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Introduction

• It is well known that any closed convex set in a normed linear space (nls)
is the intersection of closed hyperplanes containing it.

• S. Mazur (1933) was the first to consider the separation by closed balls
in a nls.

Definition
A nls X is said to have the Mazur Intersection Property (MIP), or, the
Property (I), if every closed bounded convex set in X is the intersection of
closed balls containing it.

• It is not hard to see that Euclidean spaces have the MIP.

• Indeed, Mazur showed that any Banach space with a Fréchet smooth
norm has the MIP.



Introduction

• It is well known that any closed convex set in a normed linear space (nls)
is the intersection of closed hyperplanes containing it.

• S. Mazur (1933) was the first to consider the separation by closed balls
in a nls.

Definition
A nls X is said to have the Mazur Intersection Property (MIP), or, the
Property (I), if every closed bounded convex set in X is the intersection of
closed balls containing it.

• It is not hard to see that Euclidean spaces have the MIP.

• Indeed, Mazur showed that any Banach space with a Fréchet smooth
norm has the MIP.



Introduction

• It is well known that any closed convex set in a normed linear space (nls)
is the intersection of closed hyperplanes containing it.

• S. Mazur (1933) was the first to consider the separation by closed balls
in a nls.

Definition
A nls X is said to have the Mazur Intersection Property (MIP), or, the
Property (I), if every closed bounded convex set in X is the intersection of
closed balls containing it.

• It is not hard to see that Euclidean spaces have the MIP.

• Indeed, Mazur showed that any Banach space with a Fréchet smooth
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norm has the MIP.



Introduction

• Later, R. R. Phelps (1960) provided a more geometric insight into this
property by showing that

(a) A nls X has the MIP if the w*-strongly exposed points of B(X ∗) are
norm dense in S(X ∗).

(b) If a nls X has the MIP, every support mapping on X maps norm
dense subsets of S(X ) to norm dense subsets of S(X ∗).

(c) A finite dimensional nls X has the MIP if and only if the extreme
points of B(X ∗) are norm dense in S(X ∗).

• He also asked whether the sufficient condition (a) is also necessary. To
date, this remains an open question.
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• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :

(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).
(b) X has the MIP.
(c) Every support mapping on X maps norm dense subsets of S(X ) to norm
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• We will return to this result later again!



Introduction

• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :

(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).
(b) X has the MIP.
(c) Every support mapping on X maps norm dense subsets of S(X ) to norm

dense subsets of S(X ∗).

• We will return to this result later again!



Introduction

• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :
(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).

(b) X has the MIP.
(c) Every support mapping on X maps norm dense subsets of S(X ) to norm

dense subsets of S(X ∗).

• We will return to this result later again!



Introduction

• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :
(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).
(b) X has the MIP.

(c) Every support mapping on X maps norm dense subsets of S(X ) to norm
dense subsets of S(X ∗).

• We will return to this result later again!



Introduction

• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :
(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).
(b) X has the MIP.
(c) Every support mapping on X maps norm dense subsets of S(X ) to norm

dense subsets of S(X ∗).

• We will return to this result later again!



Introduction

• Nearly two decades later, J. R. Giles, D. A. Gregory and B. Sims (1978)
obtained a complete characterisation of the MIP, and they proved, inter
alia,

Theorem

For a nls X, the following are equivalent :
(a) The w*-denting points of B(X ∗) are norm dense in S(X ∗).
(b) X has the MIP.
(c) Every support mapping on X maps norm dense subsets of S(X ) to norm

dense subsets of S(X ∗).

• We will return to this result later again!



Introduction

• They showed that Phelps’ condition (a) is indeed necessary if X is an
Asplund space.

• They now asked whether the MIP necessarily implies Asplund.

• This question remained open for nearly twenty years.

• Notice that a separable MIP space has separable dual and hence is
Asplund.

• Two important open problems about MIP were answered from this
campus in the negative in 1997!

(a) There exist Banach spaces with MIP which are not Asplund.
(b) Indeed, every Banach space isometrically embeds in a Banach

space with the MIP.
(c) There exist (under the Continuum Hypothesis) Asplund spaces

without any equivalent MIP renorming.
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• Indeed, all known examples of Asplund spaces without equivalent MIP
renormings have been constructed assuming the Continuum Hypothesis.

• On the other hand, under Martin’s axiom, every Asplund space of
density character ω1 has an equivalent MIP renorming (JFA, 2008).

• Soon after the 1978 paper, there appeared several papers dealing with
the property that every compact (weakly compact/finite dimensional
compact) convex set is an intersection of balls.

• A unified approach to these different intersection properties was
presented by the speaker (1992) and independently by Chen & Lin
(1998).
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UMIP

• A much less studied uniform version of the MIP (UMIP or UI) was
introduced by Whitfield and Zizler (1987).

Definition
We say that a Banach space X has the Uniform Mazur Intersection Property
(UMIP) if for every ε > 0, there is K > 0 such that whenever a closed convex
set C ⊆ X and a point p ∈ X are such that diam(C)≤ 1/ε and d(p,C)≥ ε,
there is a closed ball B ⊆ X of radius ≤ K such that C ⊆ B and d(p,B)≥ ε/2.

• Characterisations similar to Giles, Gregory & Sims were also obtained,
but an analogue of the w*-denting point criterion was missing.

• This is the main object of our present talk.
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Terminology

Definition

• A slice of B(X ) determined by f ∈ S(X ∗) is a set of the form

S(B(X ), f ,δ ) := {x ∈ B(X ) : f (x)> 1−δ}

for some 0 < δ < 1.

• For x ∈ S(X ), S(B(X ∗),x ,δ ) is called a w*-slice of B(X ∗).

• We say that x ∈ S(X ) is a denting point of B(X ) if for every ε > 0, x is
contained in a slice of B(X ) of diameter less than ε.
If the slices are determined by the same functional, x is a strongly
exposed point.

• A w*-denting (strongly exposed) point of B(X ∗) is defined similarly.
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• For ε,δ > 0, define

Mε,δ (X ) =

{
x ∈ S(X ) : sup

0<‖y‖<δ

‖x +y‖+‖x−y‖−2
‖y‖

< ε

}
.

• For ε > 0, define
Mε (X ) =

⋃
δ>0

Mε,δ (X ).

•
⋂

ε>0
Mε (X ) is the set of points where the norm is Fréchet differentiable.

• For x ∈ S(X ), D(x) = {f ∈ S(X ∗) : f (x) = 1}.

• The set valued map D is called the duality map and any selection of D is
called a support mapping.
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• For x ∈ S(X ), D(x) = {f ∈ S(X ∗) : f (x) = 1}.

• The set valued map D is called the duality map and any selection of D is
called a support mapping.



Terminology

Definition
• For ε,δ > 0, define

Mε,δ (X ) =

{
x ∈ S(X ) : sup

0<‖y‖<δ

‖x +y‖+‖x−y‖−2
‖y‖

< ε

}
.

• For ε > 0, define
Mε (X ) =

⋃
δ>0

Mε,δ (X ).

•
⋂

ε>0
Mε (X ) is the set of points where the norm is Fréchet differentiable.
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MIP Vs. UMIP

• X has the MIP. X has the UMIP.

•

The duality map is quasicontinu-
ous, i.e., ∀ f ∈ S(X ∗), ε > 0,
∃ x ∈ S(X ), δ > 0 s.t.
D(S(X )∩B(x ,δ ))⊆ B(f ,ε).

The duality map is uniformly qua-
sicontinuous, i.e., ∀ ε > 0, ∃ δ > 0
s.t. ∀ f ∈ S(X ∗), ∃ x ∈ S(X ) s.t.
D(S(X )∩B(x ,δ ))⊆ B(f ,ε).

•
Every support mapping maps
dense subsets of S(X ) to dense
subsets of S(X ∗).

∀ ε > 0, ∃ δ > 0 s.t. every support
mapping maps a δ -net in S(X ) to
an ε-net in S(X ∗).

• ∀ ε > 0, D(Mε (X )) is norm dense
in S(X ∗).

∀ ε > 0, ∃ δ > 0 s.t. ∀ f ∈ S(X ∗),
∃ x ∈Mε,δ (X ) s.t. D(x)⊆ B(f ,ε).

• The w*-denting points of B(X ∗)
are norm dense in S(X ∗).
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W*-semidenting points

• Chen and Lin (1995) introduced the notion of w*-semidenting points

Definition
f ∈ S(X ∗) is said to be a w*-semidenting point of B(X ∗) if for every ε > 0,
there exists a w*-slice S(B(X ∗),x ,δ )⊆ B(f ,ε).

• and showed that a Banach space X has the MIP if and only if every
f ∈ S(X ∗) is a w*-semidenting point of B(X ∗).
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Proof

Lemma (Parallel Hyperplane Lemma)

For a nls X, f ,g ∈ S(X ∗) and ε > 0, if
{x ∈ B(X ) : f (x)> ε} ⊆ {x ∈ X : g(x)> 0}, then ‖f −g‖ ≤ 2ε.

Proof.

If x ∈ B(X ) and g(x) = 0, then |f (x)| ≤ ε. That is, ‖f |ker(g)‖ ≤ ε.

By HBT, ∃ h ∈ X ∗ such that ‖h‖ ≤ ε and h ≡ f on ker(g).

It follows that f −h = tg for some t ∈ R.

Then ‖f − tg‖= ‖h‖ ≤ ε.
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(Contd.)

Now, if y ∈ {x ∈ B(X ) : f (x)> ε}, then g(y)> 0 and

ε < f (y) = (f − tg)(y)+ tg(y)≤ ‖f − tg‖+ tg(y)≤ ε + tg(y).

It follows that t > 0.

And
|1− t | ≤

∣∣‖f‖−‖tg‖∣∣≤ ‖f − tg‖ ≤ ε.

Thus,
‖f −g‖ ≤ ‖f − tg‖+ |1− t | ≤ ε + ε = 2ε.
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Theorem

For a Banach space X, and A⊆ X bounded, the following are equivalent :

(a) ∃ a closed ball B ⊆ X such that A⊆ B and 0 /∈ B
(b) d(0,A)> 0 and ∃ a w*-slice S of B(X ∗) such that

S ⊆ {f ∈ B(X ∗) : f (x)> 0 ∀ x ∈ A}.

Proof.

Let A⊆ B = B[x0, r ] and 0 /∈ B[x0, r ]. Then ‖x0‖> r .

Clearly, d(0,A)≥ d(0,B) = ‖x0‖− r > 0.

Let S = {f ∈ B(X ∗) : f (x0)> r}. Then S is a w*-slice of B(X ∗).

And if g ∈ S and x ∈ A, then g(x0−x)≤ ‖x0−x‖ ≤ r and hence,
g(x)≥ g(x0)− r > 0.

Thus, S ⊆ {f ∈ B(X ∗) : f (x)> 0 ∀ x ∈ A}.
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Conversely, let d = d(0,A)> 0 and let x0 ∈ SX and 0 < ε < 1 be such that

{f ∈ B(X ∗) : f (x0)> ε} ⊆ {f ∈ B(X ∗) : f (x)> 0 ∀ x ∈ A}.

Let M = sup{‖x‖ : x ∈ A}.

By the proof of the Parallel Hyperplane Lemma, ∀ x ∈ A, ∃ t ∈ R such
that 1− ε ≤ t ≤ 1+ ε and ‖tx/‖x‖−x0‖ ≤ ε.

Then for λ ≥M/(1− ε),

‖x−λx0‖ ≤
∥∥∥∥x− ‖x‖

t
x0

∥∥∥∥+ ∣∣∣∣‖x‖t −λ

∣∣∣∣≤ ε‖x‖
t

+λ − ‖x‖
t

= λ − ‖x‖
t

(1− ε)≤ λ − d(1− ε)

1+ ε
.

=⇒ A⊆ B
[

λx0,λ −
d(1− ε)

1+ ε

]
and clearly, 0 /∈ B

[
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]
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• Now we are ready to prove our main result:

Theorem
For a Banach space X, the following are equivalent :

(a) X has the UMIP.
(b) Every f ∈ S(X ∗) is uniformly w*-semidenting, i.e., given ε > 0, ∃

0 < δ < 1 such that for any f ∈ S(X ∗), ∃ x ∈ S(X ) such that

S(B(X ∗),x ,δ )⊆ B(f ,ε).
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Proof.

(a)⇒ (b). Let 0 < ε < 1/2.

Choose K as given by (a) for ε/3. We may assume w.l.o.g. that K ≥ 1.

Let f ∈ S(X ∗). Consider C := {x ∈ B(X ) : f (x)≥ ε/3}. Then,
d(0,C)≥ ε/3. Also, diam(C)≤ 2≤ 1/ε.

So, ∃ B = B[x0, r ] containing C, r ≤ K and d(0,B)≥ ε/6.

CLAIM : S := S(B(X ∗),x0/‖x0‖,1−K/(K + ε/9))⊆ B(f ,ε).

Let g ∈ S. It can be shown that inf g(B)> 0. So,

{x ∈ B(X ) : f (x)> ε/3} ⊆ C ⊆ B ⊆ {x : g(x)> 0}.

By PH Lemma, ‖f −g/‖g‖‖ ≤ 2ε/3. It follows that,

‖f −g‖ ≤ ‖f −g/‖g‖‖+(1−‖g‖)< ε.
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(b)⇒ (a). Let ε > 0 be given. Let L = 1/ε + ε. Choose 0 < δ < 1 for
ε/4L obtained from (b). Let K = L/δ +1. We will show that this K works.

CASE I : C \B[0,1/ε + ε/2] 6= /0.

Choose z ∈ C \B[0,1/ε + ε/2].

Then C ⊆ B[z,1/ε], d(0,B[z,1/ε])≥ ε/2 and 1/ε ≤ K .

CASE II : C ⊆ B[0,1/ε + ε/2].

Define D = C + ε

2 B(X ).

Then D ⊆ B[0,L] and d(0,D)≥ ε/2, and hence, D is disjoint from
B(0,ε/2).

By separation theorem, there exists f ∈ S(X ∗) such that inf f (D)≥ ε/2.

By choice of δ , there exists x0 ∈ S(X ) such that

S(B(X ∗),x0,δ )⊆ B(f ,ε/4L).
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It follows that if g ∈ B(X ∗)∩B(f ,ε/4L) and z ∈ D, then g(z)≥ ε/4 > 0.
Therefore,

S(B(X ∗),x0,δ ) ⊆ B(X ∗)∩B(f ,ε/4L)

⊆ {g ∈ B(X ∗) : g(x)> 0 for all x ∈ D}.

By the proof of Theorem 2, for K ≥ λ ≥ L/δ ,

D ⊆ B
[

λx0,λ −
d(0,D)δ

2−δ

]
.

It follows that

C ⊆ B = B
[

λx0,λ −
ε

2
− d(0,D)δ

2−δ

]
, and

d(0,B) =
ε

2
+

d(0,D)δ

2−δ
≥ ε

2
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More on UMIP

• The following observations are from Whitfield & Zizler (1987):

Theorem

• For a Banach space X, consider the following properties :

(a) X is uniformly smooth.
(b) X has the UMIP.
(c) X has the MIP.
(d) The extreme points of B(X ∗) are norm dense in S(X ∗).

• Then (a) =⇒ (b) =⇒ (c) =⇒ (d).

• If X is finite dimensional, (b)–(d) are all equivalent.

• They also produce an example to show that in general, UMIP ; MIP.
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Open Question

• This brings us to the most important open question regarding the UMIP.

Problem
If X has the UMIP, does X admit an equivalent uniformly smooth renorming?

• Indeed, the following weaker problem also seems to be open

Problem
If X has the UMIP, is X reflexive?
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