

Subspaces of C(K) with unique Hahn-Banach extensions

A joint work with Antonio José Guirao and Vicente Montesinos

Christian Cobollo

Workshop on Banach spaces and Banach lattices II ICMAT (Madrid), 9-13 May 2022

This work is supported by GVA, Project PROMETEO/2021/070.

Christian Cobollo (UPV)

R. R. Phelps, Uniqueness of Hahn–Banach extensions and unique best approximation (1960).

Christian Cobollo (UPV)

Subspaces of C(K) with property L

9-13 May 2022

Christian Cobollo (UPV)

Subspaces of C(K) with property U

9-13 May 2022

Definition (Phelps, 1960)

 $M \hookrightarrow X$ has **property** U in X if: every $f^* \in M^*$ has unique norm-preserving extension to X.

Christian Cobollo (UPV)

Subspaces of C(K) with property L

9-13 May 2022

Christian Cobollo (UPV)

Christian Cobollo (UPV)

Definition (Sullivan, 1977)

X is Hahn–Banach Smooth if: X has property U in X^{**} .

Christian Cobollo (UPV)

C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings (2020).

Theorem

Let $(X, \|\cdot\|)$ be a Banach space. TFAE:

- X renormable s.t. X has property U in X^{**} ;
- 2 X^* renormable s.t. w^* -w-Kadets–Klee norm;
- 3 X^* renormable dual LUR norm;
- **3** X renormable s.t. **every** $M \hookrightarrow X$ has property U in X^{**} .

Christian Cobollo (UPV)

Christian Cobollo (UPV)

Subspaces of C(K) with property U

9-13 May 2022

Example

Take $K_X := (B_{X^*}, w^*)$. Then X can be considered as a linear closed subspace of $C(K_X)$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* never has property *U* in $C(K_X)$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* never has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* never has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$. $\delta_{x^*} \in C(K_X)^*$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* never has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$. $\delta_{x^*}, -\delta_{-x^*} \in C(K_X)^*$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* **never** has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$. $\delta_{x^*}, -\delta_{-x^*} \in C(K_X)^*$. Clearly, for $x \in X \hookrightarrow C(K_X) \langle \delta_{x^*}, x \rangle = \langle x^*, x \rangle$

.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* **never** has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$. $\delta_{x^*}, -\delta_{-x^*} \in C(K_X)^*$. Clearly, for $x \in X \hookrightarrow C(K_X) \langle \delta_{x^*}, x \rangle = \langle x^*, x \rangle = \langle -\delta_{-x^*}, x \rangle$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* **never** has property *U* in $C(K_X)$.

Let
$$x^* \in S_{X^*}$$
.
 $\delta_{x^*}, -\delta_{-x^*} \in C(K_X)^*$.
Clearly, for $x \in X \hookrightarrow C(K_X) \langle \delta_{x^*}, x \rangle = \langle x^*, x \rangle = \langle -\delta_{-x^*}, x \rangle$.
Also $\|x^*\| = \|\delta_{x^*}\| = \|-\delta_{-x^*}\| = 1$.

Example

Take $K_X := (B_{X^*}, w^*)$. Then *X* can be considered as a linear closed subspace of $C(K_X)$. But, *X* **never** has property *U* in $C(K_X)$.

Let $x^* \in S_{X^*}$. $\delta_{x^*}, -\delta_{-x^*} \in C(K_X)^*$. Clearly, for $x \in X \hookrightarrow C(K_X) \langle \delta_{x^*}, x \rangle = \langle x^*, x \rangle = \langle -\delta_{-x^*}, x \rangle$. Also $||x^*|| = ||\delta_{x^*}|| = || - \delta_{-x^*}|| = 1$. $\implies \delta_{x^*}$ and $-\delta_{-x^*}$ are two different HB-extentions of x^* .

Property U inside C(K)Phelps' Approach

Duality of the subspace:

Property U inside C(K)Phelps' Approach

Duality of the subspace: A linear subspace M has property U in X iff M^{\perp} is Haar (Chebyshev) subspace in X^* .

Property U inside C(K)Phelos' Approach

Duality of the subspace: A linear subspace M has property U in X iff M^{\perp} is Haar (Chebyshev) subspace in X^* .

Proposition

Let $X \hookrightarrow C(K)$, dim(X) = n. If X has property U in C(K), then for every $x \in X$, |x(t)| = ||x|| for at most n points $t \in K$.

Phelps' Approach

Duality of the subspace: A linear subspace M has property U in X iff M^{\perp} is Haar (Chebyshev) subspace in X^* .

Proposition

Let $X \hookrightarrow C(K)$, dim(X) = n. If X has property U in C(K), then for every $x \in X$, |x(t)| = ||x|| for at most n points $t \in K$.

Proposition

Let $A \subset K$ closed set. Then the closed ideal $I_A := \{f \in C(K) : f(a) = 0, \text{ for every } a \in A\}$ has property U in C(K).

Phelps' Approach

Duality of the subspace: A linear subspace M has property U in X iff M^{\perp} is Haar (Chebyshev) subspace in X^* .

Proposition

Let $X \hookrightarrow C(K)$, dim(X) = n. If X has property U in C(K), then for every $x \in X$, |x(t)| = ||x|| for at most n points $t \in K$.

Proposition

Let $A \subset K$ closed set. Then the closed ideal $I_A := \{f \in C(K) : f(a) = 0, \text{ for every } a \in A\}$ has property U in C(K).

Notice $X \hookrightarrow C(K)$ is an *M*-ideal if and only if $X = I_A$ for some closed $A \subset K$.

Definition

Definition

Definition

Let $T: X \to Y$, it is a *U*-embedding of *X* into *Y* if *T* is a linear isometry whose range has property *U* in *Y*.

Proposition

Let $T: X \to Y$ *U*-embedding, $A \subset S_{X^*}$. Then, $T^*_{|\mathsf{HB}(A)} : \mathsf{HB}(A) \to A$ is a w^* - w^* -homeomorphism.

Definition

Definition

Definition

Definition

Definition

Definition

Let $T: X \to Y$, it is a *U*-embedding of *X* into *Y* if *T* is a linear isometry whose range has property *U* in *Y*.

Proposition (Necessary condition 1)

Let $T: X \to C(K)$ be a *U*-embedding. Then, B_{X^*} is a **simplexoid**.

Definition

Let $T: X \to Y$, it is a *U*-embedding of *X* into *Y* if *T* is a linear isometry whose range has property *U* in *Y*.

Definition

Let $T: X \to Y$, it is a *U*-embedding of *X* into *Y* if *T* is a linear isometry whose range has property *U* in *Y*.

Definition

Let $T: X \to Y$, it is a *U*-embedding of *X* into *Y* if *T* is a linear isometry whose range has property *U* in *Y*.

Necessary conditions

$\mathfrak{B}(X, C(K)) \longleftrightarrow C(K, (X^*, w^*))$ $T \qquad F$

Necessary conditions

$\mathfrak{B}(X, C(K)) \longleftrightarrow C(K, (X^*, w^*))$ $T \qquad F$

 $T: X \to C(K)$ linear operator $\implies F_T := T^* \circ \delta^K$.

Necessary conditions

$$\mathfrak{B}(X, C(K)) \longleftrightarrow C(K, (X^*, w^*))$$

$$T \qquad F$$

 $T: X \to C(K)$ linear operator $\implies F_T := T^* \circ \delta^K$. $F: K \to X^* w^*$ -continuous map $\implies T_F x(t) := \langle x, F(t) \rangle$.

Necessary conditions

Lemma

Let *K* compact, *X* Banach space. Let $F \in C(K, (X^*, w^*))$. TFAE:

- T_F is an isometry into.
- 2 $-F(K) \cup F(K)$ is a James boundary for X.
- F(K) is a 1-norming subset of S_{X^*} .
- $F(K) \subset B_{X^*}$ and Ext $B_{X^*} \subset -F(K) \cup F(K)$.

Necessary conditions

Christian Cobollo (UPV)

Subspaces of C(K) with property U

9-13 May 2022

Necessary conditions

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Subspaces of C(K) with property U

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Subspaces of C(K) with property U

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Proposition (Necessary condition 2)

Let $T: X \to C(K)$ be a U-embedding. Then, if $t, s \in K$ $t \neq s$ such that $F(t) = \pm F(s)$, then ||F(t)|| < 1.

Necessary conditions

Remark

Let $F \in C(K, (X^*, w^*))$ and $t \in K$ such that ||F(t)|| = 1. Then $\delta_t \in C(K)^*$ is a Hahn–Banach extension of F(t).

Proposition (Necessary condition 2)

Let $T: X \to C(K)$ be a U-embedding. Then, if $t, s \in K$ $t \neq s$ such that $F(t) = \pm F(s)$, then ||F(t)|| < 1.

Remark

In particular: $-F(K) \cap F(K) \cap S_{X^*} = \emptyset$.

Necessary conditions

Proposition (Necessary condition 3)

Let $T: X \to C(K)$ be a *U*-embedding. Put $E_1^+ := F_T(K) \cap \text{Ext } B_{X^*}$. If $t \in K$ such that $\delta_t \notin \overline{\text{HB}_T(E_1^+)}^{w^*}$, then ||F(t)|| < 1.

Necessary conditions

Proposition (Necessary condition 3)

Let $T: X \to C(K)$ be a *U*-embedding. Put $E_1^+ := F_T(K) \cap \text{Ext } B_{X^*}$. If $t \in K$ such that $\delta_t \notin \overline{\text{HB}_T(E_1^+)}^{w^*}$, then ||F(t)|| < 1.

Christian Cobollo (UPV)

Subspaces of C(K) with property U

Necessary conditions

Proposition (Necessary condition 3)

Let $T: X \to C(K)$ be a *U*-embedding. Put $E_1^+ := F_T(K) \cap \text{Ext } B_{X^*}$. If $t \in K$ such that $\delta_t \notin \overline{\text{HB}_T(E_1^+)}^{w^*}$, then ||F(t)|| < 1.

Christian Cobollo (UPV)

Subspaces of C(K) with property U

Necessary conditions

Proposition (Necessary condition 3)

Let $T: X \to C(K)$ be a *U*-embedding. Put $E_1^+ := F_T(K) \cap \text{Ext } B_{X^*}$. If $t \in K$ such that $\delta_t \notin \overline{\text{HB}_T(E_1^+)}^{w^*}$, then ||F(t)|| < 1.

Necessary conditions

Proposition (Necessary condition 3)

Let $T: X \to C(K)$ be a *U*-embedding. Put $E_1^+ := F_T(K) \cap \text{Ext } B_{X^*}$. If $t \in K$ such that $\delta_t \notin \overline{\text{HB}_T(E_1^+)}^{w^*}$, then ||F(t)|| < 1.

Necessary conditions

Necessary condition: B_{X^*} a simplexoid.

Necessary conditions

Necessary condition: B_{X^*} a simplexoid.

Definition

Given a Banach space X, a w^* -closed set $E \subset B_{X^*}$ will be called U-suitable if it satisfies the following properties:

$$2 -E \cup E = \overline{\mathsf{Ext} \ B_{X^*}}^{w^*}$$

Moreover, we will say *E* is **proper** *U*-suitable set if:

$$\overline{\mathsf{Ext}\,\mathfrak{F}(x)}^{w^*} \cap E = \mathfrak{F}(x) \cap E, \quad \text{for every } x \in S_X.$$

Necessary conditions

Proposition

Let *X* be a Banach space such that $(\overline{\operatorname{Ext} B_{X^*}}^{w^*} \cap S_{X^*}, w^*)$ is connected. Then, *X* cannot be U-embedded into a C(K)-space.

Necessary conditions

Proposition

Let *X* be a Banach space such that $(\overline{\operatorname{Ext} B_{X^*}}^{w^*} \cap S_{X^*}, w^*)$ is connected. Then, *X* cannot be U-embedded into a C(K)-space.

Corollary

No Gâteaux smooth Banach space can be U-embedded into a C(K) space.

Theorem

Let *X* be a separable Banach space whose dual ball is a simplexoid and admitting a proper *U*-suitable set *E*. Then there exist a wU-embedding from *X* into C(E).

Theorem

Let *X* be a separable Banach space whose dual ball is a simplexoid and admitting a proper *U*-suitable set *E*. Then there exist a wU-embedding from *X* into C(E).

Theorem

Let *X* be a separable Banach space whose dual ball is a simplexoid and admitting a proper *U*-suitable set *E*. Then there exist a wU-embedding from *X* into C(E).

Christian Cobollo (UPV)

Subspaces of C(K) with property U

Theorem

Let *X* be a separable Banach space whose dual ball is a simplexoid and admitting a proper *U*-suitable set *E*. Then there exist a wU-embedding from *X* into C(E).

9-13 May 2022

Theorem

Let *X* be a separable Banach space whose dual ball is a simplexoid and admitting a proper *U*-suitable set *E*. Then there exist a wU-embedding from *X* into C(E).

Christian Cobollo (UPV)

Subspaces of C(K) with property U

Proposition

A finite-dimensional Banach space X can be U-embedded into a C(K) if and only if its dual unit ball is a simplexoid and admits a proper U-suitable set.

Proposition

A finite-dimensional Banach space X can be U-embedded into a C(K) if and only if its dual unit ball is a simplexoid and admits a proper U-suitable set.

Corollary

A two-dimensional Banach space X can be U-embedded into a C(K) if and only if it is not Gâteaux smooth.

C(K) inside C(K)

• C(K) and C(S) have the same structure. • $T: C(K) \to C(S) \iff h: K \to S.$

Proposition

Let $T: C(K) \to C(S)$ be a U-embedding. Then, the homeomorphic copy of K inside S is a G_{δ} set.

Proposition

Let $T: C(K) \to C(S)$ be a *U*-embedding. Then, the homeomorphic copy of *K* inside *S* is a G_{δ} set.

Theorem

Let *K* and *S* be compact spaces and isometric embedding $T: C(K) \rightarrow C(S)$. TFAE:

- T is a U-embedding;
- 2 There exist a closed $S_0 \subset S$, an homeomorphism $h: K \to S_0$ and a continuous function $\varepsilon: K \to \{\pm 1\}$ such that $F_T(h(t)) = \varepsilon(t)\delta_t^K$ for every $t \in K$ and $||F_T(s)|| < 1$ for every $s \in S \setminus S_0$;

Proposition

Let $T: C(K) \to C(S)$ be a *U*-embedding. Then, the homeomorphic copy of *K* inside *S* is a G_{δ} set.

Theorem

Let *K* and *S* be compact spaces and isometric embedding $T \colon C(K) \to C(S)$. TFAE:

- T is a U-embedding;
- 2 There exist a closed $S_0 \subset S$, an homeomorphism $h: K \to S_0$ and a continuous function $\varepsilon: K \to \{\pm 1\}$ such that $F_T(h(t)) = \varepsilon(t)\delta_t^K$ for every $t \in K$ and $||F_T(s)|| < 1$ for every $s \in S \setminus S_0$;
- Solution There exists a continuous embedding h: K → S admitting a Pełczyńsky's norm-one extension operator with h(K) a G_δ set.

The "canonical way", once more, fails.

Proposition

Let $h: S \to K$ continuous and onto. Then, the composition operator $h^\circ: C(K) \to C(S)$ is a *U*-embedding iff h is a homeomorphism

The "canonical way", once more, fails.

Proposition

Let $h: S \to K$ continuous and onto. Then, the composition operator $h^{\circ}: C(K) \to C(S)$ is a *U*-embedding iff *h* is a homeomorphism

However:

The "canonical way", once more, fails.

Proposition

Let $h: S \to K$ continuous and onto. Then, the composition operator $h^{\circ}: C(K) \to C(S)$ is a *U*-embedding iff *h* is a homeomorphism

However:

Proposition

Let $K \subset S$ be a G_{δ} set, and $r : S \to K$ a retraction. Then there exist a U-embedding from C(K) into C(S).

- C. C., A. J. Guirao, and V. Montesinos, A remark on totally smooth renormings (2020).
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions (1968).
- R. R. Phelps, Uniqueness of Hahn–Banach extensions and unique best approximation (1960).

R. R. Phelps, Lectures on Choquet's theorem (2001).

Thanks For Your Attention!

Subspaces of C(K) with property U

9-13 May 2022