Invariant subspaces for

 positive operators on Banach lattices

 positive operators on Banach lattices

 with unconditional basis

 with unconditional basis}

F. Javier González-Doña
ICMAT - Universidad Complutense de Madrid

Workshop on Banach spaces and Banach lattices II

Invariant Subspace Problem

- Let X be a (real or complex) infinite dimensional, separable Banach space and $\mathcal{L}(X)$ the algebra of linear, bounded operators on X.

Invariant Subspace Problem

- Let X be a (real or complex) infinite dimensional, separable Banach space and $\mathcal{L}(X)$ the algebra of linear, bounded operators on X.
- Given $T \in \mathcal{L}(X)$, a closed subspace $M \subset X$ is invariant by T if $T(M) \subset M$.

Invariant Subspace Problem

- Let X be a (real or complex) infinite dimensional, separable Banach space and $\mathcal{L}(X)$ the algebra of linear, bounded operators on X.
- Given $T \in \mathcal{L}(X)$, a closed subspace $M \subset X$ is invariant by T if $T(M) \subset M$.

Invariant Subspace Problem (50's)

Given a Banach space X, does every $T \in \mathcal{L}(X)$ have a non-trivial $(\neq\{0\}, X)$ invariant subspace?

Invariant Subspace Problem

- Let X be a (real or complex) infinite dimensional, separable Banach space and $\mathcal{L}(X)$ the algebra of linear, bounded operators on X.
- Given $T \in \mathcal{L}(X)$, a closed subspace $M \subset X$ is invariant by T if $T(M) \subset M$.

Invariant Subspace Problem (50's)

Given a Banach space X, does every $T \in \mathcal{L}(X)$ have a non-trivial $(\neq\{0\}, X)$ invariant subspace?

- There exist operators with no non-trivial invariant subspaces on complex Banach spaces such as ℓ_{1}.

Invariant Subspace Problem

- Let X be a (real or complex) infinite dimensional, separable Banach space and $\mathcal{L}(X)$ the algebra of linear, bounded operators on X.
- Given $T \in \mathcal{L}(X)$, a closed subspace $M \subset X$ is invariant by T if $T(M) \subset M$.

Invariant Subspace Problem (50's)

Given a Banach space X, does every $T \in \mathcal{L}(X)$ have a non-trivial $(\neq\{0\}, X)$ invariant subspace?

- There exist operators with no non-trivial invariant subspaces on complex Banach spaces such as ℓ_{1}.

Open problem

(i) Does every positive operator on $\ell_{p}(1 \leq p<\infty)$ have a non-trivial invariant subspace?
(ii) Does every positive operator on a Banach lattice have a non-trivial invariant subspace?

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.
- A complex Banach space X will also be called a Banach lattice with unconditional basis if arises as the complexification of a real Banach lattice with unconditional basis.

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.
- A complex Banach space X will also be called a Banach lattice with unconditional basis if arises as the complexification of a real Banach lattice with unconditional basis.
- For instance, (real and complex) ℓ_{p} are Banach lattices whose order is induced by an unconditional basis, for every $1 \leq p<\infty$.

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.
- A complex Banach space X will also be called a Banach lattice with unconditional basis if arises as the complexification of a real Banach lattice with unconditional basis.
- For instance, (real and complex) ℓ_{p} are Banach lattices whose order is induced by an unconditional basis, for every $1 \leq p<\infty$.
- Every ideal on X is of the form

$$
M=\overline{\operatorname{span}}\left\{e_{n}: n \in N\right\}, \quad N \subset \mathbb{N} .
$$

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.
- A complex Banach space X will also be called a Banach lattice with unconditional basis if arises as the complexification of a real Banach lattice with unconditional basis.
- For instance, (real and complex) ℓ_{p} are Banach lattices whose order is induced by an unconditional basis, for every $1 \leq p<\infty$.
- Every ideal on X is of the form

$$
M=\overline{\operatorname{span}}\left\{e_{n}: n \in N\right\}, \quad N \subset \mathbb{N} .
$$

- In this setting, an operator $T \in \mathcal{L}(X)$ is positive if and only if its associated matrix is positive.

The setting

- If X is a real Banach space with an unconditional basis $\left(e_{n}\right)$, we can define an order $\sum_{n=1}^{\infty} x_{n} e_{n} \leq \sum_{n=1}^{\infty} y_{n} e_{n}$ if and only if $x_{n} \leq y_{n}$ for every $n \in \mathbb{N}$, that turns (X, \leq) into a Banach lattice.
- A complex Banach space X will also be called a Banach lattice with unconditional basis if arises as the complexification of a real Banach lattice with unconditional basis.
- For instance, (real and complex) ℓ_{p} are Banach lattices whose order is induced by an unconditional basis, for every $1 \leq p<\infty$.
- Every ideal on X is of the form

$$
M=\overline{\operatorname{span}}\left\{e_{n}: n \in N\right\}, \quad N \subset \mathbb{N} .
$$

- In this setting, an operator $T \in \mathcal{L}(X)$ is positive if and only if its associated matrix is positive.
- If X is any Banach lattice, $T \in \mathcal{L}(X)$ is a lattice homomorphism if $T(x \vee y)=T x \vee T y$.

The Abramovich, Aliprantis and Burkinshaw Theorem

Theorem (Abramovich, Aliprantis and Burkinshaw, 1994)

Let X be a Banach lattice and $T: X \rightarrow X$ be a positive operator. Assume there exists a positive operator $S \in\{T\}^{\prime}(S T=T S)$ such that:
(i) There exists $x_{0}>0$ such that $\lim _{n}\left\|S^{n} x_{0}\right\|^{1 / n}=0$. (S is locally quasinilpotent at x_{0})
(ii) S dominates a non-zero compact operator.

Then, T has a non-trivial invariant subspace. Moreover, a non-trivial invariant ideal.

The Abramovich, Aliprantis and Burkinshaw Theorem

Theorem (Abramovich, Aliprantis and Burkinshaw, 1994)

Let X be a Banach lattice and $T: X \rightarrow X$ be a positive operator. Assume there exists a positive operator $S \in\{T\}^{\prime}(S T=T S)$ such that:
(i) There exists $x_{0}>0$ such that $\lim _{n}\left\|S^{n} x_{0}\right\|^{1 / n}=0$. (S is locally quasinilpotent at x_{0})
(ii) S dominates a non-zero compact operator.

Then, T has a non-trivial invariant subspace. Moreover, a non-trivial invariant ideal.

- Does this result characterize the existence of non-trivial invariant ideals for positive operators?

A counterexample

Theorem (Gallardo-Gutiérrez, GD and Tradacete, 2020)

There exists a Banach lattice X and a positive operator $T: X \rightarrow X$ such that has non-trivial invariant subspaces but does not commute with any operator that is locally quasinilpotent. Moreover, we can get X to have its order induced by an unconditional basis and T to be a lattice homomorphism with non-trivial invariant ideals.

A counterexample

Theorem (Gallardo-Gutiérrez, GD and Tradacete, 2020)

There exists a Banach lattice X and a positive operator $T: X \rightarrow X$ such that has non-trivial invariant subspaces but does not commute with any operator that is locally quasinilpotent. Moreover, we can get X to have its order induced by an unconditional basis and T to be a lattice homomorphism with non-trivial invariant ideals.

- For example, let $X=\ell_{2}$ and $T: \ell_{2} \rightarrow \ell_{2}$ such that $T e_{n}=w_{n} e_{n+1}$, where $w_{n}=\exp \left((n+1)^{1 / 2}-n^{1 / 2}\right)$.

A counterexample

Theorem (Gallardo-Gutiérrez, GD and Tradacete, 2020)

There exists a Banach lattice X and a positive operator $T: X \rightarrow X$ such that has non-trivial invariant subspaces but does not commute with any operator that is locally quasinilpotent. Moreover, we can get X to have its order induced by an unconditional basis and T to be a lattice homomorphism with non-trivial invariant ideals.

- For example, let $X=\ell_{2}$ and $T: \ell_{2} \rightarrow \ell_{2}$ such that $T e_{n}=w_{n} e_{n+1}$, where $w_{n}=\exp \left((n+1)^{1 / 2}-n^{1 / 2}\right)$.
- This operator is unitarly equivalent to the shift M_{z} acting on $H^{2}(\beta)$, where $\beta=\left(\beta_{n}\right)_{n}$ and $\beta_{n}=e^{n^{1 / 2}}$.

A counterexample

Theorem (Gallardo-Gutiérrez, GD and Tradacete, 2020)

There exists a Banach lattice X and a positive operator $T: X \rightarrow X$ such that has non-trivial invariant subspaces but does not commute with any operator that is locally quasinilpotent. Moreover, we can get X to have its order induced by an unconditional basis and T to be a lattice homomorphism with non-trivial invariant ideals.

- For example, let $X=\ell_{2}$ and $T: \ell_{2} \rightarrow \ell_{2}$ such that $T e_{n}=w_{n} e_{n+1}$, where $w_{n}=\exp \left((n+1)^{1 / 2}-n^{1 / 2}\right)$.
- This operator is unitarly equivalent to the shift M_{z} acting on $H^{2}(\beta)$, where $\beta=\left(\beta_{n}\right)_{n}$ and $\beta_{n}=e^{n^{1 / 2}}$.
- $\left\{M_{z}\right\}^{\prime}=\left\{M_{\phi}: \phi \in H^{\infty}\right\}$ and the multipliers are not locally quasinilpotent operators.

Lattice Homomorphisms

Problem

Does every lattice homomorphism on a Banach lattice with unconditional basis have a non-trivial invariant subspace (or even more, a non-trivial invariant ideal?)

Lattice Homomorphisms

Problem

Does every lattice homomorphism on a Banach lattice with unconditional basis have a non-trivial invariant subspace (or even more, a non-trivial invariant ideal?)

Proposition (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Let X be a Banach lattice with unconditional basis and let $T \in \mathcal{L}(X)$ be a positive operator. T is a lattice homomorphism if and only if every row of its matrix representation has at most one positive entry.

Lattice Homomorphisms

Problem

Does every lattice homomorphism on a Banach lattice with unconditional basis have a non-trivial invariant subspace (or even more, a non-trivial invariant ideal?)

Proposition (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Let X be a Banach lattice with unconditional basis and let $T \in \mathcal{L}(X)$ be a positive operator. T is a lattice homomorphism if and only if every row of its matrix representation has at most one positive entry.

$$
\left(\begin{array}{ccccccc}
* & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & * & \cdots \\
0 & * & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & * & 0 & 0 & \cdots \\
0 & 0 & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Invariant Ideals

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Every lattice homomorphism on a Banach lattice whose order is induced by an unconditional basis has a non-trivial invariant subspace. Moreover, a non-trivial invariant ideal.

Invariant Ideals

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Every lattice homomorphism on a Banach lattice whose order is induced by an unconditional basis has a non-trivial invariant subspace. Moreover, a non-trivial invariant ideal.

Corollary (Gallardo-Gutiérrez, GD, Tradacete)

Every lattice homomorphism on $\ell_{p}(1 \leq p<\infty)$ has a non-trivial invariant subspace. Moreover, a non-trivial invariant ideal.

Lattice Homomorphisms on different Banach Lattices

- Let $\alpha \in[0,1]$ be an irrational number and define $T_{\alpha}: L^{p}[0,1] \rightarrow L^{p}[0,1]$ as

$$
\left(T_{\alpha} f\right)(t)=t \cdot f(\{t+\alpha\})
$$

These operators are known as Bishop operators. Every Bishop operator is a lattice homomorphism on $L^{P}([0,1])$.

Lattice Homomorphisms on different Banach Lattices

- Let $\alpha \in[0,1]$ be an irrational number and define $T_{\alpha}: L^{p}[0,1] \rightarrow L^{p}[0,1]$ as

$$
\left(T_{\alpha} f\right)(t)=t \cdot f(\{t+\alpha\})
$$

These operators are known as Bishop operators. Every Bishop operator is a lattice homomorphism on $L^{P}([0,1])$.

Proposition (Kitover and Wickstead, 2007)

There exist Bishop operators that do not have non-trivial invariant sublattices and, in particular, do not have non-trivial invariant ideals.

Lattice Homomorphisms on different Banach Lattices

- Let $\alpha \in[0,1]$ be an irrational number and define $T_{\alpha}: L^{p}[0,1] \rightarrow L^{p}[0,1]$ as

$$
\left(T_{\alpha} f\right)(t)=t \cdot f(\{t+\alpha\})
$$

These operators are known as Bishop operators. Every Bishop operator is a lattice homomorphism on $L^{P}([0,1])$.

Proposition (Kitover and Wickstead, 2007)

There exist Bishop operators that do not have non-trivial invariant sublattices and, in particular, do not have non-trivial invariant ideals.

- It is still unknown if every Bishop operator has a non-trivial invariant subspace.

Tridiagonal Operators

- Let X be a Banach lattice whose order is induced by an unconditional basis. We say that an operator $T: X \rightarrow X$ is tridiagonal if its associated matrix is tridiagonal.

Tridiagonal Operators

- Let X be a Banach lattice whose order is induced by an unconditional basis. We say that an operator $T: X \rightarrow X$ is tridiagonal if its associated matrix is tridiagonal.

$$
\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Tridiagonal Operators

- Let X be a Banach lattice whose order is induced by an unconditional basis. We say that an operator $T: X \rightarrow X$ is tridiagonal if its associated matrix is tridiagonal.

$$
\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem (Grivaux, 2002)

Every positive tridiagonal operator has a non-trivial invariant subspace.

Tridiagonal Operators

- Let X be a Banach lattice whose order is induced by an unconditional basis. We say that an operator $T: X \rightarrow X$ is tridiagonal if its associated matrix is tridiagonal.

$$
\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem (Grivaux, 2002)

Every positive tridiagonal operator has a non-trivial invariant subspace.

- Can we extend our methods to show that every tridiagonal operator has a non-trivial invariant ideal?

Tridiagonal Operators

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Let X be a Banach lattice whose order is induced by an unconditional basis and let $T: X \rightarrow X$ be a positive, tridiagonal operator. Then, T has no non-trivial ideals if and only if both the sub-diagonal and the super-diagonal of its matrix representation have no null elements.

Tridiagonal Operators

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Let X be a Banach lattice whose order is induced by an unconditional basis and let $T: X \rightarrow X$ be a positive, tridiagonal operator. Then, T has no non-trivial ideals if and only if both the sub-diagonal and the super-diagonal of its matrix representation have no null elements.

$$
T=\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & * & * & 0 & 0 & \cdots \\
0 & 0 & * & * & * & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals,

Tridiagonal Operators

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)

Let X be a Banach lattice whose order is induced by an unconditional basis and let $T: X \rightarrow X$ be a positive, tridiagonal operator. Then, T has no non-trivial ideals if and only if both the sub-diagonal and the super-diagonal of its matrix representation have no null elements.

$$
T=\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & * & * & 0 & 0 & \cdots \\
0 & 0 & * & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals.

Band-Diagonal Operators

- Let X be a Banach lattice with unconditional basis. An operator $T: X \rightarrow X$ is band-diagonal ($2 k+1$-diagonal) if its associated matrix is band-diagonal ($2 k+1$-diagonal).

Band-Diagonal Operators

- Let X be a Banach lattice with unconditional basis. An operator $T: X \rightarrow X$ is band-diagonal ($2 k+1$-diagonal) if its associated matrix is band-diagonal ($2 k+1$-diagonal).

$$
\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

A heptadiagonal matrix

Ideals For Band-Diagonal Operators

Open problem
Does every positive band-diagonal operator have a non-trivial invariant subspace?

Ideals For Band-Diagonal Operators

Open problem

Does every positive band-diagonal operator have a non-trivial invariant subspace?

An approach

Characterize the existence of non-trivial invariant ideals for band-diagonal operators.

Ideals For Band-Diagonal Operators

Open problem

Does every positive band-diagonal operator have a non-trivial invariant subspace?

An approach

Characterize the existence of non-trivial invariant ideals for band-diagonal operators.

Proposition (Radjavi and Troitsky, 2008)

Let X be a Banach lattice with unconditional basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ and let T be a positive operator. Then, T has no non-trivial invariant ideals if and only if for every $i, j \in \mathbb{N}$ with $i \neq j$ there exists $n \in \mathbb{N}$ such that $\left(T^{n} e_{j}\right)_{i}>0$.

Dynamics of Positive Matrices

$$
T=\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & * & * & 0 & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{2}=\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \cdots \\
0 & * & * & * & 0 & 0 & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{3}=\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \ldots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{5}=\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T=\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & * & * & * & 0 & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
0 & 0 & 0 & 0 & * & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{2}=\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \ldots \\
* & * & * & * & 0 & 0 & \ldots \\
* & * & * & * & * & 0 & \ldots \\
0 & * & * & * & * & 0 & \ldots \\
0 & 0 & * & * & * & * & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{3}=\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals.

Dynamics of Positive Matrices

$$
T^{5}=\left(\begin{array}{ccccccc}
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals.

Dynamics of Positive Matrices vs. Invariant Ideals

Understanding dynamics of Positive Matrices
i
Characterizing the existence of non-trivial invariant ideals

The Main Result

Theorem (Gallardo-Gutiérrez, GD, 2021)

Let X be a Banach lattice with unconditional basis, let $T \in \mathcal{L}(X)$ be $2 k+1$-diagonal, positive operator and let $A=\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$ be its associated matrix. Assume that $a_{n+m, n}>0$ for every $m \in\{1, \cdots, k-1\}$. Then, T has a non-trivial invariant ideal if and only if there exists $n_{0} \in \mathbb{N}$ such that $a_{i, j}=0$ for every $(i, j) \in\left\{1, \cdots, n_{0}\right\} \times\left\{n_{0}+1, n_{0}+2, \cdots\right\}$.

The Main Result

Theorem (Gallardo-Gutiérrez, GD, 2021)

Let X be a Banach lattice with unconditional basis, let $T \in \mathcal{L}(X)$ be $2 k+1$-diagonal, positive operator and let $A=\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$ be its associated matrix. Assume that $a_{n+m, n}>0$ for every $m \in\{1, \cdots, k-1\}$. Then, T has a non-trivial invariant ideal if and only if there exists $n_{0} \in \mathbb{N}$ such that $a_{i, j}=0$ for every $(i, j) \in\left\{1, \cdots, n_{0}\right\} \times\left\{n_{0}+1, n_{0}+2, \cdots\right\}$.

$$
\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has non-trivial invariant ideals

The Main Result

Theorem (Gallardo-Gutiérrez, GD, 2021)

Let X be a Banach lattice with unconditional basis, let $T \in \mathcal{L}(X)$ be $2 k+1$-diagonal, positive operator and let $A=\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$ be its associated matrix. Assume that $a_{n+m, n}>0$ for every $m \in\{1, \cdots, k-1\}$. Then, T has a non-trivial invariant ideal if and only if there exists $n_{0} \in \mathbb{N}$ such that $a_{i, j}=0$ for every $(i, j) \in\left\{1, \cdots, n_{0}\right\} \times\left\{n_{0}+1, n_{0}+2, \cdots\right\}$.

$$
\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & 0 & * & 0 & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T has no non-trivial invariant ideals

Adding Zeros

- By relaxing the hypotheses on the matrix, we obtain positive operators with non-trivial invariant ideals that do not satisfy the previous condition:

$$
T=\left(\begin{array}{ccccccc}
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Adding Zeros

- By relaxing the hypotheses on the matrix, we obtain positive operators with non-trivial invariant ideals that do not satisfy the previous condition:

$$
T=\left(\begin{array}{ccccccc}
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & 0 & * & 0 & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- How does 'adding zeros' modify the existence of non-trivial invariant ideals?

Honeycomb Matrix

- An infinite matrix $A=\left(a_{n, m}\right)_{n, m \in \mathbb{N}}$ is said to be \mathbf{k}-honeycomb if there exists $j \in\{0, \cdots, k-1\}$ such that one of the following conditions is satisfied:
(i) $a_{n, m}=0$ for every $n \in k \mathbb{N}-j$ and $m \in \mathbb{N} \backslash(k \mathbb{N}-j)$.
(ii) $a_{n, m}=0$ for every $n \in \mathbb{N} \backslash(k \mathbb{N}-j)$ and $m \in k \mathbb{N}-j$.

Honeycomb Matrix

- An infinite matrix $A=\left(a_{n, m}\right)_{n, m \in \mathbb{N}}$ is said to be \mathbf{k}-honeycomb if there exists $j \in\{0, \cdots, k-1\}$ such that one of the following conditions is satisfied:
(i) $a_{n, m}=0$ for every $n \in k \mathbb{N}-j$ and $m \in \mathbb{N} \backslash(k \mathbb{N}-j)$.
(ii) $a_{n, m}=0$ for every $n \in \mathbb{N} \backslash(k \mathbb{N}-j)$ and $m \in k \mathbb{N}-j$.

$$
\left(\begin{array}{ccccccc}
* & * & * & * & * & * & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

2-honeycomb matrix

Honeycomb Matrix

- An infinite matrix $A=\left(a_{n, m}\right)_{n, m \in \mathbb{N}}$ is said to be \mathbf{k}-honeycomb if there exists $j \in\{0, \cdots, k-1\}$ such that one of the following conditions is satisfied:
(i) $a_{n, m}=0$ for every $n \in k \mathbb{N}-j$ and $m \in \mathbb{N} \backslash(k \mathbb{N}-j)$.
(ii) $a_{n, m}=0$ for every $n \in \mathbb{N} \backslash(k \mathbb{N}-j)$ and $m \in k \mathbb{N}-j$.

$$
\left(\begin{array}{ccccccc}
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & 0 & * & 0 & 0 & * & \cdots \\
* & * & * & * & * & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & 0 & * & 0 & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

3-honeycomb matrix

k-honeycomb band-diagonal operators

Theorem (Gallardo-Gutiérrez, GD, 2021)

Let X be a Banach lattice with unconditional basis, let $T \in \mathcal{L}(X)$ be a $(2 k+1)$-diagonal, positive operator. Assume its associated matrix $A=\left(a_{n, m}\right)_{n, m \in \mathbb{N}}$ satisfies $a_{i, i+k} a_{i+k, i}>0$.
(i) If $k=2,3$, then T has a non-trivial invariant ideals if and only if A is k-honeycomb.
(ii) If $k \geq 4, T$ can be chosen to have non-trivial invariant ideals and to not be k^{\prime}-honeycomb for any $k^{\prime} \in \mathbb{N}$.

An Example

$$
T=\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & 0 & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
0 & 0 & 0 & * & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T is 2-honeycomb, it has non-trivial invariant ideals.

An Example

$$
T=\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \cdots \\
0 & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
0 & * & 0 & * & 0 & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
0 & 0 & 0 & * & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T is no longer 2-honeycomb, it has no non-trivial invariant ideals.

An Example

$$
\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
0 & 0 & * & 0 & 0 & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & 0 & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T is 3 -honeycomb, it has non-trivial invariant ideals.

An Example

$$
\left(\begin{array}{ccccccc}
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
0 & 0 & * & * & 0 & * & \cdots \\
* & * & * & * & * & * & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & 0 & 0 & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T is no longer 3 -honeycomb, it has no non-trivial invariant ideals.

A Generalization of Grivaux's Theorem

Theorem (Gallardo-Gutiérrez, GD,2021)

Let X be a Banach lattice with unconditional basis and let $T \in \mathcal{L}(X)$ be a band-diagonal operator. Let $A=(a, m)_{n, m \in \mathbb{N}}$ be its associated matrix and assume that, for every $n \in \mathbb{N}$, there exists $j_{n} \in \mathbb{N}$ such that

$$
a_{n, n+j_{n}} a_{n+j_{n}, n}>0
$$

and $a_{n, n+m}=a_{n+m, n}=0$ for every $n \in \mathbb{N}$ and $m \neq 0, k_{n}$. Then, T has a non-trivial invariant subspace.

$$
T=\left(\begin{array}{ccccccc}
* & * & 0 & 0 & 0 & 0 & \cdots \\
* & * & 0 & * & 0 & 0 & \cdots \\
0 & 0 & * & * & 0 & 0 & \cdots \\
0 & * & * & * & 0 & * & \cdots \\
0 & 0 & 0 & 0 & * & * & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The Key Idea

- The methods to prove last result are based on Operator Theory techniques.

The Key Idea

- The methods to prove last result are based on Operator Theory techniques. An operator $T \in \mathcal{L}(X)$ has a moment sequence if there exist $x \in X \backslash\{0\}$ and $x^{*} \in X^{*} \backslash\{0\}$ and a non-negative Borel measure μ on \mathbb{R} such that

$$
x^{*}\left(T^{n} x\right)=\int_{\mathbb{R}} t^{n} d \mu(t) \quad n \geq 0
$$

The Key Idea

- The methods to prove last result are based on Operator Theory techniques. An operator $T \in \mathcal{L}(X)$ has a moment sequence if there exist $x \in X \backslash\{0\}$ and $x^{*} \in X^{*} \backslash\{0\}$ and a non-negative Borel measure μ on \mathbb{R} such that

$$
x^{*}\left(T^{n} x\right)=\int_{\mathbb{R}} t^{n} d \mu(t) \quad n \geq 0
$$

Theorem (Atzmon and Godefroy, 2001)

Let X be a real Banach space and let $T \in \mathcal{L}(X)$ be an operator that admits a moment sequence. Then, T has a non-trivial invariant subspace.

The Key Idea

- The methods to prove last result are based on Operator Theory techniques. An operator $T \in \mathcal{L}(X)$ has a moment sequence if there exist $x \in X \backslash\{0\}$ and $x^{*} \in X^{*} \backslash\{0\}$ and a non-negative Borel measure μ on \mathbb{R} such that

$$
x^{*}\left(T^{n} x\right)=\int_{\mathbb{R}} t^{n} d \mu(t) \quad n \geq 0
$$

Theorem (Atzmon and Godefroy, 2001)

Let X be a real Banach space and let $T \in \mathcal{L}(X)$ be an operator that admits a moment sequence. Then, T has a non-trivial invariant subspace.

- The hypothesis on the matrix coefficients allows us to construct moment sequences for operators verifying the statement.

The Key Idea

- The methods to prove last result are based on Operator Theory techniques. An operator $T \in \mathcal{L}(X)$ has a moment sequence if there exist $x \in X \backslash\{0\}$ and $x^{*} \in X^{*} \backslash\{0\}$ and a non-negative Borel measure μ on \mathbb{R} such that

$$
x^{*}\left(T^{n} x\right)=\int_{\mathbb{R}} t^{n} d \mu(t) \quad n \geq 0
$$

Theorem (Atzmon and Godefroy, 2001)

Let X be a real Banach space and let $T \in \mathcal{L}(X)$ be an operator that admits a moment sequence. Then, T has a non-trivial invariant subspace.

- The hypothesis on the matrix coefficients allows us to construct moment sequences for operators verifying the statement.
- Finally, the complex Banach space case follows from the real one.

To Sum Up

- We obtain characterizations for the existence of non-trivial invariant ideals for positive band-diagonal operators.

To Sum Up

- We obtain characterizations for the existence of non-trivial invariant ideals for positive band-diagonal operators.
- We are able to prove the existence of non-trivial invariant subspaces for positive, band-diagonal operators with no invariant ideals.

To Sum Up

- We obtain characterizations for the existence of non-trivial invariant ideals for positive band-diagonal operators.
- We are able to prove the existence of non-trivial invariant subspaces for positive, band-diagonal operators with no invariant ideals.
- Nevertheless, we still do not know if every positive, pentadiagonal operator has a non-trivial invariant subspace

$$
\left(\begin{array}{ccccccc}
* & * & * & 0 & 0 & 0 & \cdots \\
* & * & * & * & 0 & 0 & \cdots \\
* & * & * & * & * & 0 & \cdots \\
0 & * & * & * & * & * & \cdots \\
0 & 0 & * & * & * & * & \cdots \\
0 & 0 & 0 & * & * & * & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Bibliography

目
Y．A．Abramovich，C．D．Aliprantis，and O．Burkinshaw，Invariant subspace theorems for positive operators，J．Funct．Anal． 124 （1994），no．1，95－111．
國 E．A．Gallardo－Gutiérrez，F．J．González－Doña，P．Tradecete，Invariant subspaces for positive operators on Banach spaces with unconditional basis， Proc．Amer．Math．Soc， 12 pp，Accepted，（2021）．
園 E．A．Gallardo－Gutiérrez，F．J．González－Doña，Band－diagonal operators on Banach spaces with unconditional basis， 30 pp，Submitted，（2021）．
围 S．Grivaux，Invariant subspaces for tridiagonal operators，Bull．Sci．Math． 126 （2002），no．8，681－691．
嗇 A．K．Kitover and A．W．Wickstead，Invariant sublattices for positive operators，Indag．Math．（N．S．） 18 （2007），no．1，39－60．
目 H．Radjavi and V．G．Troitsky，Invariant sublattices，Illinois J．Math． 52 （2008），no．2，437－462．

Acknowledgments

THANK YOU SO MUCH FOR YOUR ATTENTION!

This work is supported by the FPI Grant SEV-2015-0554-18-3 funded by: MCIN/AEI/ 10.13039/501100011033 and by Plan Nacional I+D grant no. PID2019-105979GB-I00, Spain.

