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Introduction The free complex Banach lattice FBLC[E ]

Introduction

Recall the definition of the free Banach lattice generated by a real Banach
space E : a pair (FBL[E ], δE ), where FBL[E ] is a Banach lattice and δE is an
isometric embedding, such that for any Banach lattice X and any operator
T : E → X there exists a unique lattice homomorphism T̂ : FBL[E ] → X
making the following diagram commutative:

FBL[E ]

∃!T̂

''
E
?�

δE

OO

T // X , with ∥T∥ = ∥T̂∥.

The existence of FBL[E ] was proven by A. Avilés, J. Rodŕıguez and P.
Tradacete, 2018.

Our objective is to construct an analogous object in the complex setting.
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Introduction The free complex Banach lattice FBLC[E ]

Motivation

Why are we interested in investigating free complex Banach lattices? They
could be a useful tool in order to studying the Complemented Subspace
Problem.

Question 1.1 (CSP)

If E is complemented in some Banach lattice, then is E isomorphic to a
Banach lattice?

This problem has several remarkable ramifications: C[0, 1], C(K )
(recently solved), L1[0, 1] . . .

Proposition 1.1

If E is a Banach space C1-isomorphic to a C2-complemented subspace of a
Banach lattice, then δE (E ) is C1C2-complemented in FBL[E ].

Interesting situation: the contractive (1-complemented) case.
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Introduction The free complex Banach lattice FBLC[E ]

Motivation

Every 1-complemented subspace of an Lp-space (1 ≤ p < ∞) is an
Lp-space (Douglas 1965, Andô 1966, Bernau-Lacey 1974).

Every 1-complemented subspace of a separable C(K )-space is isomorphic
to a C(K )-space (Benyamini 1973).

In the complex setting: every 1-complemented subspace of a space with
1-unconditional basis also has 1-unconditional basis. (Kalton-Wood 1976)

Free Banach lattices provide a (not very operative) criterium to identify
whether a Banach space is isomorphic to a Banach lattice.

Proposition 1.2

A Banach space E is isomorphic to a Banach lattice if and only if there is
an ideal I ⊂ FBL[E ] such that FBL[E ] = I ⊕ δE (E ).

By an ideal I of Banach lattice X we mean a (closed) sublattice which is
solid, that is, if |x | ≤ |y | for some y ∈ I , then x ∈ I .
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Introduction The free complex Banach lattice FBLC[E ]

Some definitions

Let X be a Banach lattice. For every pair x , y ∈ X , we may define

|(x , y)| = sup{x cos θ + y sin θ : θ ∈ [0, 2π]} ∈ X .

A complex Banach lattice Z is the complexification of a real Banach
lattice X , that is, Z = X ⊕ iX , endowed with the norm
∥x + iy∥ = ∥|(x , y)|∥X , x + iy ∈ Z .

A (complex linear) operator T : XC → YC is said to be a lattice
homomorphism if T (X ) ⊂ Y and T |X is (real) lattice homomorphism.
Equivalently, T is a lattice homomorphism if there exists a lattice
homomorphism S : X → Y such that T (x + iy) = Sx + iSy for every
x + iy ∈ XC; we will write T = SC.

Given a complex Banach space E , its dual E ∗ and E ∗
R may be isometrically

identified by means of the map z∗ ∈ E ∗ 7→ Re z∗ ∈ E ∗
R.
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Introduction The free complex Banach lattice FBLC[E ]

Description of FBLC[E ]

Let E be a complex Banach space. Let us fix any complex Banach lattice
XC and any operator T : E → XC. We write Tz = ReTz + iImTz .

First attempt: take FBL[ER]⊕ iFBL[ER] and define

δE (z) = δER(z)− iδER(iz) for every z ∈ E .

The complexified operator R̂eTC, where R̂eT ◦ δER = ReT , satisfies

R̂eTC ◦ δE (z) = R̂eT δER(z)− iR̂eT δER(iz) = ReT (z)− iReT (iz)

= ReT (z)− iRe iT (z) = ReT (z) + iImT (z).

We have the following commutative diagram:

FBL[ER]⊕ iFBL[ER]
R̂eTC

**
E
?�

δE

OO

T // X ⊕ iX .
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Introduction The free complex Banach lattice FBLC[E ]

Description of FBLC[E ]

Let E be a complex Banach space. Let us fix any complex Banach lattice
XC and any operator T : E → XC. We write Tz = ReTz + iImTz .

First attempt: take FBL[ER]⊕ iFBL[ER] and define

δE (z) = δER(z)− iδER(iz) for every z ∈ E .

The complexified operator R̂eTC, where R̂eT ◦ δER = ReT , satisfies

R̂eTC ◦ δE (z) = R̂eT δER(z)− iR̂eT δER(iz) = ReT (z)− iReT (iz)

= ReT (z)− iRe iT (z) = ReT (z) + iImT (z).

We have the following commutative diagram:

FBL[ER]⊕ iFBL[ER]
R̂eTC

**
E
?�

δE

OO

T // X ⊕ iX .

Free Complex Banach Lattices David de Hevia Rodŕıguez 6 / 10
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Note that for every z ∈ E and for every z∗ ∈ E ∗ we have that

δE (z)(Re z∗) = z∗(z).

Hence,

∥|δE (z)|∥FBL[ER] =

= sup


m∑
j=1

|δE (z)(x∗)| : (x∗j )
m
j=1 ⊂ E ∗

R, sup
x∈BE

m∑
j=1

|x∗j (x)| ≤ 1


= sup


m∑
j=1

|z∗j (z)| : (z∗j )
m
j=1 ⊂ E ∗, sup

w∈BE

m∑
j=1

|Re z∗j (w)| ≤ 1

 .

We have to renorm FBL[ER] with:

∥f ∥FBLC[E ] = sup


m∑
j=1

|f (Rez∗j )| : (z∗j )mj=1 ⊂ E ∗, sup
z∈BE

m∑
j=1

|z∗j (z)| ≤ 1

 .
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Complex conjugates and FBLC[E ]

In contrast to the real case, we know that FBLC[E ]
lat
= FBLC[F ] does not

imply that E and F are isometric (even isomorphic).

Given a complex Banach space E , its complex conjugate E has the same
elements and norm as E but scalar multiplication defined by λ⊙ z = λz .

Proposition 2.1

Given a complex Banach space E, FBLC[E ] is lattice isometric to FBLC[E ]

Examples of E non-isomorphic to E : Bourgain 1986, Kalton 1995.

We have a partial converse result to the previous proposition:

Proposition 2.2 (complex version of Oikhberg et alii)

Let E , F be complex Banach spaces which have smooth dual. If FBLC[E ]
is lattice isometric to FBLC[F ], then E is isometric to F or F .
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Another construction of FBLC[E ]

A complex vector lattice Z is the complexification of a real vector lattice
X , that is, Z = X ⊕ iX , such that for every x + iy ∈ Z we have that
|(x , y)| ∈ Z .

By a complex vector sublattice Y of XC we mean a conjugation
invariant vector subspace such that |z | ∈ Y whenever z ∈ Y .

Proposition 2.3 (complex version of Troitsky 2019)

Let E be a complex Banach space. Let LC = L ⊕ iL the complex vector
sublattice of RE∗

R ⊕ iRE∗
R generated by {δE (x) : x ∈ E}. There exists

a maximal lattice seminorm ν on L such that ν(|δE (x)|) ≤ ∥x∥ for every
x ∈ L. The function ν is a lattice norm and the norm completion of LC
respect to ν(| · |) is FBLC[E ].

It is possible to contruct the FVLC(A) and FBLC(A) (Baker 1968, De
Pagter-Wickstead 2015).
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Thank you for your attention.
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