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Unit spheres/balls

Notation
For a Banach space X, we will denote its unit sphere by

S (X) = {x ∈ X : ∥x∥ = 1},

and its unit ball by
B(X) = {x ∈ X : ∥x∥ ≤ 1}

Disclaimer
I would normally write SX, but we will be considering spaces like the
Schatten p-class Sp and writing SSp is just awful.
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Some context

Theorem (Kadets 1966)
Any two separable infinite-dimensional Banach spaces are
homeomorphic.

Theorem (Johnson–Lindenstrauss–Schechtman 1996)
For 1 < p < ∞, if X is uniformly homeomorphic to ℓp, then X is
isomorphic to ℓp.

Theorem (Mazur 1929)
For 1 ≤ p, q < ∞, S (Lp[0, 1]) is uniformly homeomorphic to
S (Lq[0, 1]).
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The classical Mazur map

Say f ≥ 0 in Lp(µ). Easiest way to transform it into a function in Lq(µ)?

f 7→ f
p
q

Definition
For 1 ≤ p, q < ∞ and a measure µ, the Mazur map
Mp,q : Lp(µ) → Lq(µ) is given by

f 7→ f |f |
p−q

q = sign(f )|f |
p
q

Theorem (Mazur 1929)
For 1 ≤ p, q < ∞ and a measure µ, the map Mp,q is a uniform
homeomorphism between S (Lp(µ)) and S (Lq(µ)).
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Noncommutative Mazur maps

Definition
For 1 ≤ p, q < ∞ and a von Neumann algebra M, the Mazur map
Mp,q : Lp(M) → Lq(M) is given by

f 7→ f |f |
p−q

q

Theorem (Ricard 2015)
For 1 ≤ p, q < ∞ and a von Neumann algebra M, the Mazur map Mp,q

is min{p
q , 1}-Hölder on the unit ball of Lp(M).

In particular, it is a uniform homeomorphism between S (Lp(M)) and
S (Lq(M)).
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Our goal

To study noncommutative versions of other generalized Mazur
maps that have been useful in Banach space theory.

Use them to get new examples of uniform homeomorphisms
between spheres.
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The Odell–Schlumprecht characterization

Theorem (Odell–Schlumprecht 1994)
Let E be a Banach space with a 1-unconditional basis. Then S (E) is
uniformly homeomorphic to S (ℓ1) if and only if E does not contain ℓn

∞’s
uniformly.

The proof
Is based on two generalizations of the Mazur map:

A p-convexification one.
An entropy-based one.
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The first generalized Mazur map: p-convexification

Note that
ℓp =

{
(xj) :

(
|xj|p

)
∈ ℓ1

}
∥(xj)∥ℓp = ∥(|xj|p)∥1/p

ℓ1

Similarly, for a 1-unconditional sequence space E we can define its
p-convexification

E(p) =
{
(xj) :

(
|xj|p

)
∈ E
}

∥(xj)∥E(p) = ∥(|xj|p)∥1/p
E

When E is 1-unconditional, the map
Gp : (xj) 7→

(
sign(xj)|xj|p

)
maps S (E(p)) to S (E)
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The first generalized Mazur map: convexification

Proposition (Odell–Schlumprecht 1994)
Let 1 < p < ∞ and let E be a Banach space with a 1-unconditional
basis. The generalized Mazur map

Gp : (xj) 7→
(
sign(xj)|xj|p

)
is a uniform homeomorphism between S (E(p)) and S (E). Moreover,
the moduli of uniform continuity of Gp and G−1

p depend only on p.
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The second generalized Mazur map: entropy-based

Well-known
Entropy of a probability distribution (xj): H = −

∑
j xj log(xj)

Definition
If X = (Rn, ∥·∥) is a 1-unconditional strictly convex norm and and x ∈ Rn

is a probability vector, we define FX(x) to be the y ∈ B(X)+ minimizing
the quantity −

∑
j xj log(yj), that is

FX(x) = argmin
y∈B(X)+

−
∑

j

xj log(yj)

Important note for later
Closely related to the relative entropy or Kullback–Leibler divergence
D(x||y) =

∑
j xj(log(xj)− log(yj))
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The second generalized Mazur map: entropy-based

Let’s look at the special case where X = ℓn
p. Fix a probability vector

x ∈ Rn, consider y ≥ 0 with ∥y∥ℓp = 1. We want to

minimize −
∑

j

xj log(yj) subject to
∑

j

yp
j = 1

by Lagrange multipliers we need to have

−
xj

yj
= λpyp−1

j i.e. − xj = λpyp
j

Adding up we get λ = −1/p and thus yj = x1/p
j meaning

Fℓn
p

(
(xj)
)
= (x1/p

j )
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The second generalized Mazur map: entropy-based

Proposition (Odell–Schlumprecht 1994)
Let X = (Rn, ∥·∥) be an uniformly convex and uniformly smooth space
with a 1-unconditional basis. Then FX : S (ℓn

1) → S (X) is a uniform
homeomorphism; moreover

The modulus of continuity of FX depends only on the modulus of
uniform convexity of X

The modulus of continuity of F−1
X depends only on the modulus of

uniform smoothness of X.

From this finite-dimensional result one can “glue together” the pieces
and get a uniform homeomorphism

FX : S (ℓ1) → S (X)

when X is infinite-dimensional, uniformly convex and uniformly smooth,
and has a 1-unconditional basis.
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The question, vague form

Question
Is there a noncommutative version of the Odell–Schlumprecht
theorem?

Theorem (Odell–Schlumprecht 1994)
Let E be a Banach space with a 1-unconditional basis. Then S (E) is
uniformly homeomorphic to S (ℓ1) if and only if E does not contain ℓn

∞’s
uniformly.

Sub-question
Specifically, what about noncommutative versions of their generalized
Mazur maps?
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Making the “noncommutative” precise

From ℓp, we get its “noncommutative” version

Sp =
{

T : ℓ2 → ℓ2 compact,
(
sj(T)

)
∈ ℓp

}
where (sj(T)) is the sequence of singular values of T (eigenvalues of
|T| =

√
T∗T), with norm ∥T∥Sp = ∥

(
sj(T)

)
∥ℓp

Similarly, given a sequence space E, define

SE =
{

T : ℓ2 → ℓ2 compact,
(
sj(T)

)
∈ E
}

with norm ∥T∥SE = ∥
(
sj(T)

)
∥E.

Note
For everything to work well, we ask for E to be 1-symmetric: for any
permutation π : N → N, ∥(aπ(n))∥E = ∥(an)∥E
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Unitarily invariant ideals (of compact operators)

When E is 1-symmetric, SE satisfies:
(Ideal property) When T ∈ SE, A,B ∈ B(ℓ2), ATB ∈ SE.
(Unitary invariance) When T ∈ SE, U,V ∈ B(ℓ2) unitaries,
UTV ∈ SE and

∥UTV∥SE = ∥T∥SE
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The conjecture

Conjecture (CD)
Let SE be a unitarily invariant ideal. Then S (SE) is uniformly
homeomorphic to S (S1) if and only if SE does not contain ℓn

∞’s
uniformly.

Towards a proof

[⇒]: The Odell–Schlumprecht argument works without changes
(based on a result of Enflo).

[⇐]: Let us try to use generalized Mazur maps:
▶ p-Convexification.
▶ Entropy-based.
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Unitarily invariant matrix norms

Finite-dimensional simplification
To understand a Mazur map defined on SE, by density it suffices to
understand it on Sn

E.

Definition
A norm |||·||| on Mn = Mn(C) is called unitarily invariant if for any
unitaries U,V ∈ Mn and A ∈ Mn we have

|||UAV||| = |||A|||

Theorem
Unitarily invariant norms on Mn correspond to 1-symmetric norms on
Rn (via the singular values).
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Some properties of unitarily invariant matrix norms

Ideal property
|||ABC||| ≤ ∥A∥∞ |||B||| ∥C∥∞ (actually equivalent to unitary invariance)

Submultiplicativity
|||AB||| ≤ |||A||| |||B|||

Hölder’s inequality

If 1/p + 1/q = 1/r, then ||||AB|r|||1/r ≤ ||||A|p|||1/p ||||B|q|||1/q.

“Interpolation”
If T : Mn → Mn is contractive with respect to the operator and trace
norms, then it is contractive with respect to any unitarily invariant norm.
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p-convexification Mazur map, noncommutative setting

Remark
When E is 1-symmetric we have

∥A∥S
E(p)

= ∥|A|p∥1/p
SE

.

Definition
Define Gp : SE(p) → SE by Gp(x) = u|x|p, where x has polar
representation x = u|x|.

Theorem (CD)
Let 3 ≤ p < ∞, and let E be a 1-symmetric sequence space. Then the
map Gp is a uniform homeomorphism between S (SE(p)) and S (SE).
Moreover, the moduli of continuity of Gp and G−1

p depend only on p.

The proof follows closely the strategies of [Ricard 2015].
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The overall structure of the proof

STEPS:
1 Prove it for positive elements.
2 Reduction to self-adjoint elements.
3 Reduction to commutator estimate.
4 Breaking commutators into pieces.
5 Technical estimates.

Most of the proof is based on [Ricard 2015], replacing
Hölder/Interpolation by their versions for unitarily invariant matrix
norms.
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The 2 × 2 trick

If x ∈ SE, define the self-adjoint element x̃ =

(
0 x
x∗ 0

)
and observe that

2 ∥x∥SE
≥ ∥x̃∥SE

≥ ∥x∥SE
.

Reduction to self-adjoint case
x, y with polar decompositions x = u|x| and y = v|y|. Now define

x̃ =

(
0 x
x∗ 0

)
and ỹ =

(
0 y
y∗ 0

)
.

They are selfadjoint with polar decompositions

x̃ = ũ|x̃| =
(

0 u
u∗ 0

)
·
(

u|x|u∗ 0
0 |x|

)
, ỹ = ṽ|ỹ| =

(
0 v
v∗ 0

)
·
(

v|y|v∗ 0
0 |y|

)
.

Therefore

ũ|x̃|p =

(
0 u|x|p

|x|pu∗ 0

)
and ṽ|ỹ|p =

(
0 v|y|p

|y|pv∗ 0

)
,
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Reduction to self-adjoint case, contd.

Given x, y ∈ SE define

x̃ =

(
0 x
x∗ 0

)
and ỹ =

(
0 y
y∗ 0

)
.

Then
∥x − y∥SE

∼ ∥x̃ − ỹ∥SE

and
∥Gp(x)− Gp(y)∥SE

∼ ∥Gp(x̃)− Gp(ỹ)∥SE
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Reduction to commutator estimate

We use the commutator notation [x, b] = xb − bx.

Given x, y ∈ SE put

z =
(

x 0
0 y

)
and b =

(
0 1
0 0

)
.

So that

[z, b] =
(

0 x − y
0 0

)
and thus∥∥[z, b]

∥∥
SE

=
∥∥x − y

∥∥
SE

and
∥∥[Gp(z), b]

∥∥
SE

=
∥∥Gp(x)− Gp(y)

∥∥
SE
.
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Breaking commutators into pieces

Let x ∈ Sn
E(p) with x = x∗ and b ∈ Mn.

Write e+ = 1[0,∞)(x) and e− = 1(−∞,0)(x) and put b±,± = e±be±.

Then[
Gp(x), b

]
=[

xp
+, b+,+

]
−
[
xp
−, b−,−

]
+
(
xp
+b+,− + b+,−xp

−
)
−
(
xp
−b−,+ + b−,+xp

+

)
,

so we need to estimate the two types of terms.
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Technical estimates, I

Lemma (CD)
Let p ≥ 1, x ∈ Sn

E(p) with x ≥ 0 and b ∈ Mn. Then

∥∥[x, b]
∥∥

S
E(p)

≤ 4 · 21/p
∥∥∥[xp, b

]∥∥∥1/p

SE
,

∥∥∥[xp, b
]∥∥∥

SE
≤ 4 · 3p · 2 ∥x∥p−1

S
E(p)

∥∥[x, b]
∥∥

S
E(p)

,
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Technical estimates, II

Lemma (CD)
(a) Let p ≥ 1. There exists a constant C such that for any x, y ∈ Sn

E(p)

with x, y ≥ 0 and b ∈ Mn we have∥∥xpb + byp
∥∥

SE
≤ C ∥x∥p−1

S
E(p)

∥∥∥xb + by
∥∥∥

S
E(p)

(b) If p ≥ 3, then there exists a constant Cp such that for any
x, y ∈ Sn

E(p) with x, y ≥ 0 and b ∈ Mn we have∥∥∥xb + by
∥∥∥

S
E(p)

≤ Cp
∥∥b
∥∥1−1/p
∞

∥∥xpb + byp
∥∥1/p

SE
.

(b) Follows immediately from a result of [Jocić 1997].
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p-convexification Mazur map, noncommutative setting

Open problem [Jocić 1997]
Is that last inequality valid for 1 < p < 3?

Why p ≥ 3?
I don’t have a good conceptual explanation. A calculation needs
(p − 1)/2 ≥ 1 in order to use convexity.

What about Ricard’s approach?
For a fixed x ≥ 0, he uses that the spaces Lp(xα) given by

∥b∥Lp(xα) = ∥xαb + bxα∥Lp

interpolate in p and α [Ricard–Xu 2011].
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Entropy-based Mazur map, noncommutative setting

Definition (Quantum relative entropy)
If ρ ∈ Mn is a state (that is, ρ ≥ 0 and tr(ρ) = 1), and σ ∈ M+

n , we define

D(ρ||σ) =

{
tr[ρ(log ρ− log σ)] if supp(ρ) ⊆ supp(σ),

+∞ otherwise,

where the support of an operator A ∈ Mn is defined as the orthogonal
complement of its kernel, supp(A) = ker(A)⊥.

Notice the similarity of the term −ρ log σ with the expression used to
define the Odell–Schlumprecht map.

J.A. Chávez-Domínguez (OU) Generalized Mazur maps May 10, 2022 28 / 35



Some properties of quantum relative entropy

Monotonicity
If ρ ∈ Mn is a state, 0 ≤ σ ≤ σ′, then D(ρ||σ′) ≤ D(ρ||σ).

Multiplication by constants
D(ρ||cσ) = D(ρ||σ)− log c

Joint convexity
λ1, . . . , λm ≥ 0,

∑
j λj = 1 then

m∑
j=1

λjD(ρj||σj) ≥ D

(
m∑

j=1

λjρj

∣∣∣∣∣
∣∣∣∣∣

m∑
j=1

λjσj

)
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Entropy-based noncommutative generalized Mazur
map

Definition (CD)
If X = (Mn, |||·|||) is a unitarily invariant strictly convex norm and and
ρ ∈ Mn is a state, we define FX(ρ) to be the σ ∈ B(X)+ minimizing the
relative entropy with respect to ρ, that is,

FX(ρ) = argmin
σ∈B(X)+

D(ρ||σ).
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Odell–Schlumprecht ideas + Quantum relative entropy

Proposition (CD)
Let X = (Mn, |||·|||) be an unitarily invariant matrix norm which is
uniformly convex and uniformly smooth. Then FX : S (Sn

1)
+ → S (X)+

is a uniform homeomorphism; moreover
The modulus of continuity of FX depends only on the modulus of
uniform convexity of X

The modulus of continuity of F−1
X depends only on the modulus of

uniform smoothness of X.

The remaining challenge
Check that we also get a uniform homeomorphism between the whole
spheres.
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A big issue with the 2 × 2 trick

For the previous generalized Mazur map Gp,

Gp

((
x 0
0 y

))
=

(
Gp(x) 0

0 Gp(y)

)

However, it is not obvious whether

FX

((
x 0
0 y

))
=

(
FX(x) 0

0 FX(y)

)
(or something similar, technically this doesn’t quite make sense
because FX is only defined on states).
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A way around it: complex interpolation

Theorem (Daher, Kalton 1995)
Let X0,X1 be an interpolation pair with one of them being uniformly
convex. Then for any θ, η ∈ (0, 1), S (Xθ) and S (Xη) are uniformly
homeomorphic.

Theorem
Let E0,E1 be an interpolation pair of 1-symmetric sequence spaces.
Then (SE0 , SE1)θ = S(E0,E1)θ .

Proof of the conjecture
Adapt Daher’s proof of the Odell–Schlumprecht theorem: still uses Gp,
but replaces the entropy-based Mazur map by the complex
interpolation argument.
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The main theorem

Theorem (CD)
Let E be a 1-unconditional sequence space. The following are
equivalent:

(a) S (SE) is uniformly homeomorphic to S (S1).
(b) SE does not contain ℓn

∞’s uniformly.
(c) E does not contain ℓn

∞’s uniformly.
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THANKS!
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