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Basic definitions and results

• x∗ ∈ X∗ is norm attaining (x∗ ∈ NA(X)):

∃x0: ‖x0‖ = 1, x∗(x0) = sup{x∗(x): ‖x‖ ≤ 1} = ‖x∗‖.

• NA(X) 6=∅ by the Hahn-Banach theorem.

• James: NA(X) = X∗ ⇐⇒ X reflexive.

• Bishop-Phelps(-Bollobás): NA(X) is always dense; more precisely:

‖x‖ = ‖x∗‖ = 1, x∗(x) ≥ 1− ϵ ⇒

∃x0, x
∗
0 : ‖x0‖ = ‖x∗0 ‖ = x∗0 (x0) = 1, ‖x− x0‖ ≤ 2

p
ϵ, ‖x∗ − x∗0 ‖ ≤ 2

p
ϵ.

• Example: NA(c0) = c00 = all ℓ1-sequences of finite support.
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On operators which attain their norm

A linear operator T: X→ Y is norm attaining (T ∈ NA(X,Y)):

∃x0: ‖x0‖ = 1, ‖Tx0‖ = sup{‖Tx‖: ‖x‖ ≤ 1} = ‖T‖.

Lindenstrauss 1963:

• X reflexive ⇒ NA(X,Y) is always dense in L(X,Y).

• c0 ⊂ Y ⊂ ℓ∞ ⇒ NA(X,Y) is always dense in L(X,Y).

• There are X and Y such that NA(X,Y) is not dense in L(X,Y).

Bourgain 1977:

• X RNP ⇒ NA(X,Y) is always dense in L(X,Y).

Gowers 1990:

• NA(X, ℓ2) is not always dense in L(X, ℓ2).
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Rank 2 operators into ℓ22

Question

• Is NA(X, ℓ2) always nontrivially nonempty?
• Is NA(X, ℓ22) always nontrivially nonempty?

That is, is

NA(2)(X, ℓ22) := {T ∈ NA(X, ℓ22): rank(T) = 2} 6=∅ ?

Examples:
• X = C(K), Tx = (x(t1), x(t2)):

‖T‖ = ‖T(1)‖ =
p

2

• X = L1[0,1], Tx = (
∫ 1/2

0 x(t)dt,
∫ 1

1/2 x(t)dt):

‖T‖ = ‖T(1)‖ = 1/
p

2

,
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Mates

Let T: X→ ℓ22 of rank 2. Write Tx = (f (x), g(x)). Suppose ‖f‖ = 1.

Lemma

‖T‖ ≤ 1 ⇐⇒ ‖f + tg‖ ≤
p

1+ t2 for all t ∈ R.

In this case g is called a mate of f .

Proposition

Let ‖f‖ = 1.

(a) If, for some 0 6= h ∈ BX∗ ,

limsup
t→0

‖f + th‖ − 1

t2
<∞,

then f has a mate (namely sh for some s ∈ (0,1]).

(b) If f is not an extreme point of the unit ball, then it has a mate.

(c) There exists some f with a mate.

,
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Existence results I

Theorem

NA(2)(X, ℓ22) 6=∅ if and only if there exists f ∈ NA(X), ‖f‖ = 1, with a mate.

Corollary

• X not smooth ⇒ NA(2)(X, ℓ22) 6=∅.
• NA(X) contains a 2-dimensional linear subspace ⇒ NA(2)(X, ℓ22) 6=∅.

Note: NA(2)(X, ℓ22) 6=∅ ⇒ NA(2)(X,E) 6=∅ whenever dimE ≥ 2.

Question

Does the Corollary cover all Banach spaces?

,
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The theorems of Read and Rmoutil

Theorem

There exists a Banach space XR for which NA(XR) does not contain
2-dimensional linear subspaces.

Charles Read (1958–2015), Martin Rmoutil, Bernardo Cascales (1958–2018)
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Read norms

(S) Does every Banach space contain a 2-codimensional proximinal
subspace? (I. Singer 1970)

(G) Does NA(X) always contain a 2-dimensional linear subspace?
(G. Godefroy 2000)

Known: A counterexample to (G) is a counterexample to (S).

Read (2013) constructs a renorming of c0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, XR, is a counterexample to (G) as
well. (Significant simplification of the proof by Kadets/López/Martín.)

Call a norm p on a Banach space a Read norm if (X,p) is a
counterexample to (G).

KLMW (≥ 2019) provide a new approach to this circle of problems
showing:

Theorem

Every separable Banach space containing a copy of c0 admits an
equivalent Read norm. Consequently this is also a counterexample to (S).
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Existence results II

Recall:
NA(X) contains a 2-dimensional linear subspace ⇒ NA(2)(X, ℓ22) 6=∅.

Main Theorem

If NA(X) contains a nontrivial cone, i.e., some {sf + tg: s, t ≥ 0} with
linearly independent f and g, then NA(2)(X, ℓ22) 6=∅.

Example: The original Read space XR is not smooth; hence NA(XR)
contains a nontrivial cone (but not a nontrivial subspace).

There is a smooth renorming (XR, psm) with a smooth Read norm psm
such that NA(XR) = NA((XR, psm)); hence NA((XR, psm)) contains a
nontrivial cone (but not a nontrivial subspace).

Questions

• Does the converse of the Main Theorem hold?
• Is the assumption of the Main Theorem always fulfilled?
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Density results

The characterisation of NA(2)(X, ℓ22) 6=∅ in terms of mates provides a
characterisation of density of NA(2)(X, ℓ22), but this doesn’t seem to lead
anywhere. . . However:

Theorem

If NA(X) contains a dense linear subspace, then NA(X,F) is dense in
L(X,F) for every finite-dimensional F. (In fact, a weaker more technical
assumption suffices.)

Examples: The theorem applies to the following spaces X:
c0, isometric preduals of ℓ1, spaces having a shrinking monotone
Schauder basis, L1(μ), C(K), K(ℓ2), c0-sums of reflexive spaces, certain of
their subspaces. . .

Corollary

In the setting of the Theorem, if X∗ has the AP, then every compact
operator with domain X can be approximated by finite rank norm
attaining operators.
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