∈N ⊂ X × Y

▶ has the positive factorisation property (in X × Y ), whenever for every
T ∈ B(X ) with infn⟨Ten, fn⟩ > 0 one has T /∈ MX .

▶ is almost annihilating for a set A ⊂ B(X ), if for T ∈ A and η > 0 there
are (xn)

∞
n=1 in X and (yn)

∞
n=1 in Y , respectively, such that

(i) (xn)∞n=1 is dominated by (en)∞n=1;
(ii) (yn)∞n=1 is dominated by (fn)∞n=1;
(iii) infn∈N⟨xn, yn⟩ ⩾ 1;
(iv) supn∈N⟨Txn, yn⟩ ⩽ η.
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First general result

Theorem. Let (X ,Y , ⟨·, ·⟩) be a dual pair of Banach spaces. Suppose that
▶ (en)

∞
n=1 be a basis for X w.r.t. the σ(X ,Y ) topology,

▶ (fn)
∞
n=1 be a basis for space Y w.r.t. the σ(Y ,X ) topology,

▶ there is c > 0 s.t.

c∥x∥ ⩽ sup
∥y∥⩽1

⟨x , y⟩ ⩽ ∥x∥ (x ∈ X ). (2)

If
▶ ((en, fn))

∞
n=1 almost annihilates

MX = {T : I ̸= ATB (A,B ∈ B(X ))

▶ has the positive factorisation property

then MX is the unique maximal ideal of B(X ).
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Proof

▶ Let 0 < η < 1, S ∈ MX , T ∈ B(X ) and S + T /∈ MX .
▶ Then there are A,B ∈ B(X ) s.t. IX = B(S + T )A.
▶ Since BSA must be in MX and ((en, fn))

∞
n=1 is almost annihilating for MX ,

we can find sequences (xn)
∞
n=1 in X dominated by (en)

∞
n=1 and (yn)

∞
n=1 in

Y dominated by (fn)
∞
n=1 s.t.

⟨xn, yn⟩ ⩾ 1 and ⟨BSAxn, yn⟩ ⩽ η (n ∈ N).

▶ 1 ⩽ ⟨xn, yn⟩ = ⟨B(S + T )Axn, yn⟩ ⩽ η + ⟨BTAxnyn⟩ (n ∈ N).
▶ We set L : X → X and R : Y → Y as the linear extensions of

Len = xn and Rfn = yn (n ∈ N).

▶ Next, put U = R∗BTAL, where R∗ denotes the unique operator such that
⟨R∗x , y⟩ = ⟨x ,Ry⟩ for all x ∈ X , y ∈ Y ; R∗ ∈ B(X ) and

inf
n
⟨Uen, fn⟩ = inf

n
⟨BTAxn, yn⟩ ⩾ 1 − η > 0.

▶ ((en, fn))
∞
n=1 has the positive factorisation prop. so U /∈ MX , so T /∈ MX .

▶ MX is closed under addition (hence the unique maximal ideal of B(X )).
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First applicable main result

Theorem Let (X ,Y , ⟨·, ·⟩) be a dual pair of Banach spaces. Suppose that
▶ (en)

∞
n=1 is a basis of X with respect to the topology σ(X ,Y ),

▶ (fn)
∞
n=1 is a basis of Y with respect to the topology σ(Y ,X ),

▶ the system ((en, fn))
∞
n=1 is biorthogonal,

▶ there exists c > 0 such that

c∥x∥ ⩽ sup
∥y∥⩽1

⟨x , y⟩ ⩽ ∥x∥ (x ∈ X ), (3)

▶ ((en, fn))
∞
n=1 is strategically supporting,

▶ ((en, fn))
∞
n=1 has the positive factorisation property.

Then MX is the unique maximal ideal of B(X ).
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Strategic reproducibility

X is either SE or BE with basis (es)s∈2<ω and coordinate functionals (e∗s )s∈2<ω .

Definition Let C ⩾ 1 and consider the following two-player game
Rep(X ,(es ))

(C). For t ∈ 2<ω, turn t is played out in three steps.
1. Player (I) chooses ηt > 0, Wt ∈ cof(X ), and Gt ∈ cofw∗ (X∗),

2. Player (II) chooses a finite subset Et of 2<ω and sequences of non-negative real
numbers (λ

(t)
s )s∈Et , (µ

(t)
s )s∈Et satisfying

∑
s∈Et

λ
(t)
s µ

(t)
s = 1.

3. Player (I) chooses (ε
(t)
s )s∈Et in {−1, 1}Et .

Player (II) has a winning strategy in Rep(X ,(es ))
(C) if he can force the following

properties on the result: For all t ∈ 2<ω setting:

bt =
∑
s∈Et

ε
(t)
s λ

(t)
s es and b∗t =

∑
s∈Et

ε
(t)
s µ

(t)
s e∗s

(i) the sequences (bt)t∈2<ω and (et)t∈2<ω are (1/
√
C ,

√
C)-equivalent,

(ii) the sequences (b∗t )t∈2<ω and (e∗t )t∈2<ω are (1/
√
C ,

√
C)-equivalent,

(iii) for all t ∈ N we have dist(bt ,Wt) < ηt , and

(iv) for all t ∈ N we have dist(b∗t ,Gt) < ηt .

(es)s∈2<ω is C -strategically reproducible in X if for every η > 0 player II has a
winning strategy in the game Rep(X ,(es ))

(C + η).
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Hard work

Thm 1. (et)t∈2<ω is 1-strategically reproducible both in SE and BE .

Thm 2. If 1 ⩽ p, p′ ⩽ ∞, 1 < q, q′ < ∞ and 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1, then

((eij , fij) : i , j ∈ N) has the positive factorisation property in ℓp(ℓq)× ℓp
′
(ℓq

′
).

Thm 3. Let 1 ⩽ p, q ⩽ ∞, 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1. Then ((eij , fij) : i , j ∈ N) is

strategically supporting in ℓp(ℓq)× ℓp
′
(ℓq

′
).

Cor. Let 1 ⩽ p ⩽ ∞ and 1 < q < ∞. Then Mℓp(ℓq) is the unique closed proper
maximal ideal of B(ℓp(ℓq)).

Third main theorem Let X be any Banach space and let E denote a space with
a normalised 1-subsymmetric Schauder basis. Then MX is the unique maximal
ideal of B(X ) in the following cases:
▶ X = SE , X = BE ;
▶ X = ℓp(SE ) or X = ℓp(BE ), 1 ⩽ p ⩽ ∞;
▶ X = DE = (SE )∗, whenever the 1-subsymmetric Schauder basis of E is

incomparably non-c0 on antichains.

Consequently, the spaces ℓp(SE ), ℓp(BE ) (1 ⩽ p ⩽ ∞) are primary.

18


