On uniform Mazur intersection property

Pradipta Bandyopadhyay Indian Statistical Institute

This is a joint work with Jadav Ganesh & Deepak Gothwal.

Workshop on Banach spaces and Banach lattices II ICMAT, Madrid 11 May, 2022

• It is well known that any closed convex set in a normed linear space (nls) is the intersection of closed hyperplanes containing it.

- It is well known that any closed convex set in a normed linear space (nls) is the intersection of closed hyperplanes containing it.
- S. Mazur (1933) was the first to consider the separation by closed balls in a nls.

- It is well known that any closed convex set in a normed linear space (nls) is the intersection of closed hyperplanes containing it.
- S. Mazur (1933) was the first to consider the separation by closed balls in a nls.

A nls X is said to have the Mazur Intersection Property (MIP), or, the Property (I), if every closed bounded convex set in X is the intersection of closed balls containing it.

- It is well known that any closed convex set in a normed linear space (nls) is the intersection of closed hyperplanes containing it.
- S. Mazur (1933) was the first to consider the separation by closed balls in a nls.

A nls X is said to have the Mazur Intersection Property (MIP), or, the Property (I), if every closed bounded convex set in X is the intersection of closed balls containing it.

It is not hard to see that Euclidean spaces have the MIP.

- It is well known that any closed convex set in a normed linear space (nls) is the intersection of closed hyperplanes containing it.
- S. Mazur (1933) was the first to consider the separation by closed balls in a nls.

A nls X is said to have the Mazur Intersection Property (MIP), or, the Property (I), if every closed bounded convex set in X is the intersection of closed balls containing it.

- It is not hard to see that Euclidean spaces have the MIP.
- Indeed, Mazur showed that any Banach space with a Fréchet smooth norm has the MIP.

• Later, R. R. Phelps (1960) provided a more geometric insight into this property by showing that

- Later, R. R. Phelps (1960) provided a more geometric insight into this property by showing that
 - (a) A nls X has the MIP if the w*-strongly exposed points of B(X*) are norm dense in S(X*).

- Later, R. R. Phelps (1960) provided a more geometric insight into this property by showing that
 - (a) A nls X has the MIP if the w*-strongly exposed points of B(X*) are norm dense in S(X*).
 - (b) If a nls X has the MIP, every support mapping on X maps norm dense subsets of S(X) to norm dense subsets of S(X*).

- Later, R. R. Phelps (1960) provided a more geometric insight into this property by showing that
 - (a) A nls X has the MIP if the w*-strongly exposed points of B(X*) are norm dense in S(X*).
 - (b) If a nls X has the MIP, every support mapping on X maps norm dense subsets of S(X) to norm dense subsets of S(X*).
 - (c) A finite dimensional nls X has the MIP if and only if the extreme points of B(X*) are norm dense in S(X*).

- Later, R. R. Phelps (1960) provided a more geometric insight into this property by showing that
 - (a) A nls X has the MIP if the w*-strongly exposed points of B(X*) are norm dense in S(X*).
 - (b) If a nls X has the MIP, every support mapping on X maps norm dense subsets of S(X) to norm dense subsets of S(X*).
 - (c) A finite dimensional nls X has the MIP if and only if the extreme points of B(X*) are norm dense in S(X*).
- He also asked whether the sufficient condition (a) is also necessary. To date, this remains an open question.

Theorem

Theorem

For a nls X, the following are equivalent :

(a) The w*-denting points of $B(X^*)$ are norm dense in $S(X^*)$.

Theorem

- (a) The w*-denting points of $B(X^*)$ are norm dense in $S(X^*)$.
- (b) X has the MIP.

Theorem

- (a) The w*-denting points of $B(X^*)$ are norm dense in $S(X^*)$.
- (b) X has the MIP.
- (c) Every support mapping on X maps norm dense subsets of S(X) to norm dense subsets of S(X*).

Theorem

- (a) The w*-denting points of $B(X^*)$ are norm dense in $S(X^*)$.
- (b) X has the MIP.
- (c) Every support mapping on X maps norm dense subsets of S(X) to norm dense subsets of S(X*).
 - We will return to this result later again!

• They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.
- Notice that a separable MIP space has separable dual and hence is Asplund.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.
- Notice that a separable MIP space has separable dual and hence is Asplund.
- Two important open problems about MIP were answered from this campus in the negative in 1997!

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.
- Notice that a separable MIP space has separable dual and hence is Asplund.
- Two important open problems about MIP were answered from this campus in the negative in 1997!

(a) There exist Banach spaces with MIP which are not Asplund.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.
- Notice that a separable MIP space has separable dual and hence is Asplund.
- Two important open problems about MIP were answered from this campus in the negative in 1997!
 - (a) There exist Banach spaces with MIP which are not Asplund.
 - (*b*) Indeed, every Banach space isometrically embeds in a Banach space with the MIP.

- They showed that Phelps' condition (a) is indeed necessary if *X* is an Asplund space.
- They now asked whether the MIP necessarily implies Asplund.
- This question remained open for nearly twenty years.
- Notice that a separable MIP space has separable dual and hence is Asplund.
- Two important open problems about MIP were answered from this campus in the negative in 1997!
 - (a) There exist Banach spaces with MIP which are not Asplund.
 - (*b*) Indeed, every Banach space isometrically embeds in a Banach space with the MIP.
 - (c) There exist (under the Continuum Hypothesis) Asplund spaces without any equivalent MIP renorming.

• Indeed, all known examples of Asplund spaces without equivalent MIP renormings have been constructed assuming the Continuum Hypothesis.

- Indeed, all known examples of Asplund spaces without equivalent MIP renormings have been constructed assuming the Continuum Hypothesis.
- On the other hand, under Martin's axiom, every Asplund space of density character ω₁ has an equivalent MIP renorming (JFA, 2008).

- Indeed, all known examples of Asplund spaces without equivalent MIP renormings have been constructed assuming the Continuum Hypothesis.
- On the other hand, under Martin's axiom, every Asplund space of density character ω₁ has an equivalent MIP renorming (JFA, 2008).
- Soon after the 1978 paper, there appeared several papers dealing with the property that every compact (weakly compact/finite dimensional compact) convex set is an intersection of balls.

- Indeed, all known examples of Asplund spaces without equivalent MIP renormings have been constructed assuming the Continuum Hypothesis.
- On the other hand, under Martin's axiom, every Asplund space of density character ω₁ has an equivalent MIP renorming (JFA, 2008).
- Soon after the 1978 paper, there appeared several papers dealing with the property that every compact (weakly compact/finite dimensional compact) convex set is an intersection of balls.
- A unified approach to these different intersection properties was presented by the speaker (1992) and independently by Chen & Lin (1998).

Definition

We say that a Banach space X has the Uniform Mazur Intersection Property (UMIP) if for every $\varepsilon > 0$, there is K > 0 such that whenever a closed convex set $C \subseteq X$ and a point $p \in X$ are such that $diam(C) \le 1/\varepsilon$ and $d(p, C) \ge \varepsilon$, there is a closed ball $B \subseteq X$ of radius $\le K$ such that $C \subseteq B$ and $d(p, B) \ge \varepsilon/2$.

Definition

We say that a Banach space X has the Uniform Mazur Intersection Property (UMIP) if for every $\varepsilon > 0$, there is K > 0 such that whenever a closed convex set $C \subseteq X$ and a point $p \in X$ are such that $diam(C) \le 1/\varepsilon$ and $d(p, C) \ge \varepsilon$, there is a closed ball $B \subseteq X$ of radius $\le K$ such that $C \subseteq B$ and $d(p, B) \ge \varepsilon/2$.

• Characterisations similar to Giles, Gregory & Sims were also obtained, but an analogue of the w*-denting point criterion was missing.

Definition

We say that a Banach space X has the Uniform Mazur Intersection Property (UMIP) if for every $\varepsilon > 0$, there is K > 0 such that whenever a closed convex set $C \subseteq X$ and a point $p \in X$ are such that $diam(C) \le 1/\varepsilon$ and $d(p, C) \ge \varepsilon$, there is a closed ball $B \subseteq X$ of radius $\le K$ such that $C \subseteq B$ and $d(p, B) \ge \varepsilon/2$.

- Characterisations similar to Giles, Gregory & Sims were also obtained, but an analogue of the w*-denting point criterion was missing.
- This is the main object of our present talk.

• A slice of B(X) determined by $f \in S(X^*)$ is a set of the form

$$S(B(X), f, \delta) := \{x \in B(X) : f(x) > 1 - \delta\}$$

for some $0 < \delta < 1$.

• A slice of B(X) determined by $f \in S(X^*)$ is a set of the form

$$S(B(X), f, \delta) := \{x \in B(X) : f(x) > 1 - \delta\}$$

for some 0 $< \delta <$ 1.

• For $x \in S(X)$, $S(B(X^*), x, \delta)$ is called a w*-slice of $B(X^*)$.

• A slice of B(X) determined by $f \in S(X^*)$ is a set of the form

 $S(B(X), f, \delta) := \{x \in B(X) : f(x) > 1 - \delta\}$

for some 0 < δ < 1.

- For x ∈ S(X), S(B(X*), x, δ) is called a w*-slice of B(X*).
- We say that x ∈ S(X) is a denting point of B(X) if for every ε > 0, x is contained in a slice of B(X) of diameter less than ε.
 If the slices are determined by the same functional, x is a strongly exposed point.

• A slice of B(X) determined by $f \in S(X^*)$ is a set of the form

 $S(B(X), f, \delta) := \{x \in B(X) : f(x) > 1 - \delta\}$

for some $0 < \delta < 1$.

- For x ∈ S(X), S(B(X*), x, δ) is called a w*-slice of B(X*).
- We say that x ∈ S(X) is a denting point of B(X) if for every ε > 0, x is contained in a slice of B(X) of diameter less than ε.
 If the slices are determined by the same functional, x is a strongly exposed point.
- A w*-denting (strongly exposed) point of $B(X^*)$ is defined similarly.

• For $\varepsilon, \delta > 0$, define

$$M_{\varepsilon,\delta}(X) = \left\{ x \in S(X) : \sup_{0 < \|y\| < \delta} \frac{\|x+y\| + \|x-y\| - 2}{\|y\|} < \varepsilon \right\}.$$

• For $\varepsilon, \delta > 0$, define

$$M_{\varepsilon,\delta}(X) = \left\{ x \in \mathcal{S}(X) : \sup_{0 < \|y\| < \delta} \frac{\|x + y\| + \|x - y\| - 2}{\|y\|} < \varepsilon \right\}.$$

$$M_{\varepsilon}(X) = \bigcup_{\delta>0} M_{\varepsilon,\delta}(X).$$

• For $\varepsilon, \delta > 0$, define

$$M_{\varepsilon,\delta}(X) = \left\{ x \in \mathcal{S}(X) : \sup_{0 < \|y\| < \delta} \frac{\|x + y\| + \|x - y\| - 2}{\|y\|} < \varepsilon \right\}.$$

• For
$$\varepsilon > 0$$
, define

$$M_{\varepsilon}(X) = \bigcup_{\delta>0} M_{\varepsilon,\delta}(X).$$

• $\bigcap_{\varepsilon>0} M_{\varepsilon}(X)$ is the set of points where the norm is Fréchet differentiable.

• For $\varepsilon, \delta > 0$, define

$$M_{\varepsilon,\delta}(X) = \left\{ x \in S(X) : \sup_{0 < \|y\| < \delta} \frac{\|x+y\| + \|x-y\| - 2}{\|y\|} < \varepsilon \right\}.$$

• For
$$\varepsilon > 0$$
, define

$$M_{\varepsilon}(X) = \bigcup_{\delta>0} M_{\varepsilon,\delta}(X).$$

• $\bigcap_{\varepsilon>0} M_{\varepsilon}(X)$ is the set of points where the norm is Fréchet differentiable.

• For
$$x \in S(X)$$
, $D(x) = \{f \in S(X^*) : f(x) = 1\}$.

• For $\varepsilon, \delta > 0$, define

$$M_{\varepsilon,\delta}(X) = \left\{ x \in S(X) : \sup_{0 < \|y\| < \delta} \frac{\|x + y\| + \|x - y\| - 2}{\|y\|} < \varepsilon \right\}.$$

• For
$$\varepsilon > 0$$
, define

$$M_{\varepsilon}(X) = \bigcup_{\delta>0} M_{\varepsilon,\delta}(X).$$

- $\bigcap M_{\varepsilon}(X)$ is the set of points where the norm is Fréchet differentiable. $\epsilon > 0$
- For $x \in S(X)$, $D(x) = \{f \in S(X^*) : f(x) = 1\}$.
- The set valued map *D* is called the *duality map* and any selection of *D* is called a support mapping.

•	X has the MIP.	X has the UMIP.
	The duality map is quasicontinu-	The duality map is uniformly qua-
•	ous, i.e., $\forall f \in S(X^*), \varepsilon > 0$,	sicontinuous, i.e., $\forall \epsilon > 0, \exists \delta > 0$
	$\exists x \in S(X), \delta > 0 $ s.t.	s.t. $\forall f \in S(X^*), \exists x \in S(X) s.t.$
	$D(S(X) \cap B(x, \delta)) \subseteq B(f, \varepsilon).$	$D(S(X) \cap B(x, \delta)) \subseteq B(f, \varepsilon).$

•	X has the MIP.	X has the UMIP.
•	The duality map is quasicontinu- ous, i.e., $\forall f \in S(X^*), \varepsilon > 0$, $\exists x \in S(X), \delta > 0 \text{ s.t.}$ $D(S(X) \cap B(x, \delta)) \subseteq B(f, \varepsilon).$	The duality map is uniformly qua- sicontinuous, i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall f \in S(X^*), \exists x \in S(X) s.t.$ $D(S(X) \cap B(x, \delta)) \subseteq B(f, \epsilon).$
•	Every support mapping maps dense subsets of $S(X)$ to dense subsets of $S(X^*)$.	$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. every support}$ mapping maps a δ -net in $S(X)$ to an ε -net in $S(X^*)$.

•	X has the MIP.	X has the UMIP.
•	The duality map is quasicontinu- ous, i.e., $\forall f \in S(X^*), \varepsilon > 0$, $\exists x \in S(X), \delta > 0 \text{ s.t.}$ $D(S(X) \cap B(x, \delta)) \subseteq B(f, \varepsilon).$	The duality map is uniformly qua- sicontinuous, i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall f \in S(X^*), \exists x \in S(X)$ s.t. $D(S(X) \cap B(x, \delta)) \subseteq B(f, \epsilon).$
•	Every support mapping maps dense subsets of $S(X)$ to dense subsets of $S(X^*)$.	$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. every support}$ mapping maps a δ -net in $S(X)$ to an ϵ -net in $S(X^*)$.
•	$\forall \varepsilon > 0, D(M_{\varepsilon}(X))$ is norm dense in $S(X^*)$.	$\forall \ \varepsilon > 0, \ \exists \ \delta > 0 \ s.t. \ \forall \ f \in S(X^*),$ $\exists \ x \in M_{\varepsilon,\delta}(X) \ s.t. \ D(x) \subseteq B(f,\varepsilon).$

•	X has the MIP.	X has the UMIP.
•	The duality map is quasicontinu- ous, i.e., $\forall f \in S(X^*), \varepsilon > 0$, $\exists x \in S(X), \delta > 0$ s.t. $D(S(X) \cap B(x, \delta)) \subseteq B(f, \varepsilon)$.	The duality map is uniformly qua- sicontinuous, i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall f \in S(X^*), \exists x \in S(X)$ s.t. $D(S(X) \cap B(x, \delta)) \subseteq B(f, \epsilon).$
•	Every support mapping maps dense subsets of $S(X)$ to dense subsets of $S(X^*)$.	$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. every support}$ mapping maps a δ -net in $S(X)$ to an ϵ -net in $S(X^*)$.
•	$\forall \epsilon > 0, D(M_{\epsilon}(X))$ is norm dense in $S(X^*)$.	$ \forall \ \varepsilon > 0, \ \exists \ \delta > 0 \ s.t. \ \forall \ f \in S(X^*), \\ \exists \ x \in M_{\varepsilon,\delta}(X) \ s.t. \ D(x) \subseteq B(f,\varepsilon). $
•	The w*-denting points of $B(X^*)$ are norm dense in $S(X^*)$.	?

• Chen and Lin (1995) introduced the notion of w*-semidenting points

Chen and Lin (1995) introduced the notion of w*-semidenting points

Definition

 $f \in S(X^*)$ is said to be a w*-semidenting point of $B(X^*)$ if for every $\varepsilon > 0$, there exists a w*-slice $S(B(X^*), x, \delta) \subseteq B(f, \varepsilon)$.

Chen and Lin (1995) introduced the notion of w*-semidenting points

Definition

 $f \in S(X^*)$ is said to be a w*-semidenting point of $B(X^*)$ if for every $\varepsilon > 0$, there exists a w*-slice $S(B(X^*), x, \delta) \subseteq B(f, \varepsilon)$.

 and showed that a Banach space X has the MIP if and only if every f ∈ S(X*) is a w*-semidenting point of B(X*).

• Our main result is that our earlier table can be augmented as:

• Our main result is that our earlier table can be augmented as:

• X has the MIP.	X has the UMIP.
------------------	-----------------

• Our main result is that our earlier table can be augmented as:

X has the MIP.	X has the UMIP.
Every $f \in S(X^*)$ is a w*- semidenting point of $B(X^*)$, i.e., $\forall \varepsilon > 0$, \exists a w*-slice $S(B(X^*) \times \delta) \subset B(f \varepsilon)$	Every $f \in S(X^*)$ is uniformly w*- semidenting, i.e., $\forall \epsilon > 0, \exists 0 < \delta < 1 \text{ s.t. } \forall f \in S(X^*), \exists x \in S(X)$ st $S(B(X^*) \times \delta) \subseteq B(f, \epsilon)$

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

Proof.

If $x \in B(X)$ and g(x) = 0, then $|f(x)| \le \varepsilon$. That is, $||f|_{\ker(g)}|| \le \varepsilon$.

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

If
$$x \in B(X)$$
 and $g(x) = 0$, then $|f(x)| \le \varepsilon$. That is, $||f|_{\ker(g)}|| \le \varepsilon$.
By HBT, $\exists h \in X^*$ such that $||h|| \le \varepsilon$ and $h \equiv f$ on $\ker(g)$.

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

Proof.

 $\text{ If } x \in B(X) \text{ and } g(x) = 0, \text{ then } |f(x)| \leq \varepsilon. \text{ That is, } \|f|_{\ker(g)}\| \leq \varepsilon.$

By HBT, $\exists h \in X^*$ such that $||h|| \le \varepsilon$ and $h \equiv f$ on ker(*g*).

It follows that f - h = tg for some $t \in \mathbb{R}$.

For a nls X, $f, g \in S(X^*)$ and $\varepsilon > 0$, if $\{x \in B(X) : f(x) > \varepsilon\} \subseteq \{x \in X : g(x) > 0\}$, then $||f - g|| \le 2\varepsilon$.

Proof.

If
$$x \in B(X)$$
 and $g(x) = 0$, then $|f(x)| \le \varepsilon$. That is, $||f|_{\ker(g)}|| \le \varepsilon$.

By HBT, $\exists h \in X^*$ such that $||h|| \le \varepsilon$ and $h \equiv f$ on ker(*g*).

It follows that f - h = tg for some $t \in \mathbb{R}$.

Then $||f - tg|| = ||h|| \le \varepsilon$.

Now, if $y \in \{x \in B(X) : f(x) > \varepsilon\}$, then g(y) > 0 and

 $\varepsilon < f(y) = (f - tg)(y) + tg(y) \le ||f - tg|| + tg(y) \le \varepsilon + tg(y).$

Now, if $y \in \{x \in B(X) : f(x) > \varepsilon\}$, then g(y) > 0 and

$$\varepsilon < f(y) = (f - tg)(y) + tg(y) \le ||f - tg|| + tg(y) \le \varepsilon + tg(y).$$

It follows that t > 0.

Now, if $y \in \{x \in B(X) : f(x) > \varepsilon\}$, then g(y) > 0 and

$$\varepsilon < f(y) = (f - tg)(y) + tg(y) \le ||f - tg|| + tg(y) \le \varepsilon + tg(y).$$

It follows that t > 0.

And

$$|1-t|\leq |\|f\|-\|tg\||\leq \|f-tg\|\leq \varepsilon.$$

Now, if $y \in \{x \in B(X) : f(x) > \varepsilon\}$, then g(y) > 0 and $\varepsilon < f(y) = (f - tg)(y) + tg(y) \le ||f - tg|| + tg(y) \le \varepsilon + tg(y)$.

It follows that t > 0.

And

$$|1-t|\leq |||f||-||tg|||\leq ||f-tg||\leq \varepsilon.$$

Thus,

$$\|f-g\| \leq \|f-tg\| + |1-t| \leq \varepsilon + \varepsilon = 2\varepsilon.$$

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent : (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a w*-slice S of $B(X^*)$ such that

 $S \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}.$

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of $B(X^*)$ such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of $B(X^*)$ such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

Let
$$A \subseteq B = B[x_0, r]$$
 and $0 \notin B[x_0, r]$. Then $||x_0|| > r$.

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of $B(X^*)$ such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

Let
$$A \subseteq B = B[x_0, r]$$
 and $0 \notin B[x_0, r]$. Then $||x_0|| > r$.
Clearly, $d(0, A) \ge d(0, B) = ||x_0|| - r > 0$.

Theorem

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of $B(X^*)$ such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

Proof.

Let
$$A \subseteq B = B[x_0, r]$$
 and $0 \notin B[x_0, r]$. Then $||x_0|| > r$.
Clearly, $d(0, A) \ge d(0, B) = ||x_0|| - r > 0$.
Let $S = \{f \in B(X^*) : f(x_0) > r\}$. Then *S* is a w*-slice of $B(X^*)$.

Theorem

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of *B*(*X**) such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

Proof.

Let
$$A \subseteq B = B[x_0, r]$$
 and $0 \notin B[x_0, r]$. Then $||x_0|| > r$.
Clearly, $d(0, A) \ge d(0, B) = ||x_0|| - r > 0$.
Let $S = \{f \in B(X^*) : f(x_0) > r\}$. Then *S* is a w*-slice of $B(X^*)$.
And if $g \in S$ and $x \in A$, then $g(x_0 - x) \le ||x_0 - x|| \le r$ and hence,
 $g(x) \ge g(x_0) - r > 0$.

Theorem

For a Banach space X, and $A \subseteq X$ bounded, the following are equivalent :

- (a) \exists a closed ball $B \subseteq X$ such that $A \subseteq B$ and $0 \notin B$
- (b) d(0,A) > 0 and \exists a *w**-slice *S* of *B*(*X**) such that $S \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$

Proof.

Let
$$A \subseteq B = B[x_0, r]$$
 and $0 \notin B[x_0, r]$. Then $||x_0|| > r$.
Clearly, $d(0, A) \ge d(0, B) = ||x_0|| - r > 0$.
Let $S = \{f \in B(X^*) : f(x_0) > r\}$. Then *S* is a w*-slice of $B(X^*)$.
And if $g \in S$ and $x \in A$, then $g(x_0 - x) \le ||x_0 - x|| \le r$ and hence,
 $g(x) \ge g(x_0) - r > 0$.
Thus, $S \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}$.

Conversely, let d = d(0, A) > 0 and let $x_0 \in S_X$ and $0 < \varepsilon < 1$ be such that

 $\{f \in B(X^*) : f(x_0) > \varepsilon\} \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}.$

(Contd.)

Conversely, let d = d(0, A) > 0 and let $x_0 \in S_X$ and $0 < \varepsilon < 1$ be such that $\{f \in B(X^*) : f(x_0) > \varepsilon\} \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}.$ Let $M = \sup\{||x|| : x \in A\}.$

(Contd.)

Conversely, let d = d(0, A) > 0 and let $x_0 \in S_X$ and $0 < \varepsilon < 1$ be such that

$$\{f \in B(X^*) : f(x_0) > \varepsilon\} \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}.$$

Let $M = \sup\{\|x\| : x \in A\}$.

By the proof of the Parallel Hyperplane Lemma, $\forall x \in A, \exists t \in \mathbb{R}$ such that $1 - \varepsilon \le t \le 1 + \varepsilon$ and $||tx/||x|| - x_0|| \le \varepsilon$.

(Contd.)

Conversely, let d = d(0, A) > 0 and let $x_0 \in S_X$ and $0 < \varepsilon < 1$ be such that

$$\{f \in B(X^*) : f(x_0) > \varepsilon\} \subseteq \{f \in B(X^*) : f(x) > 0 \ \forall \ x \in A\}.$$

Let $M = \sup\{\|x\| : x \in A\}$.

By the proof of the Parallel Hyperplane Lemma, $\forall x \in A, \exists t \in \mathbb{R}$ such that $1 - \varepsilon \le t \le 1 + \varepsilon$ and $||tx/||x|| - x_0|| \le \varepsilon$.

Then for $\lambda \geq M/(1-\varepsilon)$,

$$\begin{aligned} \|x - \lambda x_0\| &\leq \left\| x - \frac{\|x\|}{t} x_0 \right\| + \left| \frac{\|x\|}{t} - \lambda \right| \leq \frac{\varepsilon \|x\|}{t} + \lambda - \frac{\|x\|}{t} \\ &= \lambda - \frac{\|x\|}{t} (1 - \varepsilon) \leq \lambda - \frac{d(1 - \varepsilon)}{1 + \varepsilon}. \end{aligned}$$

(Contd.)

Conversely, let d = d(0, A) > 0 and let $x_0 \in S_X$ and $0 < \varepsilon < 1$ be such that

$$\{f \in B(X^*) : f(x_0) > \varepsilon\} \subseteq \{f \in B(X^*) : f(x) > 0 \forall x \in A\}.$$

Let $M = \sup\{\|x\| : x \in A\}$.

By the proof of the Parallel Hyperplane Lemma, $\forall x \in A, \exists t \in \mathbb{R}$ such that $1 - \varepsilon \le t \le 1 + \varepsilon$ and $||tx/||x|| - x_0|| \le \varepsilon$.

Then for $\lambda \geq M/(1-\varepsilon)$,

$$\begin{aligned} \|x - \lambda x_0\| &\leq \left\| x - \frac{\|x\|}{t} x_0 \right\| + \left| \frac{\|x\|}{t} - \lambda \right| &\leq \frac{\varepsilon \|x\|}{t} + \lambda - \frac{\|x\|}{t} \\ &= \lambda - \frac{\|x\|}{t} (1 - \varepsilon) \leq \lambda - \frac{d(1 - \varepsilon)}{1 + \varepsilon}. \end{aligned}$$
$$\Rightarrow A \subseteq B \left[\lambda x_0, \lambda - \frac{d(1 - \varepsilon)}{1 + \varepsilon} \right] \text{ and clearly, } 0 \notin B \left[\lambda x_0, \lambda - \frac{d(1 - \varepsilon)}{1 + \varepsilon} \right]. \end{aligned}$$

• Now we are ready to prove our main result:

• Now we are ready to prove our main result:

Theorem

For a Banach space X, the following are equivalent :

• Now we are ready to prove our main result:

Theorem

For a Banach space X, the following are equivalent :

(a) X has the UMIP.

Now we are ready to prove our main result:

Theorem

For a Banach space X, the following are equivalent :

(a) X has the UMIP.

(b) Every $f \in S(X^*)$ is uniformly w*-semidenting, i.e., given $\varepsilon > 0, \exists$

 $0 < \delta < 1$ such that for any $f \in S(X^*)$, $\exists x \in S(X)$ such that

 $S(B(X^*), x, \delta) \subseteq B(f, \varepsilon).$

(a) \Rightarrow (b). Let 0 < ε < 1/2.

Choose K as given by (a) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$.

(a) \Rightarrow (b). Let 0 < ε < 1/2.

Choose *K* as given by (*a*) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$. Let $f \in S(X^*)$. Consider $C := \{x \in B(X) : f(x) \ge \varepsilon/3\}$. Then, $d(0, C) \ge \varepsilon/3$. Also, $diam(C) \le 2 \le 1/\varepsilon$.

 $(a) \Rightarrow (b)$. Let $0 < \varepsilon < 1/2$.

Choose K as given by (a) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$.

Let $f \in S(X^*)$. Consider $C := \{x \in B(X) : f(x) \ge \varepsilon/3\}$. Then,

 $d(0, C) \ge \varepsilon/3$. Also, $diam(C) \le 2 \le 1/\varepsilon$.

So, $\exists B = B[x_0, r]$ containing $C, r \leq K$ and $d(0, B) \geq \varepsilon/6$.

(a) \Rightarrow (b). Let 0 < ε < 1/2.

Choose K as given by (a) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$.

Let $f \in S(X^*)$. Consider $C := \{x \in B(X) : f(x) \ge \varepsilon/3\}$. Then,

 $d(0, C) \ge \varepsilon/3$. Also, $diam(C) \le 2 \le 1/\varepsilon$.

So, $\exists B = B[x_0, r]$ containing $C, r \leq K$ and $d(0, B) \geq \varepsilon/6$.

 $\mathsf{CLAIM}:\, \mathcal{S}:=\mathcal{S}(\mathcal{B}(X^*),x_0/\|x_0\|,1-\mathcal{K}/(\mathcal{K}+\epsilon/9))\subseteq \mathcal{B}(f,\epsilon).$

(a) \Rightarrow (b). Let 0 < ϵ < 1/2.

Choose *K* as given by (a) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$. Let $f \in S(X^*)$. Consider $C := \{x \in B(X) : f(x) \ge \varepsilon/3\}$. Then, $d(0, C) \ge \varepsilon/3$. Also, $diam(C) \le 2 \le 1/\varepsilon$. So, $\exists B = B[x_0, r]$ containing $C, r \le K$ and $d(0, B) \ge \varepsilon/6$. CLAIM : $S := S(B(X^*), x_0/||x_0||, 1 - K/(K + \varepsilon/9)) \subseteq B(f, \varepsilon)$.

Let $g \in S$. It can be shown that $\inf g(B) > 0$. So,

$$\{x \in B(X) : f(x) > \varepsilon/3\} \subseteq C \subseteq B \subseteq \{x : g(x) > 0\}.$$

Proof.

(a) \Rightarrow (b). Let 0 < ε < 1/2.

Choose *K* as given by (*a*) for $\varepsilon/3$. We may assume w.l.o.g. that $K \ge 1$. Let $f \in S(X^*)$. Consider $C := \{x \in B(X) : f(x) \ge \varepsilon/3\}$. Then, $d(0, C) \ge \varepsilon/3$. Also, $diam(C) \le 2 \le 1/\varepsilon$. So, $\exists B = B[x_0, r]$ containing $C, r \le K$ and $d(0, B) \ge \varepsilon/6$. CLAIM : $S := S(B(X^*), x_0/||x_0||, 1 - K/(K + \varepsilon/9)) \subseteq B(f, \varepsilon)$. Let $g \in S$. It can be shown that $\inf g(B) > 0$. So,

 $\{x \in B(X) : f(x) > \varepsilon/3\} \subseteq C \subseteq B \subseteq \{x : g(x) > 0\}.$

By PH Lemma, $\|f - g/\|g\|\| \le 2\varepsilon/3$. It follows that,

 $||f-g|| \le ||f-g/||g||| + (1-||g||) < \varepsilon.$


```
Choose z \in C \setminus B[0, 1/\epsilon + \epsilon/2].
```

Then $C \subseteq B[z, 1/\varepsilon]$, $d(0, B[z, 1/\varepsilon]) \ge \varepsilon/2$ and $1/\varepsilon \le K$.

(Contd.)

(b) \Rightarrow (a). Let $\varepsilon > 0$ be given. Let $L = 1/\varepsilon + \varepsilon$. Choose $0 < \delta < 1$ for

 $\varepsilon/4L$ obtained from (b). Let $K = L/\delta + 1$. We will show that this K works. CASE I : $C \setminus B[0, 1/\varepsilon + \varepsilon/2] \neq \emptyset$.

Choose $z \in C \setminus B[0, 1/\varepsilon + \varepsilon/2]$.

Then $C \subseteq B[z, 1/\varepsilon]$, $d(0, B[z, 1/\varepsilon]) \ge \varepsilon/2$ and $1/\varepsilon \le K$.

CASE II : $C \subseteq B[0, 1/\epsilon + \epsilon/2].$

Define $D = \overline{C + \frac{\varepsilon}{2}B(X)}$.

Then $D \subseteq B[0, L]$ and $d(0, D) \ge \varepsilon/2$, and hence, D is disjoint from $B(0, \varepsilon/2)$.

(*b*) \Rightarrow (*a*). Let $\varepsilon > 0$ be given. Let $L = 1/\varepsilon + \varepsilon$. Choose $0 < \delta < 1$ for $\varepsilon/4L$ obtained from (*b*). Let $K = L/\delta + 1$. We will show that this *K* works.

Case I : $C \setminus B[0, 1/\varepsilon + \varepsilon/2] \neq \emptyset$.

Choose $z \in C \setminus B[0, 1/\epsilon + \epsilon/2]$.

Then $C \subseteq B[z, 1/\varepsilon]$, $d(0, B[z, 1/\varepsilon]) \ge \varepsilon/2$ and $1/\varepsilon \le K$.

Case II : $C \subseteq B[0, 1/\epsilon + \epsilon/2].$

Define $D = \overline{C + \frac{\varepsilon}{2}B(X)}$.

Then $D \subseteq B[0, L]$ and $d(0, D) \ge \varepsilon/2$, and hence, D is disjoint from $B(0, \varepsilon/2)$.

By separation theorem, there exists $f \in S(X^*)$ such that $\inf f(D) \ge \varepsilon/2$.

(b) \Rightarrow (a). Let $\varepsilon > 0$ be given. Let $L = 1/\varepsilon + \varepsilon$. Choose $0 < \delta < 1$ for

 $\varepsilon/4L$ obtained from (b). Let $K = L/\delta + 1$. We will show that this K works. CASE I : $C \setminus B[0, 1/\varepsilon + \varepsilon/2] \neq \emptyset$.

Choose $z \in C \setminus B[0, 1/\varepsilon + \varepsilon/2]$.

Then $C \subseteq B[z, 1/\varepsilon]$, $d(0, B[z, 1/\varepsilon]) \ge \varepsilon/2$ and $1/\varepsilon \le K$.

Case II : $C \subseteq B[0, 1/\epsilon + \epsilon/2].$

Define $D = \overline{C + \frac{\varepsilon}{2}B(X)}$.

Then $D \subseteq B[0, L]$ and $d(0, D) \ge \varepsilon/2$, and hence, D is disjoint from $B(0, \varepsilon/2)$.

By separation theorem, there exists $f \in S(X^*)$ such that $\inf f(D) \ge \varepsilon/2$.

By choice of δ , there exists $x_0 \in S(X)$ such that

 $S(B(X^*), x_0, \delta) \subseteq B(f, \varepsilon/4L).$

(Contd.)

It follows that if $g \in B(X^*) \cap B(f, \varepsilon/4L)$ and $z \in D$, then $g(z) \ge \varepsilon/4 > 0$. Therefore,

$$\begin{array}{rcl} S(B(X^*), x_0, \delta) & \subseteq & B(X^*) \cap B(f, \varepsilon/4L) \\ & \subseteq & \{g \in B(X^*) : g(x) > 0 \text{ for all } x \in D\} \end{array}$$

(Contd.)

It follows that if $g \in B(X^*) \cap B(f, \varepsilon/4L)$ and $z \in D$, then $g(z) \ge \varepsilon/4 > 0$. Therefore,

$$\begin{array}{rcl} S(B(X^*), x_0, \delta) & \subseteq & B(X^*) \cap B(f, \varepsilon/4L) \\ & \subseteq & \{g \in B(X^*) : g(x) > 0 \text{ for all } x \in D\} \end{array}$$

By the proof of Theorem 2, for $K \ge \lambda \ge L/\delta$,

$$D\subseteq B\left[\lambda x_0,\lambda-\frac{d(0,D)\delta}{2-\delta}\right]$$

(Contd.)

It follows that if $g \in B(X^*) \cap B(f, \varepsilon/4L)$ and $z \in D$, then $g(z) \ge \varepsilon/4 > 0$. Therefore,

$$\begin{array}{rcl} S(B(X^*), x_0, \delta) & \subseteq & B(X^*) \cap B(f, \varepsilon/4L) \\ & \subseteq & \{g \in B(X^*) : g(x) > 0 \text{ for all } x \in D\} \end{array}$$

By the proof of Theorem 2, for $K \ge \lambda \ge L/\delta$,

$$D \subseteq B\left[\lambda x_0, \lambda - \frac{d(0, D)\delta}{2 - \delta}\right].$$

It follows that

$$C \subseteq B = B\left[\lambda x_0, \lambda - rac{arepsilon}{2} - rac{d(0,D)\delta}{2-\delta}
ight], ext{ and }$$

 $d(0,B) = rac{arepsilon}{2} + rac{d(0,D)\delta}{2-\delta} \geq rac{arepsilon}{2}.$

• The following observations are from Whitfield & Zizler (1987):

Theorem

• For a Banach space X, consider the following properties :

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.
 - (c) X has the MIP.

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.
 - (c) X has the MIP.
 - (d) The extreme points of $B(X^*)$ are norm dense in $S(X^*)$.

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.
 - (c) X has the MIP.
 - (d) The extreme points of $B(X^*)$ are norm dense in $S(X^*)$.
- Then (a) \implies (b) \implies (c) \implies (d).

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.
 - (c) X has the MIP.
 - (d) The extreme points of $B(X^*)$ are norm dense in $S(X^*)$.
- Then $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d).$
- If X is finite dimensional, (b)–(d) are all equivalent.

- For a Banach space X, consider the following properties :
 - (a) X is uniformly smooth.
 - (b) X has the UMIP.
 - (c) X has the MIP.
 - (d) The extreme points of $B(X^*)$ are norm dense in $S(X^*)$.
- Then $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d).$
- If X is finite dimensional, (b)–(d) are all equivalent.
- They also produce an example to show that in general, UMIP \Rightarrow MIP.

• This brings us to the most important open question regarding the UMIP.

• This brings us to the most important open question regarding the UMIP.

Problem

If X has the UMIP, does X admit an equivalent uniformly smooth renorming?

This brings us to the most important open question regarding the UMIP.

Problem

If X has the UMIP, does X admit an equivalent uniformly smooth renorming?

Indeed, the following weaker problem also seems to be open

This brings us to the most important open question regarding the UMIP.

Problem

If X has the UMIP, does X admit an equivalent uniformly smooth renorming?

Indeed, the following weaker problem also seems to be open

Problem

If X has the UMIP, is X reflexive?

S. Mazur, Über Schwache Konvergenz in den Raümen (L^p), Studia Math. 4 (1933), 128–133.

- S. Mazur, Über Schwache Konvergenz in den Raümen (L^p), Studia Math. 4 (1933), 128–133.
- R. R. Phelps, A Representation Theorem for Bounded Convex Sets, Proc. Amer. Math. Soc. 11 (1960), 976–983.

- S. Mazur, Über Schwache Konvergenz in den Raümen (L^p), Studia Math. 4 (1933), 128–133.
- R. R. Phelps, A Representation Theorem for Bounded Convex Sets, Proc. Amer. Math. Soc. 11 (1960), 976–983.
- J. R. Giles, D. A. Gregory, Brailey Sims, *Characterisation of normed linear spaces with Mazur's intersection property*, Bull. Austral. Math. Soc., 18 (1978), 105-123.

- S. Mazur, Über Schwache Konvergenz in den Raümen (L^p), Studia Math. 4 (1933), 128–133.
- R. R. Phelps, A Representation Theorem for Bounded Convex Sets, Proc. Amer. Math. Soc. 11 (1960), 976–983.
- J. R. Giles, D. A. Gregory, Brailey Sims, *Characterisation of normed linear spaces with Mazur's intersection property*, Bull. Austral. Math. Soc., 18 (1978), 105-123.
- J. H. M. Whitfield, V. Zizler, Uniform Mazur's intersection property of balls, Canad. Math. Bull., 30 (1987), 455-460.

- S. Mazur, Über Schwache Konvergenz in den Raümen (L^p), Studia Math. 4 (1933), 128–133.
- R. R. Phelps, A Representation Theorem for Bounded Convex Sets, Proc. Amer. Math. Soc. 11 (1960), 976–983.
- J. R. Giles, D. A. Gregory, Brailey Sims, *Characterisation of normed linear spaces with Mazur's intersection property*, Bull. Austral. Math. Soc., 18 (1978), 105-123.
- J. H. M. Whitfield, V. Zizler, Uniform Mazur's intersection property of balls, Canad. Math. Bull., 30 (1987), 455-460.
- PB, The Mazur intersection property for families of closed bounded convex sets in Banach spaces, Colloq. Math., 63 (1992), 45-56.

Dongjian Chen, Bor-Luh Lin, *On B-convex and Mazur sets of Banach spaces*, Bull. Polish Acad. Sci. Math., 43 (1995), 191-198.

- Dongjian Chen, Bor-Luh Lin, On B-convex and Mazur sets of Banach spaces, Bull. Polish Acad. Sci. Math., 43 (1995), 191-198.
- Dongjian Chen, Bor-Luh Lin, Ball separation properties in Banach spaces, Rocky Mountain J. Math., 28 (1998), 835–873.

- Dongjian Chen, Bor-Luh Lin, On B-convex and Mazur sets of Banach spaces, Bull. Polish Acad. Sci. Math., 43 (1995), 191-198.
- Dongjian Chen, Bor-Luh Lin, Ball separation properties in Banach spaces, Rocky Mountain J. Math., 28 (1998), 835–873.
 - M. Jiménez-Sevilla, J. P. Moreno, *Renorming Banach spaces with the Mazur intersection property*, J. Funct. Anal. 144 (1997), no. 2, 486–504.

- Dongjian Chen, Bor-Luh Lin, On B-convex and Mazur sets of Banach spaces, Bull. Polish Acad. Sci. Math., 43 (1995), 191-198.
- Dongjian Chen, Bor-Luh Lin, *Ball separation properties in Banach spaces*, Rocky Mountain J. Math., 28 (1998), 835–873.
- M. Jiménez-Sevilla, J. P. Moreno, *Renorming Banach spaces with the Mazur intersection property*, J. Funct. Anal. 144 (1997), no. 2, 486–504.
- M. Bačák, P. Hájek, Mazur intersection property for Asplund spaces, J. Funct. Anal. 255 (2008), no. 8, 2090–2094.

- Dongjian Chen, Bor-Luh Lin, *On B-convex and Mazur sets of Banach spaces*, Bull. Polish Acad. Sci. Math., 43 (1995), 191-198.
- Dongjian Chen, Bor-Luh Lin, *Ball separation properties in Banach spaces*, Rocky Mountain J. Math., 28 (1998), 835–873.
- M. Jiménez-Sevilla, J. P. Moreno, Renorming Banach spaces with the Mazur intersection property, J. Funct. Anal. 144 (1997), no. 2, 486–504.
- M. Bačák, P. Hájek, Mazur intersection property for Asplund spaces, J. Funct. Anal. 255 (2008), no. 8, 2090–2094.
- PB, J. Ganesh and D. Gothwal, On Uniform Mazur Intersection Property Studia Math. 260 (2021), no. 3, 273–283.

THANK YOU!

