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Background
Copies of ℓ1 and octahedral norms

Definition (G. Godefroy and B. Maurey)

X is octahedral if, for every finite-dimensional Y ⊂ X and ε > 0,
there is x ∈ SX such that

∥y + rx∥ ≥ (1− ε)(∥y∥+ |r |) ∀y ∈ Y and r ∈ R.

Examples: ℓ1, L1[0, 1] and C [0, 1].

Theorem (G. Godefroy, 1989)

Tfae:

(i) ℓ1 ⊂ X,

(ii) X admits an equivalent octahedral norm.
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Background
Copies of ℓ1 and octahedral norms

Definition (S. Ciaci, J. Langemets and A. Lissitsin)

X is < κ-octahedral if, for every Y ⊂ X with dens(Y ) < κ and
ε > 0, there is x ∈ SX such that

∥y + rx∥ ≥ (1− ε)(∥y∥+ |r |) ∀y ∈ Y and r ∈ R.

Theorem (A. Avilés, G. Mart́ınez-Cervantes and A. Rueda Zoca,
2021)

If κ > ℵ0, then tfae:

(i) ℓ1(κ) ⊂ X,

(ii) X admits an equivalent < κ-”rigid octahedral” norm.
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Background
Copies of c0 and almost square norms

Definition (T. A. Abrahamsen, J. Langemets and V. Lima)

X is almost square (ASQ) if, for every finite-dimensional Y ⊂ X
and ε > 0, there is x ∈ SX such that

∥y + rx∥ ≤ (1 + ε)max{∥y∥, |r |} ∀y ∈ Y and r ∈ R.

Examples: c0, M-embedded spaces, somewhat regular subspaces of
C0(X ) and Gurarii spaces.

Theorem (J. Becerra Guerrero, G. López-Pérez and A. Rueda
Zoca, 2016)

Tfae:

(i) c0 ⊂ X,

(ii) X admits an equivalent ASQ norm.

Stefano Ciaci Transfinite almost square Banach spaces



Background
Copies of c0 and almost square norms

Definition (T. A. Abrahamsen, J. Langemets and V. Lima)

X is almost square (ASQ) if, for every finite-dimensional Y ⊂ X
and ε > 0, there is x ∈ SX such that

∥y + rx∥ ≤ (1 + ε)max{∥y∥, |r |} ∀y ∈ Y and r ∈ R.

Examples: c0, M-embedded spaces, somewhat regular subspaces of
C0(X ) and Gurarii spaces.

Theorem (J. Becerra Guerrero, G. López-Pérez and A. Rueda
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Question

What is the connection between the containment of c0(κ) and
transfinite versions of ASQ equivalent renorming?
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Transfinite ASQ spaces
ASQ<κ and SQ<κ spaces

Definition

X is < κ-almost square (ASQ<κ) if, for every Y ⊂ X with
dens(Y ) < κ and ε > 0, there is x ∈ SX such that

∥y + rx∥ ≤ (1 + ε)max{∥y∥, |r |} ∀y ∈ Y and r ∈ R,

X is < κ-square (SQ<κ) if, for every Y ⊂ X with
dens(Y ) < κ, there is x ∈ SX such that

∥y + rx∥ = max{∥y∥, |r |} ∀y ∈ Y and r ∈ R.

Examples: c0(κ) and ℓc∞(κ).
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Transfinite ASQ spaces
Examples

Let F be a non-principal ultrafilter over N. Define

||| x ||| := max

{∣∣∣∣limF x(n)

∣∣∣∣ , sup
n∈N

∣∣∣∣x(n)− lim
F

x(m)

∣∣∣∣} .

Then (ℓ∞, ||| · |||) is SQ<ℵ0 , but it is not ASQ<ℵ1 .

Define

Xn :=
{
f ∈ SC(Rn) : f (x) = −f (−x) ∀x ∈ SRn

}
.

Then c0(N,Xn) and ℓ∞(N,Xn) are SQ<ℵ0 .

If X is a space of almost universal disposition for Banach
spaces of density character < κ, then X is ASQ<κ.
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Transfinite ASQ spaces
Examples

Proposition (A. Avilés, G. Mart́ınez-Cervantes and A. Rueda Zoca)

Let X be a locally compact Hausdroff space. C0(X ) is ASQ if,
and only if, X is non-compact.

Theorem

Let X be T4 locally compact and κ > ℵ0. Tfae:

(i) C0(X ) is ASQ<κ,

(ii) C0(X ) is SQ<κ,

(iii) If K is a family consisting of < κ many compact sets in X ,
then

⋃
K is not dense in X .
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The renorming problem
ASQ<κ and the containment of c0(κ)

Theorem

c0(N≥2, ℓn(κ)) is ASQ<κ but it doesn’t contain c0(ω1).

Theorem

Let K be compact Hausdorff. If C (K ) admits an equivalent
ASQ<κ norm, then it contains c0(κ).

If a Banach space is SQ,κ, then it contains c0(κ).

Question

If c0(κ) ⊂ X , then X admits an equivalent SQ<κ norm?
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The renorming problem
The case κ = ℵ0

Theorem

Let X be a dual space. If c0 ⊂ X, then X admits an equivalent
SQ<ℵ0 norm.

Proof.

If c0 ⊂ X , then ℓ∞ ⊂ X and it is complemented (ℓ∞ is
1-injective), i.e. X = ℓ∞ ⊕ Z . Endow X with an equivalent norm
such that X = (ℓ∞, ||| · |||)⊕∞ Z , where (ℓ∞, ||| · |||) is SQ<ℵ0 . Since
being SQ<ℵ0 is passed by one component through ∞-sums, the
claim follows.
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The renorming problem
General results

Proposition

Let λ ≥ κ > ℵ0. If there is a κ-complete ultrafilter over λ, then
ℓ∞(λ) admits an equivalent SQ<κ norm.

The existence of such ultrafilter is a large cardinal axiom, and λ
must be bigger than the smallest measurable cardinal.

Corollary

Assume ZF+AD. If κ ∈ {ℵ1,ℵ2}, then ℓ∞(κ) admits an
equivalent SQ<κ norm.

Theorem

Let cf(κ) > ℵ0 and dens(X ) = κ. If c0(κ) ⊂ X, then X admits an
equivalent SQ<κ norm.

Stefano Ciaci Transfinite almost square Banach spaces



The renorming problem
General results

Proposition

Let λ ≥ κ > ℵ0. If there is a κ-complete ultrafilter over λ, then
ℓ∞(λ) admits an equivalent SQ<κ norm.

The existence of such ultrafilter is a large cardinal axiom, and λ
must be bigger than the smallest measurable cardinal.

Corollary

Assume ZF+AD. If κ ∈ {ℵ1,ℵ2}, then ℓ∞(κ) admits an
equivalent SQ<κ norm.

Theorem

Let cf(κ) > ℵ0 and dens(X ) = κ. If c0(κ) ⊂ X, then X admits an
equivalent SQ<κ norm.

Stefano Ciaci Transfinite almost square Banach spaces



The renorming problem
General results

Proposition

Let λ ≥ κ > ℵ0. If there is a κ-complete ultrafilter over λ, then
ℓ∞(λ) admits an equivalent SQ<κ norm.

The existence of such ultrafilter is a large cardinal axiom, and λ
must be bigger than the smallest measurable cardinal.

Corollary

Assume ZF+AD. If κ ∈ {ℵ1,ℵ2}, then ℓ∞(κ) admits an
equivalent SQ<κ norm.

Theorem

Let cf(κ) > ℵ0 and dens(X ) = κ. If c0(κ) ⊂ X, then X admits an
equivalent SQ<κ norm.

Stefano Ciaci Transfinite almost square Banach spaces



The renorming problem
General results

Proposition

Let λ ≥ κ > ℵ0. If there is a κ-complete ultrafilter over λ, then
ℓ∞(λ) admits an equivalent SQ<κ norm.

The existence of such ultrafilter is a large cardinal axiom, and λ
must be bigger than the smallest measurable cardinal.

Corollary

Assume ZF+AD. If κ ∈ {ℵ1,ℵ2}, then ℓ∞(κ) admits an
equivalent SQ<κ norm.

Theorem

Let cf(κ) > ℵ0 and dens(X ) = κ. If c0(κ) ⊂ X, then X admits an
equivalent SQ<κ norm.

Stefano Ciaci Transfinite almost square Banach spaces



Overview

◦ Background

◦ Transfinite almost square spaces

◦ The renorming problem

More examples

Direct sums
Tensor products
Ultraproducts

◦ Octahedral norms

Stefano Ciaci Transfinite almost square Banach spaces



More examples
Direct sums

Proposition

Let {Xα : α ∈ A } be a family. If, for every ε > 0, there is β ∈ A
such that Xβ is ”ε-ASQ<κ”, then ℓ∞(A ,Xα) is ASQ<κ.

Corollary

X ⊕∞ Y is (A)SQ<κ if and only if either X or Y is (A)SQ<κ.

Proposition

Let {Xα : α ∈ A } be an uncountable family, then c0(A ,Xα) is
SQ<κ.
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More examples
Tensor products and ultraproducts

Proposition

Let κ > ℵ0. If X and Y are (A)SQ<κ, then X ⊗̂πY is (A)SQ<κ.

Proposition

Let κ > ℵ0. If X is (A)SQ<κ, then X ⊗̂εY is (A)SQ<κ.

Denote c0,F (A ,Xα) :=

{
x ∈ ℓ∞(A ,Xα) : lim

F
x(α) = 0

}

Proposition

Let {Xα : α ∈ A } be an infinite family of ASQ<κ spaces and F a
non-principal ultrafilter in A . If F is not ℵ1-complete, then
ℓ∞(A ,Xα)/c0,F (A ,Xα) is SQ<κ
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Octahedral norms

Theorem (T. A. Abrahamsen, J. Langemets and V. Lima)

If X is ASQ, then X ∗ is octahedral.

Proposition

If X is ASQ<κ, then X ∗ is < κ-octahedral.

Proposition

If X is SQ<κ and κ > ℵ0, then X ∗ is < κ-”rigid octahedral”.
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End

Thank you for your attention!

A. Avilés, S. Ciaci, J. Langemets, A. Lissitsin and A. Rueda Zoca
Transfinite almost square Banach spaces
https://doi.org/10.48550/arXiv.2204.13449
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