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Invariant Subspace Problem

• Let X be a (real or complex) infinite dimensional, separable Banach space and
L(X ) the algebra of linear, bounded operators on X .

• Given T ∈ L(X ), a closed subspace M ⊂ X is invariant by T if T (M) ⊂ M.

Invariant Subspace Problem (50’s)
Given a Banach space X, does every T ∈ L(X ) have a non-trivial (̸= {0}, X)
invariant subspace?

• There exist operators with no non-trivial invariant subspaces on complex Banach
spaces such as ℓ1.

Open problem
(i) Does every positive operator on ℓp (1 ≤ p < ∞) have a non-trivial invariant

subspace?
(ii) Does every positive operator on a Banach lattice have a non-trivial invariant

subspace?
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The setting

• If X is a real Banach space with an unconditional basis (en), we can define an
order

∑∞
n=1 xnen ≤

∑∞
n=1 ynen if and only if xn ≤ yn for every n ∈ N, that turns

(X , ≤) into a Banach lattice.

• A complex Banach space X will also be called a Banach lattice with
unconditional basis if arises as the complexification of a real Banach lattice with
unconditional basis.
• For instance, (real and complex) ℓp are Banach lattices whose order is induced
by an unconditional basis, for every 1 ≤ p < ∞.

• Every ideal on X is of the form

M = span{en : n ∈ N}, N ⊂ N.

• In this setting, an operator T ∈ L(X ) is positive if and only if its associated
matrix is positive.
• If X is any Banach lattice, T ∈ L(X ) is a lattice homomorphism if
T (x ∨ y) = Tx ∨ Ty .
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The Abramovich, Aliprantis and Burkinshaw Theorem

Theorem (Abramovich, Aliprantis and Burkinshaw, 1994)
Let X be a Banach lattice and T : X → X be a positive operator. Assume there
exists a positive operator S ∈ {T}′(ST = TS) such that:
(i) There exists x0 > 0 such that limn ∥Snx0∥1/n = 0. (S is locally quasinilpotent

at x0)
(ii) S dominates a non-zero compact operator.
Then, T has a non-trivial invariant subspace. Moreover, a non-trivial invariant
ideal.

• Does this result characterize the existence of non-trivial invariant ideals for
positive operators?

F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 4 / 37



The Abramovich, Aliprantis and Burkinshaw Theorem

Theorem (Abramovich, Aliprantis and Burkinshaw, 1994)
Let X be a Banach lattice and T : X → X be a positive operator. Assume there
exists a positive operator S ∈ {T}′(ST = TS) such that:
(i) There exists x0 > 0 such that limn ∥Snx0∥1/n = 0. (S is locally quasinilpotent

at x0)
(ii) S dominates a non-zero compact operator.
Then, T has a non-trivial invariant subspace. Moreover, a non-trivial invariant
ideal.

• Does this result characterize the existence of non-trivial invariant ideals for
positive operators?
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A counterexample

Theorem (Gallardo-Gutiérrez, GD and Tradacete, 2020)
There exists a Banach lattice X and a positive operator T : X → X such that has
non-trivial invariant subspaces but does not commute with any operator that is
locally quasinilpotent. Moreover, we can get X to have its order induced by an
unconditional basis and T to be a lattice homomorphism with non-trivial invariant
ideals.

• For example, let X = ℓ2 and T : ℓ2 → ℓ2 such that Ten = wnen+1, where
wn = exp((n + 1)1/2 − n1/2).
• This operator is unitarly equivalent to the shift Mz acting on H2(β), where
β = (βn)n and βn = en1/2

.

• {Mz}′ = {Mϕ : ϕ ∈ H∞} and the multipliers are not locally quasinilpotent
operators.
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Lattice Homomorphisms

Problem
Does every lattice homomorphism on a Banach lattice with unconditional basis
have a non-trivial invariant subspace (or even more, a non-trivial invariant ideal?)

Proposition (Gallardo-Gutiérrez, GD, Tradacete, 2020)
Let X be a Banach lattice with unconditional basis and let T ∈ L(X ) be a
positive operator. T is a lattice homomorphism if and only if every row of its
matrix representation has at most one positive entry.



∗ 0 0 0 0 0 · · ·
0 0 0 0 0 ∗ · · ·
0 ∗ 0 0 0 0 · · ·
0 0 0 ∗ 0 0 · · ·
0 0 ∗ 0 0 0 · · ·
0 ∗ 0 0 0 0 · · ·
...

...
...

...
...

...
. . .
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Invariant Ideals

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)
Every lattice homomorphism on a Banach lattice whose order is induced by an
unconditional basis has a non-trivial invariant subspace. Moreover, a non-trivial
invariant ideal.

Corollary (Gallardo-Gutiérrez, GD, Tradacete)
Every lattice homomorphism on ℓp (1 ≤ p < ∞) has a non-trivial invariant
subspace. Moreover, a non-trivial invariant ideal.
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Lattice Homomorphisms on different Banach Lattices

• Let α ∈ [0, 1] be an irrational number and define Tα : Lp[0, 1] → Lp[0, 1] as

(Tαf )(t) = t · f ({t + α}).

These operators are known as Bishop operators. Every Bishop operator is a
lattice homomorphism on Lp([0, 1]).

Proposition (Kitover and Wickstead, 2007)
There exist Bishop operators that do not have non-trivial invariant sublattices
and, in particular, do not have non-trivial invariant ideals.

• It is still unknown if every Bishop operator has a non-trivial invariant subspace.
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Tridiagonal Operators

• Let X be a Banach lattice whose order is induced by an unconditional basis. We
say that an operator T : X → X is tridiagonal if its associated matrix is
tridiagonal.



∗ ∗ 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
0 0 0 ∗ 0 0 · · ·
0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 ∗ 0 · · ·
...

...
...

...
...

...
. . .


Theorem (Grivaux, 2002)
Every positive tridiagonal operator has a non-trivial invariant subspace.

• Can we extend our methods to show that every tridiagonal operator has a
non-trivial invariant ideal?
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Tridiagonal Operators

Theorem (Gallardo-Gutiérrez, GD, Tradacete, 2020)
Let X be a Banach lattice whose order is induced by an unconditional basis and
let T : X → X be a positive, tridiagonal operator. Then, T has no non-trivial
ideals if and only if both the sub-diagonal and the super-diagonal of its matrix
representation have no null elements.

T =



∗ ∗ 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
0 ∗ ∗ ∗ 0 0 · · ·
0 0 ∗ ∗ ∗ 0 · · ·
0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 ∗ ∗ · · ·
...

...
...

...
...

...
. . .


T has no non-trivial invariant ideals,
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F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 11 / 37



Band-Diagonal Operators

• Let X be a Banach lattice with unconditional basis. An operator T : X → X is
band-diagonal (2k + 1−diagonal) if its associated matrix is band-diagonal
(2k + 1-diagonal).



∗ ∗ ∗ ∗ 0 0 · · ·
∗ ∗ ∗ ∗ ∗ 0 · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ ∗ ∗ ∗ ∗ · · ·
0 0 ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .


A heptadiagonal matrix
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Ideals For Band-Diagonal Operators

Open problem
Does every positive band-diagonal operator have a non-trivial invariant subspace?

An approach
Characterize the existence of non-trivial invariant ideals for band-diagonal
operators.

Proposition (Radjavi and Troitsky, 2008)
Let X be a Banach lattice with unconditional basis (en)n∈N and let T be a
positive operator. Then, T has no non-trivial invariant ideals if and only if for
every i , j ∈ N with i ̸= j there exists n ∈ N such that (T nej)i > 0.
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F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 13 / 37



Ideals For Band-Diagonal Operators

Open problem
Does every positive band-diagonal operator have a non-trivial invariant subspace?

An approach
Characterize the existence of non-trivial invariant ideals for band-diagonal
operators.

Proposition (Radjavi and Troitsky, 2008)
Let X be a Banach lattice with unconditional basis (en)n∈N and let T be a
positive operator. Then, T has no non-trivial invariant ideals if and only if for
every i , j ∈ N with i ̸= j there exists n ∈ N such that (T nej)i > 0.

F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 13 / 37



Dynamics of Positive Matrices

T =



∗ ∗ 0 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
0 0 ∗ ∗ 0 0 · · ·
0 0 0 ∗ ∗ ∗ · · ·
0 0 0 0 ∗ 0 · · ·
...

...
...

...
...

...
. . .


T has non-trivial invariant ideals.
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Dynamics of Positive Matrices

T 5 =



∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .


T has no non-trivial invariant ideals.
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Dynamics of Positive Matrices vs. Invariant Ideals

Understanding dynamics of Positive Matrices
⇕

Characterizing the existence of non-trivial invariant ideals
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The Main Result

Theorem (Gallardo-Gutiérrez, GD, 2021)
Let X be a Banach lattice with unconditional basis, let T ∈ L(X ) be
2k + 1-diagonal, positive operator and let A = (ai,j)i,j∈N be its associated matrix.
Assume that an+m,n > 0 for every m ∈ {1, · · · , k − 1}. Then, T has a non-trivial
invariant ideal if and only if there exists n0 ∈ N such that ai,j = 0 for every
(i , j) ∈ {1, · · · , n0} × {n0 + 1, n0 + 2, · · · }.
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Adding Zeros

• By relaxing the hypotheses on the matrix, we obtain positive operators with
non-trivial invariant ideals that do not satisfy the previous condition:

T =



∗ 0 ∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ 0 ∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ 0 ∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .


.

• How does ’adding zeros’ modify the existence of non-trivial invariant ideals?
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Honeycomb Matrix

• An infinite matrix A = (an,m)n,m∈N is said to be k-honeycomb if there exists
j ∈ {0, · · · , k − 1} such that one of the following conditions is satisfied:
(i) an,m = 0 for every n ∈ kN − j and m ∈ N∖ (kN − j).
(ii) an,m = 0 for every n ∈ N∖ (kN − j) and m ∈ kN − j .



∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .


2-honeycomb matrix
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. . .


3-honeycomb matrix
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k-honeycomb band-diagonal operators

Theorem (Gallardo-Gutiérrez, GD, 2021)
Let X be a Banach lattice with unconditional basis, let T ∈ L(X ) be a
(2k + 1)−diagonal, positive operator. Assume its associated matrix
A = (an,m)n,m∈N satisfies ai,i+kai+k,i > 0.
(i) If k = 2, 3, then T has a non-trivial invariant ideals if and only if A is

k−honeycomb.
(ii) If k ≥ 4, T can be chosen to have non-trivial invariant ideals and to not be

k ′-honeycomb for any k ′ ∈ N.

F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 28 / 37



An Example

T =



∗ ∗ ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
∗ ∗ ∗ ∗ ∗ 0 · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
0 0 ∗ ∗ ∗ ∗ · · ·
0 0 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .


T is 2-honeycomb, it has non-trivial invariant ideals.
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An Example
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A Generalization of Grivaux’s Theorem

Theorem (Gallardo-Gutiérrez,GD,2021)
Let X be a Banach lattice with unconditional basis and let T ∈ L(X ) be a
band-diagonal operator. Let A = (a,m)n,m∈N be its associated matrix and assume
that, for every n ∈ N, there exists jn ∈ N such that

an,n+jn an+jn,n > 0

and an,n+m = an+m,n = 0 for every n ∈ N and m ̸= 0, kn. Then, T has a
non-trivial invariant subspace.

T =



∗ ∗ 0 0 0 0 · · ·
∗ ∗ 0 ∗ 0 0 · · ·
0 0 ∗ ∗ 0 0 · · ·
0 ∗ ∗ ∗ 0 ∗ · · ·
0 0 0 0 ∗ ∗ · · ·
0 0 0 ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .
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The Key Idea

• The methods to prove last result are based on Operator Theory techniques.

An operator T ∈ L(X ) has a moment sequence if there exist x ∈ X ∖ {0} and
x∗ ∈ X ∗ ∖ {0} and a non-negative Borel measure µ on R such that

x∗(T nx) =
∫
R

tndµ(t) n ≥ 0.

Theorem (Atzmon and Godefroy, 2001)
Let X be a real Banach space and let T ∈ L(X ) be an operator that admits a
moment sequence. Then, T has a non-trivial invariant subspace.

• The hypothesis on the matrix coefficients allows us to construct moment
sequences for operators verifying the statement.
• Finally, the complex Banach space case follows from the real one.

F. Javier González-Doña (ICMAT-UCM) Invariant subspaces for positive operators 34 / 37



The Key Idea

• The methods to prove last result are based on Operator Theory techniques.
An operator T ∈ L(X ) has a moment sequence if there exist x ∈ X ∖ {0} and
x∗ ∈ X ∗ ∖ {0} and a non-negative Borel measure µ on R such that

x∗(T nx) =
∫
R

tndµ(t) n ≥ 0.

Theorem (Atzmon and Godefroy, 2001)
Let X be a real Banach space and let T ∈ L(X ) be an operator that admits a
moment sequence. Then, T has a non-trivial invariant subspace.

• The hypothesis on the matrix coefficients allows us to construct moment
sequences for operators verifying the statement.
• Finally, the complex Banach space case follows from the real one.
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To Sum Up

• We obtain characterizations for the existence of non-trivial invariant ideals for
positive band-diagonal operators.

• We are able to prove the existence of non-trivial invariant subspaces for positive,
band-diagonal operators with no invariant ideals.
• Nevertheless, we still do not know if every positive, pentadiagonal operator has
a non-trivial invariant subspace

∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ ∗ ∗ 0 0 · · ·
∗ ∗ ∗ ∗ ∗ 0 · · ·
0 ∗ ∗ ∗ ∗ ∗ · · ·
0 0 ∗ ∗ ∗ ∗ · · ·
0 0 0 ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .


.
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