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Motivation

In this talk we will discuss “coarse” topologies on vector
lattices.

It so happens that the topologies we usually study on Banach
lattices (including the absolute weak topology) are rather
strong.

Theorem

Let X be a Banach lattice. Then the norm topology is the
finest topology on X that respects the lattice structure.
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What do I mean by “respect the lattice structure”

A subset V of a vector lattice X is called solid if v ∈ V and
|x | ≤ |v | implies x ∈ V .

A linear topology τ is said to be locally solid if it has a base
at zero consisting of solid sets.

A linear topology is locally solid iff lattice operations are
uniformly continuous.

Or equivalently if lattice operations are continuous and from
0 ≤ xα ≤ yα

τ−→ 0 we can conclude that xα
τ−→ 0.
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How to “weaken a topology”

For each solid set V ⊆ X and each a ≥ 0 define
Va := {x ∈ X : |x | ∧ a ∈ V }. It is easy to see that Va is also
solid and V ⊆ Va.

Let A be an ideal of a vector lattice X , and τ a locally solid
topology on X .

Since τ is a locally solid topology, it has a base, N0, at zero
consisting of solid sets. The collection {Va : V ∈ N0, a ∈ A+}
defines a locally solid topology, uAτ , on X .
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Basic properties

uAτ ⊆ τ , and if B is another ideal then
uA(uBτ) = uB(uAτ) = uA∩Bτ .

xα
uAτ−−→ x iff |xα − x | ∧ a

τ−→ 0 for all a ∈ A+.

uAτ is Hausdorff iff τ is Hausdorff and A is order dense in
X .

We define uτ := uX τ . The map τ 7→ uτ from the set of
locally solid topologies on X to itself is idempotent.

Definition

A locally solid topology is unbounded if τ = uτ or,
equivalently, if τ = uσ for some locally solid topology σ.

Examples of unbounded topologies include uAτ for every ideal
A and locally solid topology τ .
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Unbounded order convergence

Since order convergence is topological iff X is finite
dimensional, we must separately define unbounded order
convergence.

We say that xα
uo−→ x iff |xα − x | ∧ a

o−→ 0 for each a ∈ X+.

uo-convergence, although not part of the theory of unbounded
topologies, plays a key role.
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Why don’t we test uo against ideals?

Define xα
uAo−−→ x if |xα − x | ∧ a

o−→ 0 for each a ∈ A+.

Theorem (Li, Chen)

If A is order dense then uAo = uo;

If A is not order dense then uAo fails to have unique
limits.

The situation is very different for topologies since there is a
“gap” between an ideal being order dense and topologically
dense.
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Minimal topologies

Definition

A Hausdorff locally solid topology τ is said to be minimal if it
follows from σ ⊆ τ and σ Hausdorff and locally solid that
σ = τ .

Minimal topologies have been studied by Aliprantis,
Burkinshaw, Labuda, and Conradie (’78-’05).
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The connection with unbounded convergences

Theorem

Let (X , τ) be a Hausdorff locally solid vector lattice. TFAE:

1 τ is minimal;

2 uo-null nets are τ -null;

3 o-null nets are τ -null and τ is unbounded;

4 τ = uAτ for every order dense ideal A ⊆ X .

Moreover, minimal topologies are unique, and in spaces of
measurable functions the minimal topology is convergence in
measure.
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Coarsest?

Minimal topologies may or may not be coarsest amongst all
Hausdorff locally solid topologies.

Let X be an order continuous Banach lattice. Since the norm
topology is the finest locally solid topology on X , the
unbounded norm topology is the finest unbounded topology on
X , and since it is also minimal, it must be the coarsest
Hausdorff locally solid topology on X .

L∞[0, 1] admits a minimal topology but it is not coarsest
amongst all Hausdorff locally solid topologies.

C [0, 1] admits no minimal topology.
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Properties of minimal topologies

Theorem (Conradie, Taylor, Kandic)

Let τ be a minimal topology:

τ is locally convex iff X is atomic. In general,
0 6= f ∈ (X , τ)∗ implies f is a linear combination of
coordinate functionals of atoms;

τ is complete iff τ has MCP iff τ is monotonically
complete iff X is universally complete;

τ is metrizable iff X has the countable sup property and a
countable order basis iff X u has the countable sup
property;

τ is locally bounded iff X is finite dimensional.

etc...
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Another look at the characterization of minimal

topologies

Theorem

Let (X , τ) be a Hausdorff locally solid vector lattice. TFAE:

1 τ is minimal;

2 uo-null nets are τ -null;

3 τ is order continuous and unbounded;

4 τ = uAτ for every order dense ideal A ⊆ X ;

5 τ extends to a locally solid topology on X u.

The universal completion satisfies two universal properties: It
is the smallest universally complete space containing X , but it
is also the largest order dense extension of X . It is therefore
rare that topologies extend to X u, but minimal topologies

satisfy (̂X , τ) = X u.
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Sequential aspects

We say a Hausdorff locally solid topology is σ-universal if
uo-null sequences are τ -null or, equivalently, if uo-Cauchy
sequences are τ -Cauchy.

Recall that a vector lattice is universally σ-complete if it is
both σ-order complete and laterally σ-complete. A universal
σ-completion of X is a universally σ-complete vector lattice
containing a sequentially order dense sublattice isomorphic to
X .

The universal σ-completion X s is unique, and exists iff X is
almost σ-order complete. In this case it is the largest
sequentially order dense extension of X .
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Theorem

Let X be an almost σ-order complete vector lattice and τ a
Hausdorff locally solid topology on X . TFAE:

1 τ extends to a (Hausdorff) locally solid topology on X s ;

2 τ is σ-universal.

Moreover, the extension specified in (i) is unique.

There is no problem with measurable cardinals here (but there
will be later).

σ-universal topologies are not unique! The space L0[0, 1] is
universally σ-complete and admits infinitely many Hausdorff
locally solid topologies.

The coarsest topology on L0[0, 1] is pointwise convergence,
but one can also consider the topology of simultaneous
pointwise convergence and convergence in measure.
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Further results

Theorem

Let τ be a Hausdorff locally solid topology on an almost
σ-order complete vector lattice X . TFAE:

1 τ is σ-universal;

2 τ is σ-Fatou and disjoint sequences are τ -null;

3 τ is σ-Fatou and disjoint sequences are τ -bounded.
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Theorem

The restriction of a minimal topology to a sublattice is
minimal iff the sublattice is regular.

Theorem

Every unbounded σ-universal topology arises as the restriction
of a minimal topology to a σ-regular sublattice.

It is open whether every σ-universal topology is unbounded.

Roughly speaking, given a property P, the characterization of
when σ-universal topologies have P is either the same as the
characterization of when minimal topologies have P, or
measurable cardinals cause some wild behaviour to occur.
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Thank you
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