On the disjoint structure of twisted sums

Workshop on Banach spaces and Banach lattices - ICMAT

Wilson A. Cuéllar (Universidade de São Paulo)

Joint work with J. M. F. Castillo, V. Ferenczi and Y. Moreno

September 10 of 2019 Supported by FAPESP 2016/25574-8; 2018/18593-1

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

where \boldsymbol{Z} is a quasi-Banach space and the arrows are bounded linear maps.

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

where ${\cal Z}$ is a quasi-Banach space and the arrows are bounded linear maps.

j(Y) is closed subspace of Z such that $Z/j(Y) \cong X$

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

where ${\cal Z}$ is a quasi-Banach space and the arrows are bounded linear maps.

j(Y) is closed subspace of Z such that $Z/j(Y) \cong X$

Z is said to be a twisted sum of Y and X.

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

where ${\cal Z}$ is a quasi-Banach space and the arrows are bounded linear maps.

j(Y) is closed subspace of Z such that $Z/j(Y) \cong X$

Z is said to be a twisted sum of Y and X.

The twisted sum is trivial when j(Y) is complemented in Z $(Z\cong Y\oplus X$)

A twisted sum

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

is said to be singular if for every infinite dimensional closed subspace W of X the exact sequence

$$0 \longrightarrow Y \xrightarrow{j} q^{-1}(W) \xrightarrow{q} W \longrightarrow 0.$$

is nontrivial (i.e. Y is not complemented in $q^{-1}(W)$)

A twisted sum

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0,$$

is said to be singular if for every infinite dimensional closed subspace W of X the exact sequence

$$0 \longrightarrow Y \xrightarrow{j} q^{-1}(W) \xrightarrow{q} W \longrightarrow 0.$$

is nontrivial (i.e. Y is not complemented in $q^{-1}(W)$)

Proposition

The twisted sum is singular $\iff q$ is strictly singular.

 $(q|_M \text{ is never an isomorphism for inf. dim. subspace M of } X)$

Quasi-linear maps

Definition

An homogeneous map $\Omega: X \longrightarrow Y$ is quasi-linear if there exists C > 0 such that for every $x_1, x_2 \in X$

 $\|\Omega(x_1 + x_2) - \Omega x_1 - \Omega x_2\| \le C(\|x_1\| + \|x_2\|).$

An homogeneous map $\Omega: X \longrightarrow Y$ is quasi-linear if there exists C > 0 such that for every $x_1, x_2 \in X$

$$\|\Omega(x_1 + x_2) - \Omega x_1 - \Omega x_2\| \le C(\|x_1\| + \|x_2\|).$$

A quasi-linear map Ω induces a quasi-normed space $Y\oplus_\Omega X=(Y\times X,\|\cdot\|_\Omega)$ by

$$||(y,x)||_{\Omega} = ||y - \Omega x||_{Y} + ||x||_{X},$$

An homogeneous map $\Omega: X \longrightarrow Y$ is quasi-linear if there exists C > 0 such that for every $x_1, x_2 \in X$

$$\|\Omega(x_1 + x_2) - \Omega x_1 - \Omega x_2\| \le C(\|x_1\| + \|x_2\|).$$

A quasi-linear map Ω induces a quasi-normed space $Y\oplus_\Omega X=(Y\times X,\|\cdot\|_\Omega)$ by

$$||(y,x)||_{\Omega} = ||y - \Omega x||_{Y} + ||x||_{X},$$

and an exact sequence

$$0 \longrightarrow Y \xrightarrow{j} Y \oplus_{\Omega} X \xrightarrow{q} X \longrightarrow 0.$$

An homogeneous map $\Omega: X \longrightarrow Y$ is quasi-linear if there exists C > 0 such that for every $x_1, x_2 \in X$

$$\|\Omega(x_1 + x_2) - \Omega x_1 - \Omega x_2\| \le C(\|x_1\| + \|x_2\|).$$

A quasi-linear map Ω induces a quasi-normed space $Y\oplus_\Omega X=(Y\times X,\|\cdot\|_\Omega) \text{ by }$

$$||(y,x)||_{\Omega} = ||y - \Omega x||_{Y} + ||x||_{X},$$

and an exact sequence

$$0 \longrightarrow Y \xrightarrow{j} Y \oplus_{\Omega} X \xrightarrow{q} X \longrightarrow 0.$$

Kalton - Peck [1979] Every twisted sum can be represented on this way.

Kalton-Peck map $\Omega_p: \ell_p \curvearrowright \ell_p, \; 0 by$

$$\Omega_p(x) = x \log \frac{|x|}{\|x\|_p}$$

Kalton-Peck map $\Omega_p: \ell_p \curvearrowright \ell_p, \ 0 defined by$

$$\Omega_p(x) = x \log \frac{|x|}{\|x\|_p}$$

is singular:

Kalton - Peck [1979] For 1 .Castillo-Moreno [2002] For <math>p = 1. Cabello-Castillo-Suárez [2012] For 0 . **Definition** Let (S, Σ, μ) be a complete σ -finite measure space. $L_0 = L_0(S, \Sigma, \mu)$ locally integrable real valued functions (mod a.e.)

A Köthe function space \mathcal{K} is a Banach space of functions in L_0 such that

- 1. If $|f(\omega)| \le g(\omega)$ a.e. on S and $g \in \mathcal{K}$, then $f \in \mathcal{K}$ and $||f|| \le ||g||$;
- 2. $\chi_{\sigma} \in \mathcal{K}$ for every $\sigma \in \Sigma$ with $\mu(\sigma) < \infty$.

Let (S, Σ, μ) be a complete σ -finite measure space. $L_0 = L_0(S, \Sigma, \mu)$ locally integrable real valued functions (mod a.e.)

A Köthe function space ${\cal K}$ is a Banach space of functions in L_0 such that

- 1. If $|f(\omega)| \le g(\omega)$ a.e. on S and $g \in \mathcal{K}$, then $f \in \mathcal{K}$ and $||f|| \le ||g||$;
- 2. $\chi_{\sigma} \in \mathcal{K}$ for every $\sigma \in \Sigma$ with $\mu(\sigma) < \infty$.

Examples Banach spaces with 1-unconditional basis

 $L_p[0,1] \ (1 \le p < \infty)$

Complex method of interpolation

Let $\overline{X} = (X_0, X_1)$ be a compatible pair of Köthe function spaces $\mathcal{F} = \mathcal{F}(X_0, X_1)$ the space of analytic functions on $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$ Such that 1. $f(j+it) \in X_j$ for every $t \in \mathbb{R}$ and j = 0, 1. 2. $t \mapsto f(j+it) \in X_j$ is continuous and bounded (j = 0, 1) $||f|| = \max\left\{\sup_{t\in\mathbb{R}} ||f(it)||_{X_0}, \sup_{t\in\mathbb{R}} ||f(1+it)||_{X_1}\right\}$ For $0 < \theta < 1$, the complex interpolation space X_{θ} is defined as

$$X_{\theta} = \{ f(\theta) : f \in \mathcal{F} \}$$
$$\|x\|_{X_{\theta}} = \inf\{ \|f\|_{\mathcal{F}} : f \in \mathcal{F}, f(\theta) = x \}$$

 X_{θ} is identified isometrically with the quotient space

$$X_{\theta} = \mathcal{F}/\{f \in \mathcal{F} : f(\theta) = 0\}$$

Derived space

Definition. An L_{∞} -centralizer (resp. an ℓ_{∞} -centralizer) on a Köthe function (resp. sequence) space \mathcal{K} is a homogeneous map $\Omega : \mathcal{K} \to L_0$ such that there is a constant C such that, for every $f \in L_{\infty}$ (resp. ℓ_{∞}) and for every $x \in \mathcal{K}$.

1.)
$$\Omega(fx) - f\Omega(x) \in \mathcal{K}$$
,

2.) $\|\Omega(fx) - f\Omega(x)\|_{\mathcal{K}} \le C \|f\|_{\infty} \|x\|_{\mathcal{K}}.$

Derived space

Definition. An L_{∞} -centralizer (resp. an ℓ_{∞} -centralizer) on a Köthe function (resp. sequence) space \mathcal{K} is a homogeneous map $\Omega : \mathcal{K} \to L_0$ such that there is a constant C such that, for every $f \in L_{\infty}$ (resp. ℓ_{∞}) and for every $x \in \mathcal{K}$.

1.)
$$\Omega(fx) - f\Omega(x) \in \mathcal{K}$$
,

2.)
$$\|\Omega(fx) - f\Omega(x)\|_{\mathcal{K}} \le C \|f\|_{\infty} \|x\|_{\mathcal{K}}.$$

Notation. $\Omega: \mathcal{K} \curvearrowright \mathcal{K}$.

Derived space

Definition. An L_{∞} -centralizer (resp. an ℓ_{∞} -centralizer) on a Köthe function (resp. sequence) space \mathcal{K} is a homogeneous map $\Omega : \mathcal{K} \to L_0$ such that there is a constant C such that, for every $f \in L_{\infty}$ (resp. ℓ_{∞}) and for every $x \in \mathcal{K}$.

1.)
$$\Omega(fx) - f\Omega(x) \in \mathcal{K}$$
,

2.)
$$\|\Omega(fx) - f\Omega(x)\|_{\mathcal{K}} \le C \|f\|_{\infty} \|x\|_{\mathcal{K}}.$$

Notation. $\Omega: \mathcal{K} \curvearrowright \mathcal{K}$.

Kalton [1992] Every centralizer induce an exact sequence

$$0 \longrightarrow \mathcal{K} \xrightarrow{\jmath} d_{\Omega}\mathcal{K} \xrightarrow{q} \mathcal{K} \longrightarrow 0$$

where $d_{\Omega}\mathcal{K} = \{(w, x) : w \in L_0, x \in \mathcal{K} : w - \Omega x \in \mathcal{K}\}$ endowed with the quasi-norm

$$\|(w,x)\|_{d_{\Omega}\mathcal{K}} = \|x\|_{\mathcal{K}} + \|w - \Omega x\|_{\mathcal{K}}$$

[Rochberg and Weiss] Associated to the scale X_{θ} a centralizer $\Omega_{\theta} : X_{\theta} \frown X_{\theta}$.

[Rochberg and Weiss] Associated to the scale X_{θ} a centralizer $\Omega_{\theta} : X_{\theta} \curvearrowright X_{\theta}$.

Examples

• The Kalton-Peck spaces can be obtained as derived spaces: $\ell_p = (\ell_{\infty}, \ell_1)_{\theta}$, with $p = 1/\theta$ $\Omega_{\theta} = \alpha \Omega_p$ [Rochberg and Weiss] Associated to the scale X_{θ} a centralizer $\Omega_{\theta} : X_{\theta} \curvearrowright X_{\theta}$.

Examples

- The Kalton-Peck spaces can be obtained as derived spaces: $\ell_p = (\ell_{\infty}, \ell_1)_{\theta}$, with $p = 1/\theta$ $\Omega_{\theta} = \alpha \Omega_p$
- Kalton-Peck functions version

$$\begin{split} L_p &= (L_{\infty}, L_1)_{\theta}, \text{ with } p = 1/\theta\\ \Omega_{\theta}(f) &= f \log \left(\frac{|f|}{\|f\|_p}\right) \end{split}$$

Examples

• J. Suárez [2013] The Kalton-Peck centralizer on $L_p[0,1]$ is not singular.

Examples

- J. Suárez [2013] The Kalton-Peck centralizer on $L_p[0,1]$ is not singular.
- F. Cabello [2014] There is no singular L_{∞} -centralizer on $L_p[0,1]$

Examples

- J. Suárez [2013] The Kalton-Peck centralizer on $L_p[0,1]$ is not singular.
- F. Cabello [2014] There is no singular L_{∞} -centralizer on $L_p[0,1]$

Proposition (CCFM)

There is no singular centralizer on admissible superreflexive Köthe

space.

Examples

- J. Suárez [2013] The Kalton-Peck centralizer on $L_p[0,1]$ is not singular.
- F. Cabello [2014] There is no singular L_{∞} -centralizer on $L_p[0,1]$

Proposition (CCFM)

There is no singular centralizer on admissible superreflexive Köthe space.

Definition. A Köthe space \mathcal{K} is admissible when for some strictly positive functions $h, k \in L_0$ one has

 $\|hk\|_1 \le \|x\|_{\mathcal{K}} \le \|kx\|_{\infty}$ for every $x \in \mathcal{K}$

Disjoint singularity

Let ${\mathcal K}$ be a Köthe space and $\Omega: {\mathcal K} \to Y$ be a quasi-linear map

$$0 \longrightarrow Y \xrightarrow{i} Y \oplus_{\Omega} \mathcal{K} \xrightarrow{q} \mathcal{K} \longrightarrow 0$$

 Ω is called disjointly singular if for every infinite dimensional subspace generated by a disjointly supported sequence W of $\mathcal K$ the exact sequence

$$0 \longrightarrow Y \xrightarrow{j} q^{-1}(W) \xrightarrow{q} W \longrightarrow 0.$$
 is nontrivial.

Disjoint singularity

Let ${\mathcal K}$ be a Köthe space and $\Omega: {\mathcal K} \to Y$ be a quasi-linear map

$$0 \longrightarrow Y \xrightarrow{i} Y \oplus_{\Omega} \mathcal{K} \xrightarrow{q} \mathcal{K} \longrightarrow 0$$

 Ω is called disjointly singular if for every infinite dimensional subspace generated by a disjointly supported sequence W of $\mathcal K$ the exact sequence

$$0 \longrightarrow Y \xrightarrow{j} q^{-1}(W) \xrightarrow{q} W \longrightarrow 0.$$

is nontrivial.

• singular \implies disjointly singular.

Disjoint singularity

Let \mathcal{K} be a Köthe space and $\Omega: \mathcal{K} \to Y$ be a quasi-linear map

$$0 \longrightarrow Y \xrightarrow{i} Y \oplus_{\Omega} \mathcal{K} \xrightarrow{q} \mathcal{K} \longrightarrow 0$$

 Ω is called disjointly singular if for every infinite dimensional subspace generated by a disjointly supported sequence W of $\mathcal K$ the exact sequence

$$0 \longrightarrow Y \xrightarrow{j} q^{-1}(W) \xrightarrow{q} W \longrightarrow 0.$$

is nontrivial.

- singular \implies disjointly singular.
- Castillo, Ferenczi, González [2017] Let X be a Banach space with unconditional basis. A quasi-linear map Ω : X → Y is singular ⇔ is disjointly singular (with respect to the induced lattice structure.)

Criteria for disjoint singularity

In Castillo, Ferenczi, González [2017], criteria for disjointly singular centralizers are introduced.

Criteria for disjoint singularity

In Castillo, Ferenczi, González [2017], criteria for disjointly singular centralizers are introduced.

Definition. Let \mathcal{K} be a Köthe function space. For each $n \in \mathbb{N}$ let $M_{\mathcal{K}}(n) = \sup\{\|x_1 + \dots x_n\| : \|x_i\| \le 1, (x_i) \text{ disjoint in } \mathcal{K}\}$

In Castillo, Ferenczi, González [2017], criteria for disjointly singular centralizers are introduced.

Definition. Let \mathcal{K} be a Köthe function space. For each $n \in \mathbb{N}$ let $M_{\mathcal{K}}(n) = \sup\{\|x_1 + \ldots x_n\| : \|x_i\| \le 1, (x_i) \text{ disjoint in } \mathcal{K}\}$ Definition. $f \sim g$ if $\liminf \frac{f(n)}{g(n)} \le \limsup \frac{f(n)}{g(n)} < \infty$. In Castillo, Ferenczi, González [2017], criteria for disjointly singular centralizers are introduced.

Definition. Let \mathcal{K} be a Köthe function space. For each $n \in \mathbb{N}$ let $M_{\mathcal{K}}(n) = \sup\{\|x_1 + \ldots x_n\| : \|x_i\| \le 1, (x_i) \text{ disjoint in } \mathcal{K}\}$ Definition. $f \sim g$ if $\liminf \frac{f(n)}{g(n)} \le \limsup \frac{f(n)}{g(n)} < \infty$. Theorem (Castillo, Ferenczi, González - 2017) $Let(X_0, X_1)$ be an admissible pair of Köthe function spaces and $0 < \theta < 1$. Suppose that X_{θ} is reflexive and

1) $M_{X_0} \not\sim M_{X_1}$; 2) $M_{X_0}^{1-\theta} M_{X_1}^{\theta} \sim M_X$: 3) $M_W \sim M_{X_{\theta}}$ for every $W \subset X_{\theta}$ generated by a disjoint sequence Then Ω_{θ} is disjointly singular.

1. Kalton-Peck centralizer is disjointly singular on $L_p,$ 1

- 1. Kalton-Peck centralizer is disjointly singular on L_p , 1 .
- 2. F. Cabello [2017] Lorentz spaces $(L_{p_0,q_0}, L_{p_1,q_1})_{\theta} = L_{p,q}$ with associated derivation

$$\Omega(x) = \alpha \mathcal{K}(x) + \beta \kappa(x)$$

Here $\mathcal{K}(\cdot)$ is the Kalton-Peck map and $\kappa(x) = x r_x$ where $r_x(t) = m\{s : |x(s)| > |x(t)| \text{ or } |x(s)| = |x(t)| \text{ and } s \le t\}$

- 1. Kalton-Peck centralizer is disjointly singular on L_p , 1 .
- 2. F. Cabello [2017] Lorentz spaces $(L_{p_0,q_0}, L_{p_1,q_1})_{\theta} = L_{p,q}$ with associated derivation

$$\Omega(x) = \alpha \mathcal{K}(x) + \beta \kappa(x)$$

Here $\mathcal{K}(\cdot)$ is the Kalton-Peck map and $\kappa(x) = x r_x$ where $r_x(t) = m\{s : |x(s)| > |x(t)| \text{ or } |x(s)| = |x(t)| \text{ and } s \le t\}$

3. (CCFM) Disjointly singular quasi-linear maps on C[0,1] and ℓ_∞

Definition Let $\Omega : \mathcal{K} \curvearrowright \mathcal{K}$ be a centralizer. A pair of nonzero elements $f = (w_0, x_0), g = (w_1, x_1)$ of $d_\Omega \mathcal{K}$ are said to be disjoint if the functions $f, g : S \to \mathbb{C} \times \mathbb{C}$ are disjointly supported.

Definition

Let $\Omega : \mathcal{K} \curvearrowright \mathcal{K}$ be a centralizer. A pair of nonzero elements $f = (w_0, x_0), g = (w_1, x_1)$ of $d_\Omega \mathcal{K}$ are said to be disjoint if the functions $f, g : S \to \mathbb{C} \times \mathbb{C}$ are disjointly supported.

An operator $\tau : d_{\Omega}\mathcal{K} \to \mathcal{K}$ is said to be disjointly singular if the restriction of τ to any infinite dimensional subspace generated by a disjoint sequence of vectors is not an isomorphism.

Definition

Let $\Omega : \mathcal{K} \curvearrowright \mathcal{K}$ be a centralizer. A pair of nonzero elements $f = (w_0, x_0), g = (w_1, x_1)$ of $d_\Omega \mathcal{K}$ are said to be disjoint if the functions $f, g : S \to \mathbb{C} \times \mathbb{C}$ are disjointly supported.

An operator $\tau : d_{\Omega}\mathcal{K} \to \mathcal{K}$ is said to be disjointly singular if the restriction of τ to any infinite dimensional subspace generated by a disjoint sequence of vectors is not an isomorphism.

Theorem (CCFM)

A centralizer Ω on a reflexive Köthe space \mathcal{K} is disjointly singular $\iff q_{\Omega}$ is disjointly singular.

Proposition (CCFM)

A centralizer Ω defined on L_p is not disjointly singular if and only if there is a disjointly supported normalized sequence $u = (u_n)_n$ and a constant C > 0 such that for every $\lambda = (\lambda_k)_k \in c_{00}$ and every $n \in \mathbb{N}$ one has

$$\operatorname{Ave}_{\epsilon} \left\| \Omega \left(\sum_{k=1}^{n} \epsilon_k \lambda_k u_k \right) - \sum_{k=1}^{n} \epsilon_k \Omega(\lambda_k u_k) \right\| \le C \|\lambda\|_p.$$

Definition. An operator $\tau : X \to Y$ between two Banach spaces is said to be super-SS if there does not exists c > 0 and a sequence of subspaces E_n of X, with dim $E_n = n$, such that

$$||Tx|| \ge c||x||$$
 for all $x \in \bigcup_n E_n$

Definition. An operator $\tau : X \to Y$ between two Banach spaces is said to be super-SS if there does not exists c > 0 and a sequence of subspaces E_n of X, with dim $E_n = n$, such that

$$||Tx|| \ge c||x||$$
 for all $x \in \bigcup_n E_n$

Mascioni [1994] τ is super-SS iff every ultrapower of τ is strictly singular.

Definition. An operator $\tau : X \to Y$ between two Banach spaces is said to be super-SS if there does not exists c > 0 and a sequence of subspaces E_n of X, with dim $E_n = n$, such that

$$||Tx|| \ge c||x||$$
 for all $x \in \bigcup_n E_n$

Mascioni [1994] τ is super-SS iff every ultrapower of τ is strictly singular.

Given an exact sequence

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

Definition. An operator $\tau : X \to Y$ between two Banach spaces is said to be super-SS if there does not exists c > 0 and a sequence of subspaces E_n of X, with dim $E_n = n$, such that

$$||Tx|| \ge c||x||$$
 for all $x \in \bigcup_n E_n$

Mascioni [1994] τ is super-SS iff every ultrapower of τ is strictly singular.

Given an exact sequence

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

and an ultrafilter $\operatorname{\mathcal{U}}$ the ultrapowers form an exact sequence

$$0 \longrightarrow Y_{\mathfrak{U}} \longrightarrow Z_{\mathfrak{U}} \longrightarrow X_{\mathfrak{U}} \longrightarrow 0$$

Definition. An operator $\tau : X \to Y$ between two Banach spaces is said to be super-SS if there does not exists c > 0 and a sequence of subspaces E_n of X, with dim $E_n = n$, such that

$$||Tx|| \ge c||x||$$
 for all $x \in \bigcup_n E_n$

Mascioni [1994] τ is super-SS iff every ultrapower of τ is strictly singular.

Given an exact sequence

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0 \quad (\Omega)$$

and an ultrafilter $\operatorname{\mathcal{U}}$ the ultrapowers form an exact sequence

$$0 \longrightarrow Y_{\mathcal{U}} \longrightarrow Z_{\mathcal{U}} \longrightarrow X_{\mathcal{U}} \longrightarrow 0 \quad (\Omega_{\mathcal{U}})$$

Definition. A quasi-linear map $\Omega: X \to Y$ is super-singular if every ultrapower $\Omega_{\mathcal{U}}$ is singular.

Definition. A quasi-linear map $\Omega: X \to Y$ is super-singular if every ultrapower $\Omega_{\mathcal{U}}$ is singular.

Proposition

 Ω is super-singular if and only the quotient map q_{Ω} of the exact sequence it defines is super strictly singular.

Definition. A quasi-linear map $\Omega: X \to Y$ is super-singular if every ultrapower $\Omega_{\mathcal{U}}$ is singular.

Proposition Ω is super-singular if and only the quotient map q_{Ω} of the exact sequence it defines is super strictly singular.

Proposition (CCFM)

No super singular quási-linear maps between *B*-convex Banach spaces exist.

Definition. An operator $\tau : \mathcal{K} \to Y$ is super-DSS if every ultrapower of τ is disjointly singular.

Definition. An operator $\tau : \mathcal{K} \to Y$ is super-DSS if every ultrapower of τ is disjointly singular.

Proposition (CCFM) Let $\Omega : \mathcal{K} \curvearrowright \mathcal{K}$ be a centralizer on a Köthe space. The following are equivalent

- 1. All ultrapowers $\Omega_{\mathcal{U}}$ of Ω are disjointly singular.
- 2. The quotient map q_{Ω} is super-disjointly singular.

When 1. and 2. hold Ω is said to be super-disjointly singular.

Proposition (CCFM)

Let (X_0, X_1) be an interpolation couple of Köthe function spaces and let $0 < \theta < 1$ so that X_{θ} is an $L_p(\mu)$ -space. If

1) $M_{X_0} \not\sim M_{X_1};$ 2) $M_{X_0}^{1-\theta} M_{X_1}^{\theta} \sim n^{1/p}.$

Then the induced centralizer Ω_{θ} on X_{θ} is super disjointly singular

Proposition (CCFM)

Let (X_0, X_1) be an interpolation couple of Köthe function spaces and let $0 < \theta < 1$ so that X_{θ} is an $L_p(\mu)$ -space. If

1) $M_{X_0} \not\sim M_{X_1};$ 2) $M_{X_0}^{1-\theta} M_{X_1}^{\theta} \sim n^{1/p}.$

Then the induced centralizer Ω_{θ} on X_{θ} is super disjointly singular

Examples

- The Kalton-Peck centralizer on L_p is super disjointly singular for 1
- If S denotes the Schreier space then (S, S^{*})_{1/2} = ℓ₂ then the associated centralizer is super disjointly singular

Examples

• Lorentz function spaces. $(L_{p_0,p_1}, L_{p_1,q_1})_{\theta} = L_{p,q}$ the associated centralizer super disjointly singular when $\min\{p_0, p_1\} \neq \min\{p_1, q_1\}.$

Examples

• Lorentz function spaces. $(L_{p_0,p_1}, L_{p_1,q_1})_{\theta} = L_{p,q}$ the associated centralizer super disjointly singular when $\min\{p_0, p_1\} \neq \min\{p_1, q_1\}.$

Remark super-disjointly singular \implies disjointly singular

Let $1 \leq p_1 < p_0 < 2$ and $0 < \theta < 1$. For $p^{-1} = (1 - \theta)p_1^{-1} + \theta p_0^{-1}$ one has $(\ell_{p_0}(\bigoplus \ell_2^n), \ell_{p_1}(\bigoplus \ell_2^n))_{\theta} = \ell_p(\bigoplus \ell_2^k)$ with associated centralizer

$$\Omega_{\theta}(x) = \left(\left(\frac{p}{p_1} - \frac{p}{p_0} \right) \log \left(\frac{\|x^k\|_2}{\|x\|} \right) x^k \right)_k.$$

Then Ω_{θ} is disjointly singular but is not super- disjointly singular.

Thank you for your attention!