Generalized Mazur maps in a noncommutative setting

J. Alejandro Chávez-Domínguez

Department of Mathematics The University of Oklahoma

Supported by NSF grant DMS-1900985

Workshop on Banach spaces and Banach lattices II ICMAT, Madrid

May 10, 2022

J.A. Chávez-Domínguez (OU)

Generalized Mazur maps

Unit spheres/balls

Notation

For a Banach space *X*, we will denote its unit sphere by $\mathscr{S}(X) = \{x \in X : ||x|| = 1\},\$

Disclaimer

I would normally write S_X , but we will be considering spaces like the Schatten *p*-class S_p and writing S_{S_p} is just awful.

J.A. Chávez-Domínguez (OU)

Generalized Mazur maps

Unit spheres/balls

Notation

For a Banach space *X*, we will denote its unit sphere by

$$\mathscr{S}(X) = \{ x \in X : ||x|| = 1 \},$$

and its unit ball by

$$\mathscr{B}(X) = \{x \in X : \|x\| \le 1\}$$

Disclaimer

I would normally write S_X , but we will be considering spaces like the Schatten *p*-class S_p and writing S_{S_p} is just awful.

Theorem (Kadets 1966)

Any two separable infinite-dimensional Banach spaces are homeomorphic.

Theorem (Kadets 1966)

Any two separable infinite-dimensional Banach spaces are homeomorphic.

Theorem (Johnson–Lindenstrauss–Schechtman 1996) For 1 , if*X* $is uniformly homeomorphic to <math>\ell_p$, then *X* is isomorphic to ℓ_p .

Theorem (Kadets 1966)

Any two separable infinite-dimensional Banach spaces are homeomorphic.

Theorem (Johnson–Lindenstrauss–Schechtman 1996) For 1 , if*X* $is uniformly homeomorphic to <math>\ell_p$, then *X* is isomorphic to ℓ_p .

Theorem (Mazur 1929)

For $1 \le p, q < \infty$, $\mathscr{S}(L_p[0, 1])$ is uniformly homeomorphic to $\mathscr{S}(L_q[0, 1])$.

The classical Mazur map

Say $f \ge 0$ in $L_p(\mu)$. Easiest way to transform it into a function in $L_q(\mu)$?

The classical Mazur map

Say $f \ge 0$ in $L_p(\mu)$. Easiest way to transform it into a function in $L_q(\mu)$? $f \mapsto f^{\frac{p}{q}}$

The classical Mazur map

Say $f \ge 0$ in $L_p(\mu)$. Easiest way to transform it into a function in $L_q(\mu)$? $f \mapsto f^{\frac{p}{q}}$

Definition

For $1 \le p, q < \infty$ and a measure μ , the Mazur map $M_{p,q}: L_p(\mu) \to L_q(\mu)$ is given by

$$f \mapsto f|f|^{\frac{p-q}{q}} = \operatorname{sign}(f)|f|^{\frac{p}{q}}$$

Theorem (Mazur 1929)

For $1 \le p, q < \infty$ and a measure μ , the map $M_{p,q}$ is a uniform homeomorphism between $\mathscr{S}(L_p(\mu))$ and $\mathscr{S}(L_q(\mu))$.

Noncommutative Mazur maps

Definition

For $1 \le p, q < \infty$ and a von Neumann algebra \mathcal{M} , the Mazur map $M_{p,q}: L_p(\mathcal{M}) \to L_q(\mathcal{M})$ is given by

$$f \mapsto f|f|^{\frac{p-q}{q}}$$

Theorem (Ricard 2015)

For $1 \le p, q < \infty$ and a von Neumann algebra \mathcal{M} , the Mazur map $M_{p,q}$ is $\min\{\frac{p}{q}, 1\}$ -Hölder on the unit ball of $L_p(\mathcal{M})$.

In particular, it is a uniform homeomorphism between $\mathscr{S}(L_p(\mathcal{M}))$ and $\mathscr{S}(L_q(\mathcal{M}))$.

- To study noncommutative versions of other generalized Mazur maps that have been useful in Banach space theory.
- Use them to get new examples of uniform homeomorphisms between spheres.

Theorem (Odell–Schlumprecht 1994)

Let *E* be a Banach space with a 1-unconditional basis. Then $\mathscr{S}(E)$ is uniformly homeomorphic to $\mathscr{S}(\ell_1)$ if and only if *E* does not contain ℓ_{∞}^n 's uniformly.

Theorem (Odell–Schlumprecht 1994)

Let *E* be a Banach space with a 1-unconditional basis. Then $\mathscr{S}(E)$ is uniformly homeomorphic to $\mathscr{S}(\ell_1)$ if and only if *E* does not contain ℓ_{∞}^n 's uniformly.

The proof

Is based on two generalizations of the Mazur map:

- A *p*-convexification one.
- An entropy-based one.

The first generalized Mazur map: *p*-convexification

Note that

$$\ell_p = \left\{ (x_j) : (|x_j|^p) \in \ell_1 \right\} \qquad \|(x_j)\|_{\ell_p} = \|(|x_j|^p)\|_{\ell_1}^{1/p}$$

The first generalized Mazur map: *p*-convexification

Note that

$$\ell_p = \{(x_j) : (|x_j|^p) \in \ell_1\} \qquad ||(x_j)||_{\ell_p} = ||(|x_j|^p)||_{\ell_1}^{1/p}$$

Similarly, for a 1-unconditional sequence space E we can define its p-convexification

$$E^{(p)} = \{ (x_j) : (|x_j|^p) \in E \} \qquad ||(x_j)||_{E^{(p)}} = ||(|x_j|^p)||_E^{1/p}$$

The first generalized Mazur map: *p*-convexification

Note that

$$\ell_p = \{(x_j) : (|x_j|^p) \in \ell_1\} \qquad ||(x_j)||_{\ell_p} = ||(|x_j|^p)||_{\ell_1}^{1/p}$$

Similarly, for a 1-unconditional sequence space E we can define its p-convexification

$$E^{(p)} = \{ (x_j) : (|x_j|^p) \in E \} \qquad ||(x_j)||_{E^{(p)}} = ||(|x_j|^p)||_E^{1/p}$$

When *E* is 1-unconditional, the map $G_p : (x_j) \mapsto (\operatorname{sign}(x_j)|x_j|^p)$ maps $\mathscr{S}(E^{(p)})$ to $\mathscr{S}(E)$

Proposition (Odell–Schlumprecht 1994)

Let 1 and let*E*be a Banach space with a 1-unconditional basis. The generalized Mazur map

 $G_p:(x_j)\mapsto \left(\operatorname{sign}(x_j)|x_j|^p\right)$

is a uniform homeomorphism between $\mathscr{S}(E^{(p)})$ and $\mathscr{S}(E)$. Moreover, the moduli of uniform continuity of G_p and G_p^{-1} depend only on p.

Well-known

Entropy of a probability distribution (x_j) : $H = -\sum_j x_j \log(x_j)$

Definition

If $X = (\mathbb{R}^n, \|\cdot\|)$ is a 1-unconditional strictly convex norm and and $x \in \mathbb{R}^n$ is a probability vector, we define $F_X(x)$ to be the $y \in \mathscr{B}(X)^+$ minimizing the quantity $-\sum_j x_j \log(y_j)$, that is $F_X(x) = \underset{y \in \mathscr{B}(X)^+}{\operatorname{arg min}} - \sum_j x_j \log(y_j)$

Well-known

Entropy of a probability distribution (x_j) : $H = -\sum_j x_j \log(x_j)$

Definition

If $X = (\mathbb{R}^n, \|\cdot\|)$ is a 1-unconditional strictly convex norm and and $x \in \mathbb{R}^n$ is a probability vector, we define $F_X(x)$ to be the $y \in \mathscr{B}(X)^+$ minimizing the quantity $-\sum_j x_j \log(y_j)$, that is $F_Y(x) = \arg \min -\sum_j x_j \log(y_j)$

$$F_X(x) = \underset{y \in \mathscr{B}(X)^+}{\operatorname{arg\,min}} - \sum_j x_j \log(y_j)$$

Important note for later

Closely related to the relative entropy or Kullback–Leibler divergence $D(x||y) = \sum_j x_j (\log(x_j) - \log(y_j))$

Let's look at the special case where $X = \ell_p^n$. Fix a probability vector $x \in \mathbb{R}^n$, consider $y \ge 0$ with $||y||_{\ell_p} = 1$. We want to

minimize
$$-\sum_{j} x_j \log(y_j)$$
 subject to $\sum_{j} y_j^p = 1$

Let's look at the special case where $X = \ell_p^n$. Fix a probability vector $x \in \mathbb{R}^n$, consider $y \ge 0$ with $||y||_{\ell_p} = 1$. We want to

minimize
$$-\sum_j x_j \log(y_j)$$
 subject to $\sum_j y_j^p = 1$

by Lagrange multipliers we need to have

$$-rac{x_j}{y_j} = \lambda p y_j^{p-1}$$
 i.e. $-x_j = \lambda p y_j^p$

11/35

Let's look at the special case where $X = \ell_p^n$. Fix a probability vector $x \in \mathbb{R}^n$, consider $y \ge 0$ with $||y||_{\ell_p} = 1$. We want to

minimize
$$-\sum_j x_j \log(y_j)$$
 subject to $\sum_j y_j^p = 1$

by Lagrange multipliers we need to have

$$-rac{x_j}{y_j} = \lambda p y_j^{p-1}$$
 i.e. $-x_j = \lambda p y_j^p$

Adding up we get $\lambda = -1/p$ and thus $y_j = x_j^{1/p}$ meaning

$$F_{\ell_p^n}\bigl((x_j)\bigr) = (x_j^{1/p})$$

J.A. Chávez-Domínguez (OU)

11/35

Proposition (Odell–Schlumprecht 1994)

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an uniformly convex and uniformly smooth space with a 1-unconditional basis. Then $F_X : \mathscr{S}(\ell_1^n) \to \mathscr{S}(X)$ is a uniform homeomorphism; moreover

- The modulus of continuity of *F_X* depends only on the modulus of uniform convexity of *X*
- The modulus of continuity of F_X^{-1} depends only on the modulus of uniform smoothness of *X*.

Proposition (Odell–Schlumprecht 1994)

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an uniformly convex and uniformly smooth space with a 1-unconditional basis. Then $F_X : \mathscr{S}(\ell_1^n) \to \mathscr{S}(X)$ is a uniform homeomorphism; moreover

- The modulus of continuity of *F_X* depends only on the modulus of uniform convexity of *X*
- The modulus of continuity of F_X^{-1} depends only on the modulus of uniform smoothness of *X*.

From this finite-dimensional result one can "glue together" the pieces and get a uniform homeomorphism

$$F_X:\mathscr{S}(\ell_1)\to\mathscr{S}(X)$$

when *X* is infinite-dimensional, uniformly convex and uniformly smooth, and has a 1-unconditional basis.

The question, vague form

Question

Is there a noncommutative version of the Odell–Schlumprecht theorem?

Theorem (Odell–Schlumprecht 1994)

Let *E* be a Banach space with a 1-unconditional basis. Then $\mathscr{S}(E)$ is uniformly homeomorphic to $\mathscr{S}(\ell_1)$ if and only if *E* does not contain ℓ_{∞}^n 's uniformly.

13/35

The question, vague form

Question

Is there a noncommutative version of the Odell–Schlumprecht theorem?

Theorem (Odell–Schlumprecht 1994)

Let *E* be a Banach space with a 1-unconditional basis. Then $\mathscr{S}(E)$ is uniformly homeomorphic to $\mathscr{S}(\ell_1)$ if and only if *E* does not contain ℓ_{∞}^n 's uniformly.

13/35

The question, vague form

Question

Is there a noncommutative version of the Odell–Schlumprecht theorem?

Theorem (Odell–Schlumprecht 1994)

Let *E* be a Banach space with a 1-unconditional basis. Then $\mathscr{S}(E)$ is uniformly homeomorphic to $\mathscr{S}(\ell_1)$ if and only if *E* does not contain ℓ_{∞}^n 's uniformly.

Sub-question

Specifically, what about noncommutative versions of their generalized Mazur maps?

Making the "noncommutative" precise

From ℓ_p , we get its "noncommutative" version

$$S_p = \left\{T : \ell_2 \to \ell_2 \text{ compact, } \left(s_j(T)\right) \in \ell_p
ight\}$$

where $(s_j(T))$ is the sequence of singular values of T (eigenvalues of $|T| = \sqrt{T^*T}$), with norm $||T||_{S_p} = ||(s_j(T))||_{\ell_p}$

Making the "noncommutative" precise

From ℓ_p , we get its "noncommutative" version

$$S_p = \left\{T: \ell_2
ightarrow \ell_2 ext{ compact, } \left(s_j(T)
ight) \in \ell_p
ight\}$$

where $(s_j(T))$ is the sequence of singular values of T (eigenvalues of $|T| = \sqrt{T^*T}$), with norm $||T||_{S_p} = ||(s_j(T))||_{\ell_p}$

Similarly, given a sequence space E, define

$$S_E = \{T : \ell_2 \to \ell_2 \text{ compact, } (s_j(T)) \in E\}$$

with norm $||T||_{S_E} = ||(s_j(T))||_E$.

Making the "noncommutative" precise

From ℓ_p , we get its "noncommutative" version

$$S_p = \left\{T: \ell_2
ightarrow \ell_2 ext{ compact, } \left(s_j(T)
ight) \in \ell_p
ight\}$$

where $(s_j(T))$ is the sequence of singular values of T (eigenvalues of $|T| = \sqrt{T^*T}$), with norm $||T||_{S_p} = ||(s_j(T))||_{\ell_p}$

Similarly, given a sequence space E, define

$$S_E = \left\{ T : \ell_2 \rightarrow \ell_2 \text{ compact, } \left(s_j(T) \right) \in E \right\}$$

with norm $||T||_{S_E} = ||(s_j(T))||_E$.

Note

For everything to work well, we ask for *E* to be 1-symmetric: for any permutation $\pi : \mathbb{N} \to \mathbb{N}$, $||(a_{\pi(n)})||_E = ||(a_n)||_E$

J.A. Chávez-Domínguez (OU)

Unitarily invariant ideals (of compact operators)

When *E* is 1-symmetric, S_E satisfies:

- (Ideal property) When $T \in S_E$, $A, B \in \mathcal{B}(\ell_2)$, $ATB \in S_E$.
- (Unitary invariance) When *T* ∈ *S_E*, *U*, *V* ∈ B(ℓ₂) unitaries, *UTV* ∈ *S_E* and

$$\|UTV\|_{S_E} = \|T\|_{S_E}$$

15/35

The conjecture

Conjecture (CD)

Let S_E be a unitarily invariant ideal. Then $\mathscr{S}(S_E)$ is uniformly homeomorphic to $\mathscr{S}(S_1)$ if and only if S_E does not contain ℓ_{∞}^n 's uniformly.

Conjecture (CD)

Let S_E be a unitarily invariant ideal. Then $\mathscr{S}(S_E)$ is uniformly homeomorphic to $\mathscr{S}(S_1)$ if and only if S_E does not contain ℓ_{∞}^n 's uniformly.

Towards a proof

Conjecture (CD)

Let S_E be a unitarily invariant ideal. Then $\mathscr{S}(S_E)$ is uniformly homeomorphic to $\mathscr{S}(S_1)$ if and only if S_E does not contain ℓ_{∞}^n 's uniformly.

Towards a proof

 [⇒]: The Odell–Schlumprecht argument works without changes (based on a result of Enflo).

Conjecture (CD)

Let S_E be a unitarily invariant ideal. Then $\mathscr{S}(S_E)$ is uniformly homeomorphic to $\mathscr{S}(S_1)$ if and only if S_E does not contain ℓ_{∞}^n 's uniformly.

Towards a proof

- [⇒]: The Odell–Schlumprecht argument works without changes (based on a result of Enflo).
- [\Leftarrow]: Let us try to use generalized Mazur maps:
 - p-Convexification.
 - Entropy-based.

Unitarily invariant matrix norms

Finite-dimensional simplification

To understand a Mazur map defined on S_E , by density it suffices to understand it on S_E^n .

Definition

A norm $\|\|\cdot\|\|$ on $M_n = M_n(\mathbb{C})$ is called *unitarily invariant* if for any unitaries $U, V \in M_n$ and $A \in M_n$ we have $\|\|UAV\|\| = \|\|A\|\|$

Unitarily invariant matrix norms

Finite-dimensional simplification

To understand a Mazur map defined on S_E , by density it suffices to understand it on S_E^n .

Definition

A norm $\|\|\cdot\|\|$ on $M_n = M_n(\mathbb{C})$ is called *unitarily invariant* if for any unitaries $U, V \in M_n$ and $A \in M_n$ we have $\|\|UAV\|\| = \|\|A\|\|$

Theorem

Unitarily invariant norms on M_n correspond to 1-symmetric norms on \mathbb{R}^n (via the singular values).

J.A. Chávez-Domínguez (OU)

Generalized Mazur maps

Ideal property $||ABC||| \le ||A||_{\infty} |||B||| ||C||_{\infty}$ (actually equivalent to unitary invariance)

Ideal property $||ABC||| \le ||A||_{\infty}$ $||B||| ||C||_{\infty}$ (actually equivalent to unitary invariance)

Submultiplicativity

 $||\!|AB|\!|| \leq ||\!|A|\!|| \, ||\!|B|\!||$

Ideal property $||ABC||| \le ||A||_{\infty}$ $||B||| ||C||_{\infty}$ (actually equivalent to unitary invariance)

Submultiplicativity

 $||\!|AB|\!|| \leq ||\!|A|\!|| \, ||\!|B|\!||$

Hölder's inequality

If 1/p + 1/q = 1/r, then $||||AB|^r |||^{1/r} \le ||||A|^p |||^{1/p} ||||B|^q |||^{1/q}$.

18/35

Ideal property $||ABC||| \le ||A||_{\infty}$ $||B||| ||C||_{\infty}$ (actually equivalent to unitary invariance)

Submultiplicativity

 $||AB|| \leq ||A|| ||B||$

Hölder's inequality

If
$$1/p + 1/q = 1/r$$
, then $||||AB|^r |||^{1/r} \le ||||A|^p |||^{1/p} ||||B|^q |||^{1/q}$.

"Interpolation"

If $T: M_n \to M_n$ is contractive with respect to the operator and trace norms, then it is contractive with respect to any unitarily invariant norm.

Remark

When E is 1-symmetric we have

$$|A||_{S_{E^{(p)}}} = ||A|^p||_{S_E}^{1/p}.$$

Definition

Define $G_p : S_{E^{(p)}} \to S_E$ by $G_p(x) = u|x|^p$, where *x* has polar representation x = u|x|.

Remark

When E is 1-symmetric we have

$$|A||_{S_{E^{(p)}}} = ||A|^p||_{S_E}^{1/p}.$$

Definition

Define $G_p: S_{E^{(p)}} \to S_E$ by $G_p(x) = u|x|^p$, where *x* has polar representation x = u|x|.

Theorem (CD)

Let $3 \le p < \infty$, and let *E* be a 1-symmetric sequence space. Then the map G_p is a uniform homeomorphism between $\mathscr{S}(S_{E^{(p)}})$ and $\mathscr{S}(S_E)$. Moreover, the moduli of continuity of G_p and G_p^{-1} depend only on *p*.

Remark

When E is 1-symmetric we have

$$|A||_{S_{E^{(p)}}} = ||A|^p||_{S_E}^{1/p}.$$

Definition

Define $G_p: S_{E^{(p)}} \to S_E$ by $G_p(x) = u|x|^p$, where *x* has polar representation x = u|x|.

Theorem (CD)

Let $3 \le p < \infty$, and let *E* be a 1-symmetric sequence space. Then the map G_p is a uniform homeomorphism between $\mathscr{S}(S_{E^{(p)}})$ and $\mathscr{S}(S_E)$. Moreover, the moduli of continuity of G_p and G_p^{-1} depend only on *p*.

Remark

When E is 1-symmetric we have

$$|A||_{S_{E^{(p)}}} = ||A|^p||_{S_E}^{1/p}.$$

Definition

Define $G_p: S_{E^{(p)}} \to S_E$ by $G_p(x) = u|x|^p$, where *x* has polar representation x = u|x|.

Theorem (CD)

Let $3 \le p < \infty$, and let *E* be a 1-symmetric sequence space. Then the map G_p is a uniform homeomorphism between $\mathscr{S}(S_{E^{(p)}})$ and $\mathscr{S}(S_E)$. Moreover, the moduli of continuity of G_p and G_p^{-1} depend only on *p*.

The proof follows closely the strategies of [Ricard 2015].

J.A. Chávez-Domínguez (OU)

Generalized Mazur maps

The overall structure of the proof

STEPS:

- Prove it for positive elements.
- Provide the self-adjoint elements.
- Reduction to commutator estimate.
- Breaking commutators into pieces.
- Technical estimates.

Most of the proof is based on [Ricard 2015], replacing Hölder/Interpolation by their versions for unitarily invariant matrix norms.

The 2×2 trick

If
$$x \in S_E$$
, define the self-adjoint element $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$ and observe that $2 \|x\|_{S_E} \ge \|\tilde{x}\|_{S_E} \ge \|x\|_{S_E}$.

The 2×2 trick

If
$$x \in S_E$$
, define the self-adjoint element $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$ and observe that $2 \|x\|_{S_E} \ge \|\tilde{x}\|_{S_E} \ge \|x\|_{S_E}$.

Reduction to self-adjoint case

x, y with polar decompositions x = u|x| and y = v|y|. Now define $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$ and $\tilde{y} = \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}$.

The 2×2 trick

If
$$x \in S_E$$
, define the self-adjoint element $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$ and observe that $2 \|x\|_{S_E} \ge \|\tilde{x}\|_{S_E} \ge \|x\|_{S_E}$.

Reduction to self-adjoint case

x, *y* with polar decompositions x = u|x| and y = v|y|. Now define

$$\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$$
 and $\tilde{y} = \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}$.

They are selfadjoint with polar decompositions

$$\tilde{x} = \tilde{u}|\tilde{x}| = \begin{pmatrix} 0 & u \\ u^* & 0 \end{pmatrix} \cdot \begin{pmatrix} u|x|u^* & 0 \\ 0 & |x| \end{pmatrix}, \\ \tilde{y} = \tilde{v}|\tilde{y}| = \begin{pmatrix} 0 & v \\ v^* & 0 \end{pmatrix} \cdot \begin{pmatrix} v|y|v^* & 0 \\ 0 & |y| \end{pmatrix}.$$

The 2×2 trick

If
$$x \in S_E$$
, define the self-adjoint element $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$ and observe that $2 \|x\|_{S_E} \ge \|\tilde{x}\|_{S_E} \ge \|x\|_{S_E}$.

Reduction to self-adjoint case

x, y with polar decompositions x = u|x| and y = v|y|. Now define

$$\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$$
 and $\tilde{y} = \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}$.

They are selfadjoint with polar decompositions

0

$$\begin{split} \tilde{x} &= \tilde{u} |\tilde{x}| = \begin{pmatrix} 0 & u \\ u^* & 0 \end{pmatrix} \cdot \begin{pmatrix} u |x|u^* & 0 \\ 0 & |x| \end{pmatrix}, \\ \tilde{y} &= \tilde{v} |\tilde{y}| = \begin{pmatrix} 0 & v \\ v^* & 0 \end{pmatrix} \cdot \begin{pmatrix} v |y|v^* & 0 \\ 0 & |y| \end{pmatrix}. \\ \text{Therefore} \\ \tilde{u} |\tilde{x}|^p &= \begin{pmatrix} 0 & u |x|^p \\ |x|^p u^* & 0 \end{pmatrix} \quad \text{and} \quad \tilde{v} |\tilde{y}|^p = \begin{pmatrix} 0 & v |y|^p \\ |y|^p v^* & 0 \end{pmatrix}, \end{split}$$

0 / '

 $\langle |y|^p v^*$

Reduction to self-adjoint case, contd.

Given $x, y \in S_E$ define

$$\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$$
 and $\tilde{y} = \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}$.

Then

$$\|x-y\|_{S_E} \sim \|\tilde{x}-\tilde{y}\|_{S_E}$$

and

$$\|G_p(x) - G_p(y)\|_{S_E} \sim \|G_p(\tilde{x}) - G_p(\tilde{y})\|_{S_E}$$

Reduction to commutator estimate

We use the commutator notation [x, b] = xb - bx.

Given $x, y \in S_E$ put

$$z = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

So that

$$[z,b] = \begin{pmatrix} 0 & x-y \\ 0 & 0 \end{pmatrix}$$

and thus

$$\|[z,b]\|_{S_E} = \|x-y\|_{S_E}$$
 and $\|[G_p(z),b]\|_{S_E} = \|G_p(x)-G_p(y)\|_{S_E}$.

23/35

Breaking commutators into pieces

Let
$$x \in S_{E^{(p)}}^n$$
 with $x = x^*$ and $b \in M_n$.

Write
$$e_+ = 1_{[0,\infty)}(x)$$
 and $e_- = 1_{(-\infty,0)}(x)$ and put $b_{\pm,\pm} = e_\pm b e_\pm$.

Then

$$\begin{bmatrix} G_p(x), b \end{bmatrix} = \\ \begin{bmatrix} x_+^p, b_{+,+} \end{bmatrix} - \begin{bmatrix} x_-^p, b_{-,-} \end{bmatrix} + \begin{pmatrix} x_+^p b_{+,-} + b_{+,-} x_-^p \end{pmatrix} - \begin{pmatrix} x_-^p b_{-,+} + b_{-,+} x_+^p \end{pmatrix},$$

so we need to estimate the two types of terms.

Lemma (CD) Let $p \ge 1, x \in S_{E^{(p)}}^{n}$ with $x \ge 0$ and $b \in M_{n}$. Then $\|[x,b]\|_{S_{E^{(p)}}} \le 4 \cdot 2^{1/p} \|[x^{p},b]\|_{S_{E}}^{1/p},$ $\|[x^{p},b]\|_{S_{E}} \le 4 \cdot 3p \cdot 2 \|x\|_{S_{E^{(p)}}}^{p-1} \|[x,b]\|_{S_{E^{(p)}}},$

25/35

Technical estimates, II

Lemma (CD)

 a Let p ≥ 1. There exists a constant C such that for any x, y ∈ Sⁿ_{E(p)} with x, y ≥ 0 and b ∈ M_n we have ||x^pb + by^p||_{SE} ≤ C ||x||^{p-1}_{SE(p)} ||xb + by||_{SE(p)}
 b If p ≥ 3, then there exists a constant C_p such that for any x, y ∈ Sⁿ_{E(p)} with x, y ≥ 0 and b ∈ M_n we have ||xb + by||_{SE(p)} ≤ C_p ||b||^{1-1/p}_∞ ||x^pb + by^p||^{1/p}_{SE}.

Technical estimates, II

Lemma (CD)

Solution 2. Solution in the product of the pro

If $p \ge 3$, then there exists a constant C_p such that for any $x, y \in S_{E^{(p)}}^n$ with $x, y \ge 0$ and $b \in M_n$ we have $\|xb + by\|_{S_{E^{(p)}}} \le C_p \|b\|_{\infty}^{1-1/p} \|x^pb + by^p\|_{S_E}^{1/p}.$

(b) Follows immediately from a result of [Jocić 1997].

Technical estimates, II

Lemma (CD)

 x, \bar{x}

$$y \in S_{E^{(p)}}^n$$
 with $x, y \ge 0$ and $b \in M_n$ we have
 $\left\|xb + by\right\|_{S_{E^{(p)}}} \le C_p \left\|b\right\|_{\infty}^{1-1/p} \left\|x^p b + by^p\right\|_{S_E}^{1/p}.$

(b) Follows immediately from a result of [Jocić 1997].

Open problem [Jocić 1997]

Is that last inequality valid for 1 ?

Open problem [Jocić 1997]

Is that last inequality valid for 1 ?

Why $p \ge 3$?

I don't have a good conceptual explanation. A calculation needs $(p-1)/2 \geq 1$ in order to use convexity.

Open problem [Jocić 1997]

Is that last inequality valid for 1 ?

Why $p \ge 3$?

I don't have a good conceptual explanation. A calculation needs $(p-1)/2 \ge 1$ in order to use convexity.

What about Ricard's approach?

For a fixed $x \ge 0$, he uses that the spaces $L_p(x^{\alpha})$ given by

$$||b||_{L_p(x^{\alpha})} = ||x^{\alpha}b + bx^{\alpha}||_{L_p}$$

interpolate in p and α [Ricard–Xu 2011].

Definition (Quantum relative entropy)

If $\rho \in M_n$ is a state (that is, $\rho \ge 0$ and $tr(\rho) = 1$), and $\sigma \in M_n^+$, we define

$$D(\rho||\sigma) = \begin{cases} \operatorname{tr}[\rho(\log \rho - \log \sigma)] & \text{if } \operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma), \\ +\infty & \text{otherwise}, \end{cases}$$

where the support of an operator $A \in M_n$ is defined as the orthogonal complement of its kernel, $\operatorname{supp}(A) = \ker(A)^{\perp}$.

Notice the similarity of the term $-\rho \log \sigma$ with the expression used to define the Odell–Schlumprecht map.

Some properties of quantum relative entropy

Monotonicity

If $\rho \in M_n$ is a state, $0 \le \sigma \le \sigma'$, then $D(\rho || \sigma') \le D(\rho || \sigma)$.

Some properties of quantum relative entropy

Monotonicity

If $\rho \in M_n$ is a state, $0 \le \sigma \le \sigma'$, then $D(\rho || \sigma') \le D(\rho || \sigma)$.

Multiplication by constants

 $D(\rho||c\sigma) = D(\rho||\sigma) - \log c$

Some properties of quantum relative entropy

Monotonicity

If $\rho \in M_n$ is a state, $0 \le \sigma \le \sigma'$, then $D(\rho || \sigma') \le D(\rho || \sigma)$.

Multiplication by constants $D(\rho||c\sigma) = D(\rho||\sigma) - \log c$

Joint convexity

 $\lambda_1, \ldots, \lambda_m \geq 0, \sum_j \lambda_j = 1$ then

$$\sum_{j=1}^{m} \lambda_j D(\rho_j ||\sigma_j) \ge D\left(\sum_{j=1}^{m} \lambda_j \rho_j \right) \left\| \sum_{j=1}^{m} \lambda_j \sigma_j \right\|$$

Entropy-based noncommutative generalized Mazur map

Definition (CD)

If $X = (M_n, ||\!| \cdot ||\!|)$ is a unitarily invariant strictly convex norm and and $\rho \in M_n$ is a state, we define $F_X(\rho)$ to be the $\sigma \in \mathscr{B}(X)^+$ minimizing the relative entropy with respect to ρ , that is,

$$F_X(\rho) = \operatorname*{arg\,min}_{\sigma \in \mathscr{B}(X)^+} D(\rho || \sigma).$$

Proposition (CD)

Let $X = (M_n, ||| \cdot |||)$ be an unitarily invariant matrix norm which is uniformly convex and uniformly smooth. Then $F_X : \mathscr{S}(S_1^n)^+ \to \mathscr{S}(X)^+$ is a uniform homeomorphism; moreover

- The modulus of continuity of *F_X* depends only on the modulus of uniform convexity of *X*
- The modulus of continuity of F_X^{-1} depends only on the modulus of uniform smoothness of *X*.

Proposition (CD)

Let $X = (M_n, ||| \cdot |||)$ be an unitarily invariant matrix norm which is uniformly convex and uniformly smooth. Then $F_X : \mathscr{S}(S_1^n)^+ \to \mathscr{S}(X)^+$ is a uniform homeomorphism; moreover

- The modulus of continuity of *F_X* depends only on the modulus of uniform convexity of *X*
- The modulus of continuity of F_X^{-1} depends only on the modulus of uniform smoothness of *X*.

Proposition (CD)

Let $X = (M_n, ||| \cdot |||)$ be an unitarily invariant matrix norm which is uniformly convex and uniformly smooth. Then $F_X : \mathscr{S}(S_1^n)^+ \to \mathscr{S}(X)^+$ is a uniform homeomorphism; moreover

- The modulus of continuity of *F_X* depends only on the modulus of uniform convexity of *X*
- The modulus of continuity of F_X^{-1} depends only on the modulus of uniform smoothness of *X*.

The remaining challenge

Check that we also get a uniform homeomorphism between the whole spheres.

A big issue with the 2×2 trick

For the previous generalized Mazur map G_p ,

$$G_p\left(\begin{pmatrix}x & 0\\ 0 & y\end{pmatrix}\right) = \begin{pmatrix}G_p(x) & 0\\ 0 & G_p(y)\end{pmatrix}$$

However, it is not obvious whether

$$F_X\left(\begin{pmatrix}x & 0\\ 0 & y\end{pmatrix}\right) = \begin{pmatrix}F_X(x) & 0\\ 0 & F_X(y)\end{pmatrix}$$

(or something similar, technically this doesn't quite make sense because F_X is only defined on states).

A way around it: complex interpolation

Theorem (Daher, Kalton 1995)

Let X_0, X_1 be an interpolation pair with one of them being uniformly convex. Then for any $\theta, \eta \in (0, 1)$, $\mathscr{S}(X_{\theta})$ and $\mathscr{S}(X_{\eta})$ are uniformly homeomorphic.

Theorem

Let E_0, E_1 be an interpolation pair of 1-symmetric sequence spaces. Then $(S_{E_0}, S_{E_1})_{\theta} = S_{(E_0, E_1)_{\theta}}$.

Proof of the conjecture

Adapt Daher's proof of the Odell–Schlumprecht theorem: still uses G_p , but replaces the entropy-based Mazur map by the complex interpolation argument.

33/35

Theorem (CD)

Let *E* be a 1-unconditional sequence space. The following are equivalent:

- **(a)** $\mathscr{S}(S_E)$ is uniformly homeomorphic to $\mathscr{S}(S_1)$.
- S_E does not contain ℓ_{∞}^{n} 's uniformly.
- **D** E does not contain ℓ_{∞}^{n} 's uniformly.

THANKS!