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Motivations

Theorem (Banach-Stone)

For every compact Hausdorff spaces K and L, given an isometry
T : C (K )→ C (L), then there are a homeomorphism ϕ : L→ K and
g ∈ C (L) such that |g(y)| = 1 and T (f )(y) = g(y) · (f ◦ ϕ)(y) for all
f ∈ C (K ) and every y ∈ L.

Theorem (folklore)

For X = c0 or X = `p, 1 ≤ p <∞, p 6= 2, given an isometry T : X → X ,
there are a bijection π : N→ N and a sequence (θn)n such that |θn| = 1
and T (en) = θneπ(n) for every n ∈ N.
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Isometries of the Schreier spaces

Theorem

Given an isometry T : XS → XS , there is a sequence (θn)n such that
|θn| = 1 and T (en) = θnen for every n ∈ N.

Theorem (Antunes, Beanland, Chu, 2020)

The same holds for Schreier spaces of larger finite order.

Given a countable ordinal α ≥ 1,

Sα+1 = {
n⋃

i=1

si : si ∈ Sα and {min si : 1 ≤ i ≤ n} ∈ S} ∪ {∅}

and

Sα :=
⋃
n∈N
Sαn � (N \ n)

where (αn)n is an increasing sequence converging to α, if α is limit.
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Isometry group

We say (Antunes, Beanland) that the group of isometries of X is

• standard if the isometries are those T such that

T (en) = θneπ(n)

for some |θn| = 1 and π ∈ S∞;

• diagonal if the isometries are those T such that

T (en) = θnen

for some |θn| = 1.



Combinatorial spaces

Theorem (B, Ferenczi, Tcaciuc, 2020)

For every regular families F and G, given an isometry T : XF → XG , there
are a bijection π : N→ N and a sequence (θn)n such that |θn| = 1 and
T (en) = θneπ(n) for every n ∈ N.

Ingredients of the proof:

• Characterization of the extreme points of the dual ball (Gowers):

Ext(BX∗F
) = {

∑
n∈s

θne
∗
n : s ∈ FMAX , |θn| = 1}.

• Extract by hand the form of each T ∗(e∗n).

Moreover, we also get that in the case of Schreier spaces of any order, the
only bijection allowed is the identity.
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Combinatorial (nonseparable) spaces

Theorem (B, Piña, 2021)

For every compact and hereditary families F and G such that singletons
are in the closure of FMAX and GMAX , given an isometry T : XF → XG ,
there are a bijection π : Γ→ Γ and a sequence (θγ)γ∈Γ such that |θγ | = 1
and T (eγ) = θγeπ(γ) for every γ ∈ Γ.

Ingredients of the proof:

• Same characterization of the extreme points of the dual ball (Gowers):

Ext(BX∗F
) = {

∑
n∈s

θne
∗
n : s ∈ FMAX , |θn| = 1}.

• Extract the form of each T ∗(e∗n) using w∗-continuity of T ∗.
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Nonseparable examples

Theorem (Lopez-Abad, Todorcevic, 2013)

c : [κ]<ω → 2 witnesses that κ is not ω-Erdös iff

F = {F ⊆ κ : c �[F ]k is constant for every k}

is a hereditary, compact and large family on κ.

Proposition (B., Lopez-Abad, Todorcevic, 2018)

If F is a hereditary, compact and large family of finite subsets of κ(+1),
then

G = {C ⊆ 2≤κ : C is a chain and {htT (t) : t ∈ C} ∈ F}

is hereditary, compact and large.
(2≤κ is the complete binary tree of height κ+ 1)
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Comments

* In the BFT version, we start directly with an isometry T : X ∗F → X ∗G ,
while in BP we need it to be w∗-continuous.

* Is every isometry T : X ∗F → X ∗G w∗ continuous? Or, equivalently, is
every isometry T : X ∗F → X ∗G the adjoint operator of an isometry
S : XG → XF?

* (Godefroy, 1978) Yes, for spaces whose dual do not contain `1.
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More results by BP

Proposition

If the Cantor-Bendixson ranks of the singletons are different for both
families, then the only bijection π : κ→ κ which induces an isometry is
the identity.

Theorem

If π : N→ N is a bijection inducing an isometry between XF and XG
where F and G are spreading families, then F = G.

• There are compact families on N which cannot be permuted onto any
regular one.

• There are homeomorphic compact families on N which cannot be
permuted one to the other.
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Tsirelson spaces

Theorem (Beauzamy, Casazza, 1980’s(?); Antunes, Beanland, 2022)

Given an isometry T : T [ 1
k ,S]→ T [ 1

k ,S], there are a bijection
π : {1, . . . , k} → {1, . . . , k} and a sequence (θn)n such that |θn| = 1 and
T (en) = θneπ(n) for n ≤ k and T (en) = θnen for n > k .

* Do similar results hold for the nonseparable Tsirelson-type examples
from BLT?
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Mazur-Ulam property

* X has the Mazur-Ulam property if, for every Y , any isometry from
SX onto SY extends to a linear isometry from X onto Y .

* c0 and `p’s do have the Mazur-Ulam property and so does Tsirelson
space.

* Do combinatorial spaces have?

* At least, does every isometry between the spheres of two
combinatorial spaces extend to a linear isometry?
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Questions

* Do similar results hold for `p-norms?

* Are these results instances of a more general result?
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