Isometries of combinatorial Banach spaces

Christina Brech¹

Instituto de Matemática e Estatística Universidade de São Paulo

May 13, 2022 - BSBL

¹Projeto Temático Fapesp 2016/25574-8

May 12: Celebrating Women in Math

Nicole Tomczak-Jaegermann

Ofelia Alas

Mirna Dzamonja

May 12: Celebrating Women in Math

Yolanda Moreno

Claribet Piña

Alejandra Cáceres

Motivations

Motivations

Theorem (Banach-Stone)

For every compact Hausdorff spaces K and L, given an isometry $T : C(K) \to C(L)$, then there are a homeomorphism $\varphi : L \to K$ and $g \in C(L)$ such that |g(y)| = 1 and $T(f)(y) = g(y) \cdot (f \circ \varphi)(y)$ for all $f \in C(K)$ and every $y \in L$.

Motivations

Theorem (Banach-Stone)

For every compact Hausdorff spaces K and L, given an isometry $T : C(K) \to C(L)$, then there are a homeomorphism $\varphi : L \to K$ and $g \in C(L)$ such that |g(y)| = 1 and $T(f)(y) = g(y) \cdot (f \circ \varphi)(y)$ for all $f \in C(K)$ and every $y \in L$.

Theorem (folklore)

For $X = c_0$ or $X = \ell_p$, $1 \le p < \infty$, $p \ne 2$, given an isometry $T : X \to X$, there are a bijection $\pi : \mathbb{N} \to \mathbb{N}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for every $n \in \mathbb{N}$.

Isometries of the Schreier spaces

Theorem

Given an isometry $T : X_S \to X_S$, there is a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_n$ for every $n \in \mathbb{N}$.

Isometries of the Schreier spaces

Theorem

Given an isometry $T : X_S \to X_S$, there is a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_n$ for every $n \in \mathbb{N}$.

Theorem (Antunes, Beanland, Chu, 2020)

The same holds for Schreier spaces of larger finite order.

Isometries of the Schreier spaces

Theorem

Given an isometry $T : X_S \to X_S$, there is a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_n$ for every $n \in \mathbb{N}$.

Theorem (Antunes, Beanland, Chu, 2020)

The same holds for Schreier spaces of larger finite order.

Given a countable ordinal $\alpha \geq 1$,

$$\mathcal{S}_{lpha+1} = \{\bigcup_{i=1}^{n} s_i : s_i \in \mathcal{S}_{lpha} \text{ and } \{\min s_i : 1 \le i \le n\} \in \mathcal{S}\} \cup \{\emptyset\}$$

and

$$\mathcal{S}_{lpha} := igcup_{n \in \mathbb{N}} \mathcal{S}_{lpha_n} \upharpoonright (\mathbb{N} \setminus n)$$

where $(\alpha_n)_n$ is an increasing sequence converging to α , if α is limit.

Isometry group

We say (Antunes, Beanland) that the group of isometries of X is

• standard if the isometries are those T such that

$$T(e_n) = \theta_n e_{\pi(n)}$$

for some $|\theta_n| = 1$ and $\pi \in S_\infty$;

• diagonal if the isometries are those T such that

$$T(e_n) = \theta_n e_n$$

for some $|\theta_n| = 1$.

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families \mathcal{F} and \mathcal{G} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \mathbb{N} \to \mathbb{N}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for every $n \in \mathbb{N}$.

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families \mathcal{F} and \mathcal{G} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \mathbb{N} \to \mathbb{N}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for every $n \in \mathbb{N}$.

Ingredients of the proof:

• Characterization of the extreme points of the dual ball (Gowers):

$$Ext(B_{X_{\mathcal{F}}^*}) = \{\sum_{n \in s} \theta_n e_n^* : s \in \mathcal{F}^{MAX}, |\theta_n| = 1\}$$

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families \mathcal{F} and \mathcal{G} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \mathbb{N} \to \mathbb{N}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for every $n \in \mathbb{N}$.

Ingredients of the proof:

• Characterization of the extreme points of the dual ball (Gowers):

$$\mathsf{Ext}(\mathsf{B}_{X_{\mathcal{F}}^*}) = \{\sum_{n \in s} \theta_n \mathsf{e}_n^* : s \in \mathcal{F}^{\mathsf{MAX}}, |\theta_n| = 1\}.$$

• Extract by hand the form of each $T^*(e_n^*)$.

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families \mathcal{F} and \mathcal{G} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \mathbb{N} \to \mathbb{N}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for every $n \in \mathbb{N}$.

Ingredients of the proof:

Characterization of the extreme points of the dual ball (Gowers):

$$\mathsf{Ext}(\mathsf{B}_{X_{\mathcal{F}}^*}) = \{\sum_{n \in s} \theta_n e_n^* : s \in \mathcal{F}^{\mathsf{MAX}}, |\theta_n| = 1\}.$$

• Extract by hand the form of each $T^*(e_n^*)$.

Moreover, we also get that in the case of Schreier spaces of any order, the only bijection allowed is the identity.

Combinatorial (nonseparable) spaces

Theorem (B, Piña, 2021)

For every compact and hereditary families \mathcal{F} and \mathcal{G} such that singletons are in the closure of \mathcal{F}^{MAX} and \mathcal{G}^{MAX} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \Gamma \to \Gamma$ and a sequence $(\theta_{\gamma})_{\gamma \in \Gamma}$ such that $|\theta_{\gamma}| = 1$ and $T(e_{\gamma}) = \theta_{\gamma} e_{\pi(\gamma)}$ for every $\gamma \in \Gamma$.

Combinatorial (nonseparable) spaces

Theorem (B, Piña, 2021)

For every compact and hereditary families \mathcal{F} and \mathcal{G} such that singletons are in the closure of \mathcal{F}^{MAX} and \mathcal{G}^{MAX} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \Gamma \to \Gamma$ and a sequence $(\theta_{\gamma})_{\gamma \in \Gamma}$ such that $|\theta_{\gamma}| = 1$ and $T(e_{\gamma}) = \theta_{\gamma} e_{\pi(\gamma)}$ for every $\gamma \in \Gamma$.

Ingredients of the proof:

• Same characterization of the extreme points of the dual ball (Gowers):

$$Ext(B_{X_{\mathcal{F}}^*}) = \{\sum_{n \in s} \theta_n e_n^* : s \in \mathcal{F}^{MAX}, |\theta_n| = 1\}.$$

Combinatorial (nonseparable) spaces

Theorem (B, Piña, 2021)

For every compact and hereditary families \mathcal{F} and \mathcal{G} such that singletons are in the closure of \mathcal{F}^{MAX} and \mathcal{G}^{MAX} , given an isometry $T : X_{\mathcal{F}} \to X_{\mathcal{G}}$, there are a bijection $\pi : \Gamma \to \Gamma$ and a sequence $(\theta_{\gamma})_{\gamma \in \Gamma}$ such that $|\theta_{\gamma}| = 1$ and $T(e_{\gamma}) = \theta_{\gamma} e_{\pi(\gamma)}$ for every $\gamma \in \Gamma$.

Ingredients of the proof:

• Same characterization of the extreme points of the dual ball (Gowers):

$$Ext(B_{X_{\mathcal{F}}^*}) = \{\sum_{n \in s} \theta_n e_n^* : s \in \mathcal{F}^{MAX}, |\theta_n| = 1\}.$$

• Extract the form of each $T^*(e_n^*)$ using w*-continuity of T^* .

Nonseparable examples

Theorem (Lopez-Abad, Todorcevic, 2013) $c : [\kappa]^{<\omega} \rightarrow 2$ witnesses that κ is not ω -Erdös iff

 $\mathcal{F} = \{ F \subseteq \kappa : c \mid_{[F]^k} \text{ is constant for every } k \}$

is a hereditary, compact and large family on κ .

Nonseparable examples

Theorem (Lopez-Abad, Todorcevic, 2013) $c : [\kappa]^{<\omega} \rightarrow 2$ witnesses that κ is not ω -Erdös iff

 $\mathcal{F} = \{ F \subseteq \kappa : c \mid_{[F]^k} \text{ is constant for every } k \}$

is a hereditary, compact and large family on κ .

Proposition (B., Lopez-Abad, Todorcevic, 2018) If \mathcal{F} is a hereditary, compact and large family of finite subsets of $\kappa(+1)$, then

$$\mathcal{G}=\{C\subseteq 2^{\leq\kappa}: C ext{ is a chain and } \{ht_{\mathcal{T}}(t): t\in C\}\in \mathcal{F}\}$$

is hereditary, compact and large.

 $(2^{\leq \kappa}$ is the complete binary tree of height $\kappa + 1)$

Comments

* In the BFT version, we start directly with an isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$, while in BP we need it to be w*-continuous.

Comments

- * In the BFT version, we start directly with an isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$, while in BP we need it to be w^{*}-continuous.
- * Is every isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$ w* continuous? Or, equivalently, is every isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$ the adjoint operator of an isometry $S : X_{\mathcal{G}} \to X_{\mathcal{F}}$?

Comments

- * In the BFT version, we start directly with an isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$, while in BP we need it to be w^{*}-continuous.
- * Is every isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$ w* continuous? Or, equivalently, is every isometry $T : X_{\mathcal{F}}^* \to X_{\mathcal{G}}^*$ the adjoint operator of an isometry $S : X_{\mathcal{G}} \to X_{\mathcal{F}}^?$
- * (Godefroy, 1978) Yes, for spaces whose dual do not contain ℓ_1 .

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both families, then the only bijection $\pi: \kappa \to \kappa$ which induces an isometry is the identity.

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both families, then the only bijection $\pi: \kappa \to \kappa$ which induces an isometry is the identity.

Theorem

If $\pi : \mathbb{N} \to \mathbb{N}$ is a bijection inducing an isometry between $X_{\mathcal{F}}$ and $X_{\mathcal{G}}$ where \mathcal{F} and \mathcal{G} are spreading families, then $\mathcal{F} = \mathcal{G}$.

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both families, then the only bijection $\pi:\kappa\to\kappa$ which induces an isometry is the identity.

Theorem

If $\pi : \mathbb{N} \to \mathbb{N}$ is a bijection inducing an isometry between $X_{\mathcal{F}}$ and $X_{\mathcal{G}}$ where \mathcal{F} and \mathcal{G} are spreading families, then $\mathcal{F} = \mathcal{G}$.

• There are compact families on $\ensuremath{\mathbb{N}}$ which cannot be permuted onto any regular one.

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both families, then the only bijection $\pi:\kappa\to\kappa$ which induces an isometry is the identity.

Theorem

If $\pi : \mathbb{N} \to \mathbb{N}$ is a bijection inducing an isometry between $X_{\mathcal{F}}$ and $X_{\mathcal{G}}$ where \mathcal{F} and \mathcal{G} are spreading families, then $\mathcal{F} = \mathcal{G}$.

- There are compact families on $\ensuremath{\mathbb{N}}$ which cannot be permuted onto any regular one.
- There are homeomorphic compact families on ℕ which cannot be permuted one to the other.

Theorem (Beauzamy, Casazza, 1980's(?); Antunes, Beanland, 2022) Given an isometry $T : T[\frac{1}{k}, S] \to T[\frac{1}{k}, S]$, there are a bijection $\pi : \{1, \ldots, k\} \to \{1, \ldots, k\}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for $n \le k$ and $T(e_n) = \theta_n e_n$ for n > k. Theorem (Beauzamy, Casazza, 1980's(?); Antunes, Beanland, 2022) Given an isometry $T : T[\frac{1}{k}, S] \to T[\frac{1}{k}, S]$, there are a bijection $\pi : \{1, \ldots, k\} \to \{1, \ldots, k\}$ and a sequence $(\theta_n)_n$ such that $|\theta_n| = 1$ and $T(e_n) = \theta_n e_{\pi(n)}$ for $n \le k$ and $T(e_n) = \theta_n e_n$ for n > k.

* Do similar results hold for the nonseparable Tsirelson-type examples from BLT?

* X has the Mazur-Ulam property if, for every Y, any isometry from S_X onto S_Y extends to a linear isometry from X onto Y.

- * X has the Mazur-Ulam property if, for every Y, any isometry from S_X onto S_Y extends to a linear isometry from X onto Y.
- * c_0 and ℓ_p 's do have the Mazur-Ulam property and so does Tsirelson space.

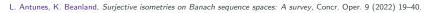
- * X has the Mazur-Ulam property if, for every Y, any isometry from S_X onto S_Y extends to a linear isometry from X onto Y.
- * c_0 and $\ell_p{\,}'s$ do have the Mazur-Ulam property and so does Tsirelson space.
- * Do combinatorial spaces have?

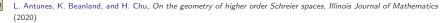
- * X has the Mazur-Ulam property if, for every Y, any isometry from S_X onto S_Y extends to a linear isometry from X onto Y.
- * c_0 and ℓ_p 's do have the Mazur-Ulam property and so does Tsirelson space.
- * Do combinatorial spaces have?
- * At least, does every isometry between the spheres of two combinatorial spaces extend to a linear isometry?

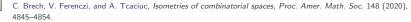
Questions

- * Do similar results hold for ℓ_p -norms?
- * Are these results instances of a more general result?

Main References







C. Brech, J. Lopez-Abad, and S. Todorcevic, Homogeneous families on trees and subsymmetric basic sequences, Adv. Math. 334 (2018), 322–388.

C. Brech, C. Piña, Banach-Stone-like results for combinatorial Banach spaces, Ann. Pure Appl. Logic (2021).

G. Godefroy, *Espaces de Banach: existence et unicité de certains préduaux*, Ann. Inst. Fourier (Grenoble) 28 (1978), 87–105.

W. Gowers, Must an "explicitly defined" Banach space contain c_0 or ℓ_p ?, Feb. 17, 2009, Gowers's Weblog: Mathematics related discussions.

J. Lopez-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences, Adv. Math. 242 (2013), 163–186.

05-09 December 2022, São Paulo

Brazilian Workshop in Banach Spaces

Butantã Edition

This workshop will focus on the following directions:

- Ramsey theory and set theory;
- · Homological theory, lattices and interpolation;
- · Operator theory and dynamics of operators;
- Nonlinear theory on Banach spaces.

The program includes four mini-courses:

Piotr Koszmider (Polish Academy of Sciences).

Étienne Matheron (Université d'Artois).

Eva Pernecka (Czech T. U. in Prague).

Noé De Rancourt (Charles University). [to be confirmed]

Main Speakers

Frédéric Bayart (U. Clermont Auvergne) Geraldo Botelho (U. F. Uberdándia) Bruno Braga (U. Virginia & PUC Rio de Janeiro) Yolanda Moreno (U. Extremadura) Sofia Ortega Castillo (U. Guadalajara) Grzegorz Piebanek (Wrocław U.) Pedro Tradacele (ICMAT - Madrid)

Scientific Committee

Dana Bartosova (U. Florida) Christina Brech (U. São Paulo) Jesús Castillo (U. Extremadura) Valentin Ferenczi (U. São Paulo) Eloi Medina Galego (U. São Paulo) Sonbio Grivaux (II - Illa) Let's thank the organizers of the workshop!

- * Pedro Tradacete ICMAT
- * David de Hevia ICMAT
- * Enrique García ICMAT
- * Antonio Avilés Universidad de Murcia