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A joint work with Antonio José Guirao and Vicente Montesinos

Christian Cobollo

Workshop on Banach spaces and Banach lattices II ICMAT
(Madrid), 9-13 May 2022

This work is supported by GVA, Project PROMETEO/2021/070.
Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Motivation
R. Phelps

R. R. Phelps, Uniqueness of Hahn–Banach extensions and
unique best approximation (1960).
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Motivation
Unique Extension Properties

Definition (Phelps, 1960)
M ↪→ X has property U in X if: every f∗ ∈ M∗ has unique
norm-preserving extension to X.
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Motivation
Unique Extension Properties

Definition (Sullivan, 1977)
X is Hahn–Banach Smooth if: X has property U in X∗∗.
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Motivation
Unique Extension Properties

C. C., A. J. Guirao, and V. Montesinos, A remark on totally
smooth renormings (2020).

Theorem
Let (X, ∥ · ∥) be a Banach space. TFAE:

1 X renormable s.t. X has property U in X∗∗;
2 X∗ renormable s.t. w∗-w-Kadets–Klee norm;
3 X∗ renormable dual LUR norm;
4 X renormable s.t. every M ↪→ X has property U in X∗∗.
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Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX).
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Example
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Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .
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Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .

δx∗

, −δ−x∗

∈ C(KX)∗.
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Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .

δx∗ , −δ−x∗ ∈ C(KX)∗.

Clearly, for x ∈ X ↪→ C(KX) ⟨δx∗ , x⟩ = ⟨x∗, x⟩

= ⟨−δ−x∗ , x⟩

.

Also ∥x∗∥ = ∥δx∗∥ = ∥ − δ−x∗∥ = 1.

=⇒ δx∗ and −δ−x∗ are two different HB-extentions of x∗.

Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .

δx∗ , −δ−x∗ ∈ C(KX)∗.

Clearly, for x ∈ X ↪→ C(KX) ⟨δx∗ , x⟩ = ⟨x∗, x⟩ = ⟨−δ−x∗ , x⟩.

Also ∥x∗∥ = ∥δx∗∥ = ∥ − δ−x∗∥ = 1.

=⇒ δx∗ and −δ−x∗ are two different HB-extentions of x∗.

Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Motivation
Unique Extension Properties in C(K)

Example

Take KX := (BX∗ , w∗). Then X can be considered as a linear closed
subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .

δx∗ , −δ−x∗ ∈ C(KX)∗.

Clearly, for x ∈ X ↪→ C(KX) ⟨δx∗ , x⟩ = ⟨x∗, x⟩ = ⟨−δ−x∗ , x⟩.

Also ∥x∗∥ = ∥δx∗∥ = ∥ − δ−x∗∥ = 1.

=⇒ δx∗ and −δ−x∗ are two different HB-extentions of x∗.

Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Motivation
Unique Extension Properties in C(K)

Example
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subspace of C(KX). But, X never has property U in C(KX).

Let x∗ ∈ SX∗ .

δx∗ , −δ−x∗ ∈ C(KX)∗.

Clearly, for x ∈ X ↪→ C(KX) ⟨δx∗ , x⟩ = ⟨x∗, x⟩ = ⟨−δ−x∗ , x⟩.

Also ∥x∗∥ = ∥δx∗∥ = ∥ − δ−x∗∥ = 1.

=⇒ δx∗ and −δ−x∗ are two different HB-extentions of x∗.

Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Property U inside C(K)
Phelps’ Approach

Duality of the subspace:

A linear subspace M has property U in X iff
M⊥ is Haar (Chebyshev) subspace in X∗.

Proposition

Let X ↪→ C(K), dim(X) = n. If X has property U in C(K), then for
every x ∈ X, |x(t)| = ∥x∥ for at most n points t ∈ K.

Proposition
Let A ⊂ K closed set. Then the closed ideal
IA := {f ∈ C(K) : f(a) = 0, for every a ∈ A} has property U in C(K).

Notice X ↪→ C(K) is an M -ideal if and only if X = IA for some closed
A ⊂ K.
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Property U inside C(K)

Definition
Let T : X → Y , it is a U -embedding of X into Y if T is a linear isometry
whose range has property U in Y .
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Property U inside C(K)

Definition
Let T : X → Y , it is a U -embedding of X into Y if T is a linear isometry
whose range has property U in Y .

Proposition

Let T : X → Y U -embedding, A ⊂ SX∗ . Then, T ∗
|HB(A) : HB(A) → A is

a w∗-w∗-homeomorphism.
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Property U inside C(K)

Definition
Let T : X → Y , it is a U -embedding of X into Y if T is a linear isometry
whose range has property U in Y .

Proposition (Necessary condition 1)

Let T : X → C(K) be a U -embedding. Then, BX∗ is a simplexoid.
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Looking for U -embeddings into C(K)
Necessary conditions

T : X → C(K) linear operator =⇒ FT := T ∗ ◦ δK .

F : K → X∗ w∗-continuous map =⇒ TF x(t) := ⟨x, F (t)⟩.
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Looking for U -embeddings into C(K)
Necessary conditions

Lemma
Let K compact, X Banach space. Let F ∈ C(K, (X∗, w∗)). TFAE:

1 TF is an isometry into.
2 −F (K) ∪ F (K) is a James boundary for X.
3 F (K) is a 1-norming subset of SX∗ .
4 F (K) ⊂ BX∗ and Ext BX∗ ⊂ −F (K) ∪ F (K).
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Looking for U -embeddings into C(K)
Necessary conditions

Remark
Let F ∈ C(K, (X∗, w∗)) and t ∈ K such that ∥F (t)∥ = 1. Then
δt ∈ C(K)∗ is a Hahn–Banach extension of F (t).
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Looking for U -embeddings into C(K)
Necessary conditions

Remark
Let F ∈ C(K, (X∗, w∗)) and t ∈ K such that ∥F (t)∥ = 1. Then
δt ∈ C(K)∗ is a Hahn–Banach extension of F (t).

Proposition (Necessary condition 2)

Let T : X → C(K) be a U -embedding. Then, if t, s ∈ K t ̸= s such that
F (t) = ±F (s), then ∥F (t)∥ < 1.

Christian Cobollo (UPV) Subspaces of C(K) with property U 9-13 May 2022



Looking for U -embeddings into C(K)
Necessary conditions

Remark
Let F ∈ C(K, (X∗, w∗)) and t ∈ K such that ∥F (t)∥ = 1. Then
δt ∈ C(K)∗ is a Hahn–Banach extension of F (t).

Proposition (Necessary condition 2)

Let T : X → C(K) be a U -embedding. Then, if t, s ∈ K t ̸= s such that
F (t) = ±F (s), then ∥F (t)∥ < 1.

Remark
In particular: −F (K) ∩ F (K) ∩ SX∗ = ∅.
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Looking for U -embeddings into C(K)
Necessary conditions

Proposition (Necessary condition 3)

Let T : X → C(K) be a U -embedding. Put E+
1 := FT (K) ∩ Ext BX∗ . If

t ∈ K such that δt ̸∈ HBT (E+
1 )

w∗

, then ∥F (t)∥ < 1.
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Looking for U -embeddings into C(K)
Necessary conditions

Necessary condition: BX∗ a simplexoid.

Definition
Given a Banach space X, a w∗-closed set E ⊂ BX∗ will be called
U -suitable if it satisfies the following properties:

1 −E ∩ E ∩ SX∗ = ∅.
2 −E ∪ E = Ext BX∗

w∗
.

Moreover, we will say E is proper U -suitable set if:

Ext F(x)w∗
∩ E = F(x) ∩ E, for every x ∈ SX .
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Looking for U -embeddings into C(K)
Necessary conditions

Proposition

Let X be a Banach space such that (Ext BX∗
w∗

∩ SX∗ , w∗) is
connected. Then, X cannot be U-embedded into a C(K)-space.

Corollary

No Gâteaux smooth Banach space can be U -embedded into a C(K)
space.
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Construction of embeddings with unique extensions

Theorem
Let X be a separable Banach space whose dual ball is a simplexoid
and admitting a proper U -suitable set E. Then there exist a
wU -embedding from X into C(E).

This argument cannot be easily extended to non-separable space.
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Construction of embeddings with unique extensions

Proposition
A finite-dimensional Banach space X can be U -embedded into a
C(K) if and only if its dual unit ball is a simplexoid and admits a proper
U -suitable set.

Corollary

A two-dimensional Banach space X can be U -embedded into a C(K)
if and only if it is not Gâteaux smooth.
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C(K) inside C(K)

1 C(K) and C(S) have the same structure.
2 T : C(K) → C(S) ⇐⇒ h : K → S.
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C(K) inside C(K)

Proposition

Let T : C(K) → C(S) be a U -embedding. Then, the homeomorphic
copy of K inside S is a Gδ set.

Theorem
Let K and S be compact spaces and isometric embedding
T : C(K) → C(S). TFAE:

1 T is a U -embedding;
2 There exist a closed S0 ⊂ S, an homeomorphism h : K → S0 and

a continuous function ε : K → {±1} such that FT (h(t)) = ε(t)δK
t

for every t ∈ K and ∥FT (s)∥ < 1 for every s ∈ S \ S0;
3 There exists a continuous embedding h : K → S admitting a

Pełczyńsky’s norm-one extension operator with h(K) a Gδ set.
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C(K) inside C(K)

The “canonical way”, once more, fails.

Proposition
Let h : S → K continuous and onto. Then, the composition operator
h◦ : C(K) → C(S) is a U -embedding iff h is a homeomorphism

However:

Proposition
Let K ⊂ S be a Gδ set, and r : S → K a retraction. Then there exist a
U -embedding from C(K) into C(S).
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The End

Thanks For Your Attention!
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