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Theorem (Banach-Stone)

For every compact Hausdorff spaces K and L, given an isometry
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fe C(K) and every y € L.
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Theorem (folklore)

For X = cgor X =4{,, 1 < p<oo, p#2, given an isometry T : X — X,
there are a bijection m : N — N and a sequence (0,,), such that |0, =1
and T(ep) = Oner(ny for every n € N.
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Isometries of the Schreier spaces

Theorem

Given an isometry T : Xs — Xs, there is a sequence (0,), such that
|0n] =1 and T(e,) = Ope, for every n € N.

Theorem (Antunes, Beanland, Chu, 2020)

The same holds for Schreier spaces of larger finite order.

Given a countable ordinal o > 1,

n
8a+1:{Us,-:s,-€Sa and {mins; : 1 <i<n}eS}U{0}
i=1
and

Sq 1= USan T(N\”)

neN
where (a)p is an increasing sequence converging to «, if o is limit.



Isometry group

We say (Antunes, Beanland) that the group of isometries of X is

e standard if the isometries are those T such that
T(en) = enerr(n)

for some |0,] =1 and 7 € S;

e diagonal if the isometries are those T such that
T(en) = Onen

for some |0, = 1.
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Combinatorial spaces

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families F and G, given an isometry T : Xz — Xg, there
are a bijection m : N — N and a sequence (0,), such that |0,| =1 and
T(en) = Oner(ny for every n € N.

Ingredients of the proof:
e Characterization of the extreme points of the dual ball (Gowers):
Ext(Bxy) ={D _0One; :s € FM¥X |0, =1},
nes

e Extract by hand the form of each T*(e}).

Moreover, we also get that in the case of Schreier spaces of any order, the
only bijection allowed is the identity.
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Theorem (B, Pifia, 2021)

For every compact and hereditary families ' and G such that singletons
are in the closure of FMAX and GMAX | given an isometry T : Xr — Xg,
there are a bijection : T — I and a sequence (0)~ecr such that |0, =1
and T(ey) = 0 ey for every y €T.

Ingredients of the proof:

e Same characterization of the extreme points of the dual ball (Gowers):

Ext(Bxy) ={) _One; :s € FM¥X |0, =1},

nes

e Extract the form of each T*(e};) using w*-continuity of T*.



Nonseparable examples
Theorem (Lopez-Abad, Todorcevic, 2013)
¢ : [k]S¥ — 2 witnesses that  is not w-Erdés iff

F={F Ck:cl isconstant for every k}

is a hereditary, compact and large family on k.




Nonseparable examples

Theorem (Lopez-Abad, Todorcevic, 2013)

¢ : [k]S¥ — 2 witnesses that  is not w-Erdés iff
F={F Ck:cl isconstant for every k}

is a hereditary, compact and large family on k.

Proposition (B., Lopez-Abad, Todorcevic, 2018)

If F is a hereditary, compact and large family of finite subsets of x(+1),
then

G ={CC25F: Cisachainand {htr(t): t € C} € F}

is hereditary, compact and large.
(25" is the complete binary tree of height x + 1)
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Comments

* In the BFT version, we start directly with an isometry T : X} — Xg,
while in BP we need it to be w*-continuous.

* Is every isometry T : Xz — X3 w* continuous? Or, equivalently, is
every isometry T : Xz — X the adjoint operator of an isometry
S: Xg — X]:?

* (Godefroy, 1978) Yes, for spaces whose dual do not contain /.
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More results by BP

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both
families, then the only bijection 7 : kK — K which induces an isometry is
the identity.

Theorem

If : N — N /s a bijection inducing an isometry between Xr and Xg
where F and G are spreading families, then F = G.

e There are compact families on N which cannot be permuted onto any
regular one.

e There are homeomorphic compact families on N which cannot be
permuted one to the other.
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Theorem (Beauzamy, Casazza, 1980's(?); Antunes, Beanland, 2022)
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Theorem (Beauzamy, Casazza, 1980's(?); Antunes, Beanland, 2022)

Given an isometry T : T[+,S] — T[%,S], there are a bijection
m:{l,...,k} = {1,..., k} and a sequence (0,,), such that |0,] =1 and
T(en) = Oner(ny for n < k and T(en) = Onen for n > k.

* Do similar results hold for the nonseparable Tsirelson-type examples
from BLT?
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Mazur-Ulam property

* X has the Mazur-Ulam property if, for every Y, any isometry from
Sx onto Sy extends to a linear isometry from X onto Y.

* ¢ and ¢,'s do have the Mazur-Ulam property and so does Tsirelson
space.

* Do combinatorial spaces have?

* At least, does every isometry between the spheres of two
combinatorial spaces extend to a linear isometry?



Questions

* Do similar results hold for £,-norms?

* Are these results instances of a more general result?
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