

< □ ▶ < 四

590

Norm attaining operators of finite rank (joint work with Vladimir Kadets, Ginés López, Miguel Martín)

Dirk Werner Freie Universität Berlin

Madrid, 9.9.2019

$$\exists x_0: \quad \|x_0\| = 1, \ x^*(x_0) = \sup\{x^*(x): \|x\| \le 1\} = \|x^*\|.$$

- $x^* \in X^*$ is norm attaining $(x^* \in NA(X))$:
 - $\exists x_0 \colon \ \|x_0\| = 1, \ x^*(x_0) = \sup\{x^*(x) \colon \|x\| \le 1\} = \|x^*\|.$
- $NA(X) \neq \emptyset$ by the Hahn-Banach theorem.

 $\exists x_0 \colon \ \|x_0\| = 1, \ x^*(x_0) = \sup\{x^*(x) \colon \|x\| \leq 1\} = \|x^*\|.$

- $NA(X) \neq \emptyset$ by the Hahn-Banach theorem.
- James: $NA(X) = X^* \iff X$ reflexive.

 $\exists x_0 \colon \ \|x_0\| = 1, \ x^*(x_0) = \sup\{x^*(x) \colon \|x\| \leq 1\} = \|x^*\|.$

- $NA(X) \neq \emptyset$ by the Hahn-Banach theorem.
- James: $NA(X) = X^* \iff X$ reflexive.
- Bishop-Phelps(-Bollobás): NA(X) is always dense; more precisely:

$$\|x\| = \|x^*\| = 1, \ x^*(x) \ge 1 - \varepsilon \quad \Rightarrow$$

$$\exists x_0, x_0^*: \quad \|x_0\| = \|x_0^*\| = x_0^*(x_0) = 1, \ \|x - x_0\| \le 2\sqrt{\varepsilon}, \ \|x^* - x_0^*\| \le 2\sqrt{\varepsilon}.$$

 $\exists x_0 \colon \ \|x_0\| = 1, \ x^*(x_0) = \sup\{x^*(x) \colon \|x\| \leq 1\} = \|x^*\|.$

- $NA(X) \neq \emptyset$ by the Hahn-Banach theorem.
- James: $NA(X) = X^* \iff X$ reflexive.
- Bishop-Phelps(-Bollobás): NA(X) is always dense; more precisely:

$$\|x\| = \|x^*\| = 1, \ x^*(x) \ge 1 - \varepsilon \quad \Rightarrow \quad$$

 $\exists x_0, x_0^*: \quad \|x_0\| = \|x_0^*\| = x_0^*(x_0) = 1, \ \|x - x_0\| \le 2\sqrt{\varepsilon}, \ \|x^* - x_0^*\| \le 2\sqrt{\varepsilon}.$

• Example: $NA(c_0) = c_{00} = all \ell_1$ -sequences of finite support.

On operators which attain their norm

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

Lindenstrauss 1963:

• X reflexive \Rightarrow NA(X, Y) is always dense in L(X, Y).

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

Lindenstrauss 1963:

- X reflexive \Rightarrow NA(X, Y) is always dense in L(X, Y).
- $c_0 \subset Y \subset \ell_{\infty} \Rightarrow NA(X, Y)$ is always dense in L(X, Y).

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

Lindenstrauss 1963:

- X reflexive \Rightarrow NA(X, Y) is always dense in L(X, Y).
- $c_0 \subset Y \subset \ell_{\infty} \Rightarrow NA(X, Y)$ is always dense in L(X, Y).
- There are X and Y such that NA(X, Y) is not dense in L(X, Y).

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

Lindenstrauss 1963:

- X reflexive \Rightarrow NA(X, Y) is always dense in L(X, Y).
- $c_0 \subset Y \subset \ell_{\infty} \Rightarrow NA(X, Y)$ is always dense in L(X, Y).
- There are X and Y such that NA(X, Y) is not dense in L(X, Y).

Bourgain 1977:

• X RNP \Rightarrow NA(X, Y) is always dense in L(X, Y).

 $\exists x_0 \colon \ \|x_0\| = 1, \ \|Tx_0\| = \sup\{\|Tx\| \colon \|x\| \leq 1\} = \|T\|.$

Lindenstrauss 1963:

- X reflexive \Rightarrow NA(X, Y) is always dense in L(X, Y).
- $c_0 \subset Y \subset \ell_{\infty} \Rightarrow NA(X, Y)$ is always dense in L(X, Y).
- There are X and Y such that NA(X, Y) is not dense in L(X, Y).

Bourgain 1977:

• X RNP \Rightarrow NA(X, Y) is always dense in L(X, Y).

Gowers 1990:

• $NA(X, l_2)$ is not always dense in $L(X, l_2)$.

Rank 2 operators into ℓ_2^2

• Is $NA(X, l_2)$ always nontrivially nonempty?

- Is $NA(X, l_2)$ always nontrivially nonempty?
- Is $NA(X, \ell_2^2)$ always nontrivially nonempty?

Is NA(X, l₂) always nontrivially nonempty?
Is NA(X, l₂²) always nontrivially nonempty?

That is, is

$$NA^{(2)}(X, \ell_2^2) := \{T \in NA(X, \ell_2^2): rank(T) = 2\} \neq \emptyset$$
?

Is NA(X, l₂) always nontrivially nonempty?
Is NA(X, l₂²) always nontrivially nonempty?

That is, is

$$NA^{(2)}(X, \ell_2^2) := \{T \in NA(X, \ell_2^2): rank(T) = 2\} \neq \emptyset$$
?

Examples:

• X = C(K), $Tx = (x(t_1), x(t_2))$:

$$\|T\| = \|T(\mathbf{1})\| = \sqrt{2}$$

Is NA(X, l₂) always nontrivially nonempty?
Is NA(X, l₂²) always nontrivially nonempty?

That is, is

$$NA^{(2)}(X, \ell_2^2) := \{T \in NA(X, \ell_2^2): rank(T) = 2\} \neq \emptyset$$
?

Examples:

•
$$X = C(K)$$
, $Tx = (x(t_1), x(t_2))$:

$$\|T\| = \|T(\mathbf{1})\| = \sqrt{2}$$

• $X = L_1[0, 1], \ Tx = (\int_0^{1/2} x(t) \, dt, \int_{1/2}^1 x(t) \, dt):$
 $\|T\| = \|T(\mathbf{1})\| = 1/\sqrt{2}$

Let $T: X \rightarrow \ell_2^2$ of rank 2.

Let $T: X \rightarrow \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)).

Let $T: X \rightarrow \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Let $T: X \to \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Lemma

 $||T|| \le 1 \iff ||f + tg|| \le \sqrt{1 + t^2}$ for all $t \in \mathbb{R}$.

Let $T: X \to \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Lemma

$$||T|| \le 1 \iff ||f + tg|| \le \sqrt{1 + t^2}$$
 for all $t \in \mathbb{R}$.

In this case g is called a mate of f.

Let $T: X \rightarrow \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Lemma

$$||T|| \le 1 \iff ||f + tg|| \le \sqrt{1 + t^2}$$
 for all $t \in \mathbb{R}$.

In this case g is called a mate of f.

Proposition

Let ||f|| = 1.

(a) If, for some
$$0 \neq h \in B_{X^*}$$
,

$$\limsup_{t\to 0}\frac{\|f+th\|-1}{t^2}<\infty,$$

then *f* has a mate (namely *sh* for some $s \in (0, 1]$).

Let $T: X \rightarrow \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Lemma

$$||T|| \le 1 \iff ||f + tg|| \le \sqrt{1 + t^2}$$
 for all $t \in \mathbb{R}$.

In this case g is called a mate of f.

Proposition

Let ||f|| = 1.

(a) If, for some
$$0 \neq h \in B_{X^*}$$
,

$$\limsup_{t\to 0}\frac{\|f+th\|-1}{t^2}<\infty,$$

then f has a mate (namely sh for some $s \in (0, 1]$).

(b) If *f* is not an extreme point of the unit ball, then it has a mate.

Let $T: X \rightarrow \ell_2^2$ of rank 2. Write Tx = (f(x), g(x)). Suppose ||f|| = 1.

Lemma

$$||T|| \le 1 \iff ||f + tg|| \le \sqrt{1 + t^2}$$
 for all $t \in \mathbb{R}$.

In this case g is called a mate of f.

Proposition

Let ||f|| = 1.

(a) If, for some
$$0 \neq h \in B_{X^*}$$
,

$$\limsup_{t\to 0}\frac{\|f+th\|-1}{t^2}<\infty,$$

then f has a mate (namely sh for some $s \in (0, 1]$).

(b) If *f* is not an extreme point of the unit ball, then it has a mate.

(c) There exists some *f* with a mate.

Theorem

 $NA^{(2)}(X, \ell_2^2) \neq \emptyset$ if and only if there exists $f \in NA(X)$, ||f|| = 1, with a mate.

Theorem

 $NA^{(2)}(X, \ell_2^2) \neq \emptyset$ if and only if there exists $f \in NA(X)$, ||f|| = 1, with a mate.

Corollary

• X not smooth \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.

Existence results I

Theorem

 $NA^{(2)}(X, \ell_2^2) \neq \emptyset$ if and only if there exists $f \in NA(X)$, ||f|| = 1, with a mate.

Corollary

- X not smooth \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.
- NA(X) contains a 2-dimensional linear subspace \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.

Theorem

 $NA^{(2)}(X, \ell_2^2) \neq \emptyset$ if and only if there exists $f \in NA(X)$, ||f|| = 1, with a mate.

Corollary

- X not smooth \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.
- NA(X) contains a 2-dimensional linear subspace \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.

Note: $NA^{(2)}(X, \ell_2^2) \neq \emptyset \Rightarrow NA^{(2)}(X, E) \neq \emptyset$ whenever dim $E \ge 2$.

Theorem

 $NA^{(2)}(X, \ell_2^2) \neq \emptyset$ if and only if there exists $f \in NA(X)$, ||f|| = 1, with a mate.

Corollary

- X not smooth \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.
- NA(X) contains a 2-dimensional linear subspace \Rightarrow NA⁽²⁾(X, ℓ_2^2) $\neq \emptyset$.

Note: $NA^{(2)}(X, \ell_2^2) \neq \emptyset \Rightarrow NA^{(2)}(X, E) \neq \emptyset$ whenever dim $E \ge 2$.

Question

Does the Corollary cover all Banach spaces?

The theorems of Read and Rmoutil

There exists a Banach space X_R for which $NA(X_R)$ does not contain 2-dimensional linear subspaces.

There exists a Banach space X_R for which $NA(X_R)$ does not contain 2-dimensional linear subspaces.

There exists a Banach space X_R for which $NA(X_R)$ does not contain 2-dimensional linear subspaces.

There exists a Banach space X_R for which $NA(X_R)$ does not contain 2-dimensional linear subspaces.

Charles Read (1958–2015), Martin Rmoutil, Bernardo Cascales (1958–2018)

Read norms

(S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace?(G. Godefroy 2000)

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, X_R , is a counterexample to (G) as well.

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, X_R , is a counterexample to (G) as well. (Significant simplification of the proof by Kadets/López/Martín.)

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, X_R , is a counterexample to (G) as well. (Significant simplification of the proof by Kadets/López/Martín.)

Call a norm p on a Banach space a Read norm if (X, p) is a counterexample to (G).

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, X_R , is a counterexample to (G) as well. (Significant simplification of the proof by Kadets/López/Martín.)

Call a norm p on a Banach space a Read norm if (X, p) is a counterexample to (G).

KLMW (\geq 2019) provide a new approach to this circle of problems showing:

Theorem

Every separable Banach space containing a copy of c_0 admits an equivalent Read norm.

Dirk Werner, Norm attaining operators of finite rank, 9.9.2019 《 다 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 문 ♡ 역 ೕ 8/10

- (S) Does every Banach space contain a 2-codimensional proximinal subspace? (I. Singer 1970)
- (G) Does NA(X) always contain a 2-dimensional linear subspace? (G. Godefroy 2000)

Read (2013) constructs a renorming of c_0 that is a counterexample to (S).

Rmoutil (2017) shows that this space, X_R , is a counterexample to (G) as well. (Significant simplification of the proof by Kadets/López/Martín.)

Call a norm p on a Banach space a Read norm if (X, p) is a counterexample to (G).

KLMW (\geq 2019) provide a new approach to this circle of problems showing:

Theorem

Every separable Banach space containing a copy of c_0 admits an equivalent Read norm. *Consequently* this is also a counterexample to (S).

Existence results II

Recall: NA(X) contains a 2-dimensional linear subspace \Rightarrow NA⁽²⁾(X, l_2^2) $\neq \emptyset$.

Existence results II

Recall:

NA(X) contains a 2-dimensional linear subspace $\Rightarrow NA^{(2)}(X, \ell_2^2) \neq \emptyset$.

Main Theorem

If NA(X) contains a nontrivial cone, i.e., some $\{sf + tg: s, t \ge 0\}$ with linearly independent f and g, then NA⁽²⁾(X, $l_2^2) \neq \emptyset$.

Main Theorem

If NA(X) contains a nontrivial cone, i.e., some $\{sf + tg: s, t \ge 0\}$ with linearly independent f and g, then NA⁽²⁾(X, $\ell_2^2) \neq \emptyset$.

Example: The original Read space X_R is not smooth; hence NA(X_R) contains a nontrivial cone (but not a nontrivial subspace).

Main Theorem

If NA(X) contains a nontrivial cone, i.e., some $\{sf + tg: s, t \ge 0\}$ with linearly independent f and g, then NA⁽²⁾(X, $\ell_2^2) \neq \emptyset$.

Example: The original Read space X_R is not smooth; hence NA(X_R) contains a nontrivial cone (but not a nontrivial subspace).

There is a smooth renorming (X_R, p_{sm}) with a smooth Read norm p_{sm} such that $NA(X_R) = NA((X_R, p_{sm}))$; hence $NA((X_R, p_{sm}))$ contains a nontrivial cone (but not a nontrivial subspace).

Main Theorem

If NA(X) contains a nontrivial cone, i.e., some $\{sf + tg: s, t \ge 0\}$ with linearly independent f and g, then NA⁽²⁾(X, $\ell_2^2) \neq \emptyset$.

Example: The original Read space X_R is not smooth; hence NA(X_R) contains a nontrivial cone (but not a nontrivial subspace).

There is a smooth renorming (X_R, p_{sm}) with a smooth Read norm p_{sm} such that $NA(X_R) = NA((X_R, p_{sm}))$; hence $NA((X_R, p_{sm}))$ contains a nontrivial cone (but not a nontrivial subspace).

Questions

• Does the converse of the Main Theorem hold?

Main Theorem

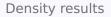
If NA(X) contains a nontrivial cone, i.e., some $\{sf + tg: s, t \ge 0\}$ with linearly independent f and g, then NA⁽²⁾(X, $\ell_2^2) \neq \emptyset$.

Example: The original Read space X_R is not smooth; hence NA(X_R) contains a nontrivial cone (but not a nontrivial subspace).

There is a smooth renorming (X_R, p_{sm}) with a smooth Read norm p_{sm} such that $NA(X_R) = NA((X_R, p_{sm}))$; hence $NA((X_R, p_{sm}))$ contains a nontrivial cone (but not a nontrivial subspace).

Questions

- Does the converse of the Main Theorem hold?
- Is the assumption of the Main Theorem always fulfilled?



Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F.

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces *X*:

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 ,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 ,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 , spaces having a shrinking monotone Schauder basis,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$, C(K),

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$, C(K), $K(l_2)$,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of l_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$, C(K), $K(l_2)$, c_0 -sums of reflexive spaces,

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of ℓ_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$, C(K), $K(\ell_2)$, c_0 -sums of reflexive spaces, certain of their subspaces...

Theorem

If NA(X) contains a dense linear subspace, then NA(X, F) is dense in L(X, F) for every finite-dimensional F. (In fact, a weaker more technical assumption suffices.)

Examples: The theorem applies to the following spaces X: c_0 , isometric preduals of ℓ_1 , spaces having a shrinking monotone Schauder basis, $L_1(\mu)$, C(K), $K(\ell_2)$, c_0 -sums of reflexive spaces, certain of their subspaces...

Corollary

In the setting of the Theorem, if X^* has the AP, then every compact operator with domain X can be approximated by finite rank norm attaining operators.