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Exact sequences of Banach spaces

A twisted sum of Banach spaces Y and X is a short exact sequence

0 −−−−→ Y
j−−−−→ Z

q−−−−→ X −−−−→ 0,

where Z is a quasi-Banach space and the arrows are bounded

linear maps.

j(Y ) is closed subspace of Z such that Z/j(Y ) ∼= X

Z is said to be a twisted sum of Y and X.

The twisted sum is trivial when j(Y ) is complemented in Z

(Z ∼= Y ⊕X )



Exact sequences of Banach spaces

A twisted sum of Banach spaces Y and X is a short exact sequence

0 −−−−→ Y
j−−−−→ Z

q−−−−→ X −−−−→ 0,

where Z is a quasi-Banach space and the arrows are bounded

linear maps.

j(Y ) is closed subspace of Z such that Z/j(Y ) ∼= X

Z is said to be a twisted sum of Y and X.

The twisted sum is trivial when j(Y ) is complemented in Z

(Z ∼= Y ⊕X )



Exact sequences of Banach spaces

A twisted sum of Banach spaces Y and X is a short exact sequence

0 −−−−→ Y
j−−−−→ Z

q−−−−→ X −−−−→ 0,

where Z is a quasi-Banach space and the arrows are bounded

linear maps.

j(Y ) is closed subspace of Z such that Z/j(Y ) ∼= X

Z is said to be a twisted sum of Y and X.

The twisted sum is trivial when j(Y ) is complemented in Z

(Z ∼= Y ⊕X )



Exact sequences of Banach spaces

A twisted sum of Banach spaces Y and X is a short exact sequence

0 −−−−→ Y
j−−−−→ Z

q−−−−→ X −−−−→ 0,

where Z is a quasi-Banach space and the arrows are bounded

linear maps.

j(Y ) is closed subspace of Z such that Z/j(Y ) ∼= X

Z is said to be a twisted sum of Y and X.

The twisted sum is trivial when j(Y ) is complemented in Z

(Z ∼= Y ⊕X )



Singular twisted sums

A twisted sum

0 −−−−→ Y
j−−−−→ Z

q−−−−→ X −−−−→ 0,

is said to be singular if for every infinite dimensional closed

subspace W of X the exact sequence

0 −−−−→ Y
j−−−−→ q−1(W )

q−−−−→ W −−−−→ 0.

is nontrivial (i.e. Y is not complemented in q−1(W ) )

Proposition
The twisted sum is singular ⇐⇒ q is strictly singular.

(q|M is never an isomorphism for inf. dim. subspace M of X)
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Quasi-linear maps

Definition
An homogeneous map Ω : X −→ Y is quasi-linear if there exists

C > 0 such that for every x1, x2 ∈ X

‖Ω(x1 + x2)− Ωx1 − Ωx2‖ ≤ C(‖x1‖+ ‖x2‖).

A quasi-linear map Ω induces a quasi-normed space

Y ⊕Ω X = (Y ×X, ‖ · ‖Ω) by

‖(y, x)‖Ω = ‖y − Ωx‖Y + ‖x‖X ,

and an exact sequence

0 −−−−→ Y
j−−−−→ Y ⊕Ω X

q−−−−→ X −−−−→ 0.

Kalton - Peck [1979] Every twisted sum can be represented on this

way.
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Example: Kalton-Peck map

Kalton-Peck map Ωp : `p y `p, 0 < p < +∞, defined by

Ωp(x) = x log
|x|
‖x‖p

is singular:

Kalton - Peck [1979] For 1 < p <∞.

Castillo-Moreno [2002] For p = 1.

Cabello-Castillo-Suárez [2012] For 0 < p <∞.
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Köthe function spaces

Definition
Let (S,Σ, µ) be a complete σ-finite measure space.

L0 = L0(S,Σ, µ) locally integrable real valued functions (mod a.e.)

A Köthe function space K is a Banach space of functions in L0

such that

1. If |f(ω)| ≤ g(ω) a.e. on S and g ∈ K, then f ∈ K and

‖f‖ ≤ ‖g‖;
2. χσ ∈ K for every σ ∈ Σ with µ(σ) <∞.

Examples
Banach spaces with 1-unconditional basis

Lp[0, 1] (1 ≤ p <∞)
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Complex method of interpolation

Let X = (X0, X1) be a compatible pair of Köthe function spaces

F = F(X0, X1) the space of analytic functions on

S = {z ∈ C : 0 < <(z) < 1} Such that

1. f(j + it) ∈ Xj for every t ∈ R and j = 0, 1.

2. t 7→ f(j + it) ∈ Xj is continuous and bounded (j = 0, 1)

‖f‖ = max

{
sup
t∈R
‖f(it)‖X0 , sup

t∈R
‖f(1 + it)‖X1

}
For 0 < θ < 1, the complex interpolation space Xθ is defined as

Xθ = {f(θ) : f ∈ F}

‖x‖Xθ = inf{‖f‖F : f ∈ F , f(θ) = x}

Xθ is identified isometrically with the quotient space

Xθ = F/{f ∈ F : f(θ) = 0}



Derived space

Definition. An L∞-centralizer (resp. an `∞-centralizer) on a Köthe

function (resp. sequence) space K is a homogeneous map

Ω : K → L0 such that there is a constant C such that, for every

f ∈ L∞ (resp. `∞) and for every x ∈ K.

1.) Ω(fx)− fΩ(x) ∈ K,

2.) ‖Ω(fx)− fΩ(x)‖K ≤ C‖f‖∞‖x‖K.

Notation. Ω : Ky K.

Kalton [1992] Every centralizer induce an exact sequence

0 −−−−→ K −−−−→ dΩK
q−−−−→ K −−−−→ 0

where dΩK = {(w, x) : w ∈ L0, x ∈ K : w − Ωx ∈ K} endowed

with the quasi-norm

‖(w, x)‖dΩK = ‖x‖K + ‖w − Ωx‖K
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Derived space

[Rochberg and Weiss] Associated to the scale Xθ a centralizer

Ωθ : Xθ y Xθ.

Examples

• The Kalton-Peck spaces can be obtained as derived spaces:

`p = (`∞, `1)θ, with p = 1/θ

Ωθ = αΩp

• Kalton-Peck functions version

Lp = (L∞, L1)θ, with p = 1/θ

Ωθ(f) = f log
(
|f |
‖f‖p

)
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Singularity and centralizers

Examples

• J. Suárez [2013] The Kalton-Peck centralizer on Lp[0, 1] is

not singular.

• F. Cabello [2014] There is no singular L∞-centralizer on

Lp[0, 1]

Proposition (CCFM)
There is no singular centralizer on admissible superreflexive Köthe

space.

Definition. A Köthe space K is admissible when for some strictly

positive functions h, k ∈ L0 one has

‖hk‖1 ≤ ‖x‖K ≤ ‖kx‖∞ for every x ∈ K
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Disjoint singularity

Let K be a Köthe space and Ω : K → Y be a quasi-linear map

0 −−−−→ Y
i−−−−→ Y ⊕Ω K

q−−−−→ K −−−−→ 0

Ω is called disjointly singular if for every infinite dimensional

subspace generated by a disjointly supported sequence W of K the

exact sequence

0 −−−−→ Y
j−−−−→ q−1(W )

q−−−−→ W −−−−→ 0.

is nontrivial.

• singular =⇒ disjointly singular.

• Castillo, Ferenczi, González [2017] Let X be a Banach space

with unconditional basis. A quasi-linear map Ω : X → Y is

singular ⇐⇒ is disjointly singular (with respect to the

induced lattice structure.)
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Criteria for disjoint singularity

In Castillo, Ferenczi, González [2017], criteria for disjointly singular

centralizers are introduced.

Definition. Let K be a Köthe function space. For each n ∈ N let

MK(n) = sup{‖x1 + . . . xn‖ : ‖xi‖ ≤ 1, (xi) disjoint in K}

Definition. f ∼ g if lim inf f(n)
g(n) ≤ lim sup f(n)

g(n) <∞.

Theorem (Castillo, Ferenczi, González - 2017)
Let(X0, X1) be an admissible pair of Köthe function spaces and

0 < θ < 1 . Suppose that Xθ is reflexive and

1) MX0 6∼MX1 ;

2) M1−θ
X0

M θ
X1
∼MX :

3) MW ∼MXθ for every W ⊂ Xθ generated by a disjoint sequence

Then Ωθ is disjointly singular.
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Examples

1. Kalton-Peck centralizer is disjointly singular on Lp,

1 < p <∞.

2. F. Cabello [2017] Lorentz spaces (Lp0,q0 , Lp1,q1)θ = Lp,q with

associated derivation

Ω(x) = αK(x) + βκ(x)

Here K(·) is the Kalton-Peck map and κ(x) = x rx where

rx(t) = m{s : |x(s)| > |x(t)| or |x(s)| = |x(t)| and s ≤ t}
3. (CCFM) Disjointly singular quasi-linear maps on C[0, 1] and

`∞
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Characterizations of disjoint singularity

Definition
Let Ω : Ky K be a centralizer. A pair of nonzero elements

f = (w0, x0), g = (w1, x1) of dΩK are said to be disjoint if the

functions f, g : S → C× C are disjointly supported.

An operator τ : dΩK → K is said to be disjointly singular if the

restriction of τ to any infinite dimensional subspace generated by a

disjoint sequence of vectors is not an isomorphism.

Theorem (CCFM)
A centralizer Ω on a reflexive Köthe space K is disjointly singular

⇐⇒ qΩ is disjointly singular.
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Characterization of disjoint singularity for Lp

Proposition (CCFM)
A centralizer Ω defined on Lp is not disjointly singular if and only

if there is a disjointly supported normalized sequence u = (un)n

and a constant C > 0 such that for every λ = (λk)k ∈ c00 and

every n ∈ N one has

Aveε

∥∥∥∥∥Ω

(
n∑
k=1

εkλkuk

)
−

n∑
k=1

εkΩ(λkuk)

∥∥∥∥∥ ≤ C‖λ‖p.



Super singularity

Definition. An operator τ : X → Y between two Banach spaces is

said to be super-SS if there does not exists c > 0 and a sequence

of subspaces En of X, with dim En = n, such that

‖Tx‖ ≥ c‖x‖ for all x ∈
⋃
n

En

Mascioni [1994] τ is super-SS iff every ultrapower of τ is strictly

singular.

Given an exact sequence

0 −−−−→ Y −−−−→ Z −−−−→ X −−−−→ 0

and an ultrafilter U the ultrapowers form an exact sequence

0 −−−−→ YU −−−−→ ZU −−−−→ XU −−−−→ 0
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Super singularity

Definition. A quasi-linear map Ω : X → Y is super-singular if every

ultrapower ΩU is singular.

Proposition
Ω is super-singular if and only the quotient map qΩ of the exact

sequence it defines is super strictly singular.

Proposition (CCFM)
No super singular quasi-linear maps between B-convex Banach

spaces exist.
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Disjoint super singularity

Definition. An operator τ : K → Y is super-DSS if every

ultrapower of τ is disjointly singular.

Proposition (CCFM)
Let Ω : Ky K be a centralizer on a Köthe space. The following

are equivalent

1. All ultrapowers ΩU of Ω are disjointly singular.

2. The quotient map qΩ is super-disjointly singular.

When 1. and 2. hold Ω is said to be super-disjointly singular.
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Disjoint super singularity

Proposition (CCFM)
Let (X0, X1) be an interpolation couple of Köthe function spaces

and let 0 < θ < 1 so that Xθ is an Lp(µ)-space. If

1) MX0 6∼MX1 ;

2) M1−θ
X0

M θ
X1
∼ n1/p.

Then the induced centralizer Ωθ on Xθ is super disjointly singular

Examples

• The Kalton-Peck centralizer on Lp is super disjointly singular

for 1 < p <∞.

• If S denotes the Schreier space then (S,S∗)1/2 = `2 then the

associated centralizer is super disjointly singular
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Examples

• Lorentz function spaces. (Lp0,p1 , Lp1,q1)θ = Lp,q the

associated centralizer super disjointly singular when

min{p0, p1} 6= min{p1, q1}.

Remark
super-disjointly singular =⇒ disjointly singular

Let 1 ≤ p1 < p0 < 2 and 0 < θ < 1. For p−1 = (1− θ)p−1
1 + θp−1

0

one has (`p0(
⊕
`n2 ), `p1(

⊕
`n2 ))θ = `p(

⊕
`k2) with associated

centralizer

Ωθ(x) =

((
p

p1
− p

p0

)
log

(
‖xk‖2
‖x‖

)
xk
)
k

.

Then Ωθ is disjointly singular but is not super- disjointly singular.
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The end

Thank you for your attention!


