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DEFINITION
A subspace R of a Banach space E is called an operator range (in
E) if there is a Banach space Z and a bounded linear operator
T : Z → E such that R = T (Z).

SOME REFERENCES
P.A. Fillmore and J.P. Williams, 1971; R.W. Cross, 1980; V.
Shevchik 1982; V. Fonf 1991; A.N. Plichko, 1992; R.W. Cross
and V. Shevchik, 1998; D. Kitson and R.M. Timoney 2011;
A.F.M. ter Elst and M. Sauter, 2016; T. Oikhberg, 2017; V.
P. Fonf, S. Lajara, S. Troyanksi and C. Zanco, 2019.

THEOREM [Saxon and Wilanski, 1977]
Let E be a Banach space. T.F.A.E:

1. E has a proper dense operator range,

2. E has a separable infinite dimensional quotient,

3. E has a closed separable infinite dimensional Y quasicom-
plemented in E, i.e. there is a closed subspace Z such that
Y ∩ Z = {0} and Y + Z = E.

4. E has a strictly increasing sequence {Xn}n of closed subspaces
such that

⋃
nXn = E,
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THEOREM [Shevchik, 1982]
If E is a separable Banach space and R is a proper dense operator
range in E, then there is a compact one-to-one and dense-range
operator T : E → E such that T (E) ∩R = {0}.

THEOREM [Chalendar and Partington, 2005]
If E is a separable Banach space and Y is an infinite dimensional
and closed subspace of E, then there is a compact one-to-one
and dense-range operator T : E → E such that T (Y ) is a dense
subspace of Y .

THEOREM [Chalendar and Partington, 2005]
If E is a separable Banach space and {Yn}n is a chain (i.e. Yn ⊂ Yn+1

of infinite-dimensional closed subspaces of E, then there is a
compact one-to-one and dense-range operator T : E → E such
that T (Yn) is a dense subspace of Yn for all n.
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DEFINITIONS

∗ R(E) denotes the family of infinite-codimensional operator
ranges in the Banach space E.

In particular, proper and dense operator ranges of E are con-
tained in R(E).

∗ S(E) denotes the family made up of all countable unions of
elements of R(E).

∗ A subspace Z in E∗ is called:

. total (over E) whenever Z
w∗

= E∗.
. λ-norming (over E) for some λ ∈ (0, 1) whenever sup{|x∗(x)| :

x∗ ∈ BZ} ≥ λ‖x‖ for all x ∈ E.

∗ For Y ⊂ E, the set Y ⊥ denotes the annihilator of Y in E∗ (i.e.
Y ⊥ = {f ∈ E∗ : f |Y = 0}) .

∗ A compact operator T : E → E is called nuclear whenever T is
of the form T (x) =

∑
n enfn(x) for certain sequences {en} ⊂ E and

{fn} ⊂ E∗ with
∑

n ‖en‖‖fn‖ <∞.
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THEOREM 1 [M. J-S, S. Lajara]
Let E be an (infinite dimensional) separable Banach space and
Z be a closed, separable and total subspace of E∗. Then, for any
couple of elements R ∈ S(E) and V ∈ S(Z) there exists a nuclear
operator T : E → E such that

1. T (E) = E,

2. T ∗(E∗) ⊂ Z,

3. T ∗(Z) = Z (in particular, T is one-to-one),

4. T (E) ∩R = {0},
5. T ∗(E∗) ∩ V = {0}.
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THEOREM 2 [M. J-S, S. Lajara]
Let E be a separable Banach space and let Y be a closed infi-
nite dimensional subspace of E. Then, for every R ∈ S(Y ) and
V ∈ S(Y ∗) and every λ ∈ (0, 1), there exists a nuclear one-to-one
operator T : E → E such that

1. T (E) ⊂ Y ,

2. T (Y ) = Y ,

3. T (E) ∩R = {0},
4. T ∗(E∗)|Y ∩ V = {0},
5. T ∗(E∗)|Y is λ-norming for Y .

6. If Y ∗ is separable, then T ∗(E∗)|Y = Y ∗.

7. If X∗ is separable, then T ∗(E∗) = E∗.
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COROLLARY 3 [M. J-S, S. Lajara]
Let E be an (infinite dimensional) separable Banach space. Then,
for every R ∈ S(E), V ∈ S(E∗) and every λ ∈ (0, 1), there exists
a nuclear one-to-one and dense-range operator T : E → E such
that

1. T (E) ∩R = {0},
2. T ∗(E∗) is λ-norming for E,

3. T ∗(E∗) ∩ V = {0},

4. If E∗ is separable then T ∗(E∗) = E∗.

COROLLARY 4 [M. J-S, S. Lajara]
Let E be an (infinite dimensional) separable Banach space. Then,
for every R ∈ R(E), V ∈ R(E∗) and ε > 0, there exists an isomor-
phism I : E → E such that I(R) ∩ R = {0}, I∗(V ) ∩ V = {0} and
||I − Id|| < ε.
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THEOREM 5 [M. J-S, S. Lajara]
Let E be a separable Banach space and let Y be a closed infinite-
dimensional and infinite codimensional subspace of E and con-
sider elements R ∈ S(E) and V ∈ S(E∗) such that

R ∩ Y ∈ S(Y ), V |Y ∈ S(Y ∗) and V ∩ Y ⊥ ∈ S(Y ⊥).
Then, for any λ ∈ (0, 1) there is a nuclear one-to-one dense-range
operator T : E → E such that

1. T (Y ) = Y ,

2. T ∗(Y ⊥) ⊂ Y ⊥ and T ∗(Y ⊥) is w∗-sequentially dense in Y ⊥,

3. T (E) ∩R = {0},
4. T ∗(E∗) ∩ V = {0},
5. T ∗(E∗)|Y is λ-norming for Y ,

6. T ∗(E∗)|Y ∩ V |Y = {0}.

7. If (E/Y )∗ is separable then T ∗(Y ⊥) = Y ⊥.

8. If Y ∗ is separable then T ∗(E∗)|Y = Y ∗.

9. If E∗ is separable then T ∗(E∗) = E∗.
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DEFINITION
We will say that the closed subspaces X and Y of a Banach space
E are quasicomplementary if X ∩ Y = {0} and X + Y = E.

THEOREM 6 [M. J-S, S. Lajara]
If X and Y are closed infinite dimensional quasicomplementary
subspaces of a separable Banach space E, then for any R1 ∈ S(X),
R2 ∈ S(Y ), V1 ∈ S(X⊥) and V2 ∈ S(Y ⊥) there exists a nuclear one-
to-one dense range operator T : E → E such that

1. T (X) = X and T (Y ) = Y ,

2. T ∗(X⊥)
w∗

= X⊥ and T ∗(Y ⊥)
w∗

= Y ⊥,

3. T (E) ∩ (R1 +R2) = {0} and T ∗(E∗) ∩ (V1 + V2) = {0}.
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DEFINITION

Let R ∈ R(E) and let A : Z → E be a bounded operator such that
A(Z) = R. Clearly, R =

⋃
m∈NmA(BZ) (being BZ the closed unit

ball of Z).

We define R+ :=
⋃

m∈NmA(BZ) (which is in R(E)).

For R =
⋃

nRn ∈ S(E), we define similarly R+ :=
⋃

nR
+
n (which is

in S(E)).
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THEOREM 7 [M. J-S, S. Lajara]
Let E be an (infinite dimensional) separable Banach space and
{Yn}n a chain of closed subspaces of E such that Y1, Yn/Yn−1 and
E/Z are infinite dimensional for all n > 1, where Z = ∪nYn, and
consider sets R ∈ S(E) and W ∈ S(E∗) such that

(a) R+ ∩ Yn ∈ S(Yn) for all n ≥ 1,

(b) W ∩ Z⊥ ∈ S(Z⊥),
(c) W |Y1 ∈ S(Y ∗1 ) and W |Yn ∩ Y ⊥n−1|Yn ∈ S(Y ⊥n−1|Yn) if n ≥ 2.

Then, there is a nuclear and one-to-one operator T : E → E such
that

1. T (Yn) = Yn,

2. T (E) ∩R = {0},

3. T (E) = E,

4. T ∗(E∗)|Yn ∩W |Yn = {0} for all n ≥ 1,

5. T ∗(E∗) ∩W = {0},

6. If Y ∗n is separable then T ∗(E∗)|Yk = Y ∗k for all k ≤ n,

7. If E∗ is separable then T ∗(E∗) = E∗.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

PROOFS. SOME IDEAS
.The compact operators defined in the proofs can be written as a
finite or infinite sum of operator of the form T (x) =

∑
n 2
−nenfn(x)

for x ∈ E and certain sequences {en}n ⊂ BE and {fn}n ⊂ BE∗ . So
T (BE) ⊂ conv({±2−nen}n) and T ∗(BE∗) ⊂ conv({±2−nfn}n).

.We are seeking sequences {xn}n ⊂ E and {x∗n}n ⊂ E∗ with limn xn =
0, limn x

∗
n = 0, satisfying conv({±xn}n) ∩ R = {0} and conv({±x∗n}n) ∩

W = {0} and additional properties (minimality, miminality with
respect to a subspace, M-basis, total, λ-norming condition for
the span of these sets, etc...), where R and W are the given
operator ranges.

. Fonf, 1991: Let V a closed convex and bounded set is a Ba-
nach space E such that codim(spanV ) = ∞. Then, for every pair
of sequences {vn}n ⊂ SE and {εn}n ⊂ (0,∞), there are sequences
{wn}n ⊂ SE and {γn}n ⊂ (0,∞) satisfying

∑
n γn < 1, ‖vn − wn‖ < εn

for all n ≥ 1 and

conv({±γnwn}n) ∩ V = {0}.
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PROOFS. SOME IDEAS
.The compact operator defined in the proof of Theorem 7 (as-
suming that ∪nYn = E) can be written as a sum T (x) =

∑
n Tn(x),

where each Tn is of the form Tn(x) =
∑

k fk(x)ek for certain se-
quences {ek}k ⊂ BYn and {fk}k ⊂ BY ⊥n−1

converging to 0 such that

Tn(BE) ⊂ conv({±ek}k) ⊂ Yn and T ∗n(BE∗) ⊂ conv({±fk}k) ⊂ Y ⊥n−1.
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