A z^k -invariant subspace without the wandering property

Daniel Seco

Universidad Carlos III de Madrid and Instituto de Ciencias Matemáticas

Workshop on Banach spaces and Banach lattices, ICMAT 12th September 2019

ICMAT

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$

2/13

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
 $\alpha = 0$, $H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T})$

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
 $\alpha = 0$, $H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T})$
 $\alpha = 1$, $\mathcal{D} = Hol(\mathbb{D}) \cap \{A(f(\mathbb{D})) < \infty\}$

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
 $\alpha = 0$, $H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T})$
 $\alpha = 1$, $\mathcal{D} = Hol(\mathbb{D}) \cap \{A(f(\mathbb{D})) < \infty\}$

$$\bullet \ \alpha > \alpha' \Rightarrow \mathsf{D}_{\alpha} \subset \mathsf{D}_{\alpha'}$$

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
 $\alpha = 0$, $H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T})$
 $\alpha = 1$, $D = Hol(\mathbb{D}) \cap A(f(\mathbb{D}))$

$$\alpha = 1, \mathcal{D} = Hol(\mathbb{D}) \cap \{A(f(\mathbb{D})) < \infty\}$$

•
$$\alpha > \alpha' \Rightarrow D_{\alpha} \subset D_{\alpha'}$$

•
$$f \in D_{\alpha} \Leftrightarrow f' \in D_{\alpha-2}$$

ICMAT

Definition

Dirichlet-type space, D_{α} , is:

$$\{f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, ||f||_{\alpha}^2 = \sum_{k=0}^{\infty} |a_k|^2 (k+1)^{\alpha} < \infty\}$$

Examples

$$\alpha = -1$$
, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
 $\alpha = 0$, $H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T})$
 $\alpha = 1$, $\mathcal{D} = Hol(\mathbb{D}) \cap \{A(f(\mathbb{D})) < \infty\}$

- $\alpha > \alpha' \Rightarrow D_{\alpha} \subset D_{\alpha'}$
- $f \in D_{\alpha} \Leftrightarrow f' \in D_{\alpha-2}$
- Hilbert spaces with monomials as an orthogonal basis

• The (forward) *shift operator* is bdd:

$$S: D_{\alpha} \rightarrow D_{\alpha}: Sf(z) = zf(z).$$

A closed subspace V of D_{α} is z^k -invariant if $S^k V \subset V$.

• The (forward) *shift operator* is bdd:

$$S: D_{\alpha} \rightarrow D_{\alpha}: Sf(z) = zf(z).$$

A closed subspace V of D_{α} is z^k -invariant if $S^k V \subset V$.

$$[f]_{z^k}(=[f]) = \overline{\text{span}\{z^{tk}f: t=0,1,2,\ldots\}}.$$

• The (forward) *shift operator* is bdd:

$$S: D_{\alpha} \to D_{\alpha}: Sf(z) = zf(z).$$

A closed subspace V of D_{α} is z^k - invariant if $S^k V \subset V$.

$$[f]_{z^k} (= [f]) = \overline{\operatorname{span}\{z^{tk}f \colon t = 0, 1, 2, \ldots\}}.$$

Theorem (Beurling, '49)

For H^2 ($\alpha = 0$), M z-inv. subsp. $\Leftrightarrow M = \varphi H^2 = [\varphi]$ with $span(\varphi) = M \ominus SM$.

• The (forward) shift operator is bdd:

$$S: D_{\alpha} \rightarrow D_{\alpha}: Sf(z) = zf(z).$$

A closed subspace V of D_{α} is z^k - invariant if $S^k V \subset V$.

$$[f]_{z^k}(=[f]) = \overline{\text{span}\{z^{tk}f: t=0,1,2,\ldots\}}.$$

Theorem (Beurling, '49)

For H^2 ($\alpha = 0$), M z-inv. subsp. $\Leftrightarrow M = \varphi H^2 = [\varphi]$ with $span(\varphi) = M \ominus SM$.

Theorem (Aleman, Richter, Sundberg, '96)

For
$$A^2$$
 ($\alpha = -1$), M z -inv. \Leftrightarrow

$$[M \ominus SM] = M$$
.

• Shimorin ('11) extended ARS'96 to $\alpha \in [-1,1]$ (different ideas for $\alpha < 0$ and $\alpha > 0$). Hedenmalm-Zhu ('92) and Nowak et al. ('17) showed that the analogous fails for $\alpha \leq -5$ in some sense.

Definition

M has the z^k wandering property if

$$[M \ominus S^k M]_{z^k} = M.$$

• Shimorin ('11) extended ARS'96 to $\alpha \in [-1,1]$ (different ideas for $\alpha < 0$ and $\alpha > 0$). Hedenmalm-Zhu ('92) and Nowak et al. ('17) showed that the analogous fails for $\alpha \leq -5$ in some sense.

Definition

M has the z^k wandering property if

$$[M \ominus S^k M]_{z^k} = M.$$

If $\forall M \ z^k$ -inv. subsp. of H, M has the wandering property, then the wandering subspace property (WSP) holds for z^k in H.

• Shimorin ('11) extended ARS'96 to $\alpha \in [-1,1]$ (different ideas for $\alpha < 0$ and $\alpha > 0$). Hedenmalm-Zhu ('92) and Nowak et al. ('17) showed that the analogous fails for $\alpha \leq -5$ in some sense.

Definition

M has the z^k wandering property if

$$[M \ominus S^k M]_{z^k} = M.$$

If $\forall M \ z^k$ -inv. subsp. of H, M has the wandering property, then the wandering subspace property (WSP) holds for z^k in H.

Norm dependent!

• Shimorin ('11) extended ARS'96 to $\alpha \in [-1,1]$ (different ideas for $\alpha < 0$ and $\alpha > 0$). Hedenmalm-Zhu ('92) and Nowak et al. ('17) showed that the analogous fails for $\alpha \leq -5$ in some sense.

Definition

M has the z^k wandering property if

$$[M \ominus S^k M]_{z^k} = M.$$

If $\forall M \ z^k$ -inv. subsp. of H, M has the wandering property, then the wandering subspace property (WSP) holds for z^k in H.

Norm dependent! Really!

 More work on WSP for other multipliers (i.e. mult. by an inner function) by Carswell, Duren, Khavinson, Shapiro, Stessin, Sundberg, Weir...

- More work on WSP for other multipliers (i.e. mult. by an inner function) by Carswell, Duren, Khavinson, Shapiro, Stessin, Sundberg, Weir...
- CDS'02: Not known whether always WSP for mult. by a finite Blaschke product in A².

ICMAT

- More work on WSP for other multipliers (i.e. mult. by an inner function) by Carswell, Duren, Khavinson, Shapiro, Stessin, Sundberg, Weir...
- CDS'02: Not known whether always WSP for mult. by a finite Blaschke product in A².

Conjecture

k > 1. For z^k in A^2 , the wandering prop. holds.

- More work on WSP for other multipliers (i.e. mult. by an inner function) by Carswell, Duren, Khavinson, Shapiro, Stessin, Sundberg, Weir...
- CDS'02: Not known whether always WSP for mult. by a finite Blaschke product in A².

Conjecture

k > 1. For z^k in A^2 , the wandering prop. holds.

This is the problem we study (but do not solve) today.

Theorem

 $\forall k \geq 6, \forall \alpha \in \mathbb{R}, D_{\alpha} \text{ admits equiv. norm } \| \cdot \| : z^k \text{-WSP fails.}$

ICMAT

Theorem

 $\forall k \geq 6, \forall \alpha \in \mathbb{R}, D_{\alpha} \text{ admits equiv. norm } \| \cdot \| : z^k \text{-WSP fails.}$

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1, \forall \alpha \in [-1,1], D_{\alpha}$ admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

Theorem

 $\forall k \geq 6, \forall \alpha \in \mathbb{R}, D_{\alpha} \text{ admits equiv. norm } \| \cdot \| : z^k \text{-WSP fails.}$

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1, \forall \alpha \in [-1,1], D_{\alpha}$ admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

What about the usual norms in D_{α} ?

Theorem

 $\forall k \geq 6, \, \forall \alpha \in \mathbb{R}, \, D_{\alpha} \text{ admits equiv. norm } \| \cdot \| : z^k \text{-WSP fails.}$

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1$, $\forall \alpha \in [-1, 1]$, D_{α} admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

What about the usual norms in D_{α} ?

• $k \ge 10$, $\alpha < -(5k + \frac{700}{(k-9)^2})$, z^k -WSP fails.

6/13

Theorem

 $\forall k \geq 6$, $\forall \alpha \in \mathbb{R}$, D_{α} admits equiv. norm $\|\cdot\|$: z^k -WSP fails.

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1$, $\forall \alpha \in [-1, 1]$, D_{α} admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

What about the usual norms in D_{α} ?

- $k \ge 10$, $\alpha < -(5k + \frac{700}{(k-9)^2})$, z^k -WSP fails.
- $-\frac{\log 2}{\log(k+1)} \le \alpha \le 1$, z^k -WSP holds.

6/13

Theorem

 $\forall k \geq 6, \forall \alpha \in \mathbb{R}, D_{\alpha}$ admits equiv. norm $\|\cdot\|$: z^k -WSP fails.

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1$, $\forall \alpha \in [-1, 1]$, D_{α} admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

What about the usual norms in D_{α} ?

- $k \ge 10$, $\alpha < -(5k + \frac{700}{(k-9)^2})$, z^k -WSP fails.
- $-\frac{\log 2}{\log(k+1)} \le \alpha \le 1$, z^k -WSP holds.
- In z^2A^2 , z^2 -WSP holds but in A^2 we still DO NOT KNOW.

6/13

Theorem

 $\forall k \geq 6, \, \forall \alpha \in \mathbb{R}, \, D_{\alpha} \text{ admits equiv. norm } \| \cdot \| \colon z^k \text{-WSP fails.}$

Theorem (Gallardo-Gutiérrez, Partington, Seco, '19)

 $\forall k \geq 1$, $\forall \alpha \in [-1, 1]$, D_{α} admits equiv. norm $\|\cdot\|$: B-WSP holds (any B finite Blaschke product).

What about the usual norms in D_{α} ?

- $k \ge 10$, $\alpha < -(5k + \frac{700}{(k-9)^2})$, z^k -WSP fails.
- $-\frac{\log 2}{\log(k+1)} \le \alpha \le 1$, z^k -WSP holds.
- In z^2A^2 , z^2 -WSP holds but in A^2 we still DO NOT KNOW.
- Today focus: $\alpha = -16$, z^6 wandering fails.

$$\alpha = -16, k = 6.$$

ICMAT

Seco (UC3M/ICMAT) War

$$\alpha = -16, k = 6.$$

•
$$M = [F_1, F_2]_{z^6}$$

$$\alpha = -16, k = 6.$$

- $M = [F_1, F_2]_{z^6}$
- $F_1(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_6 z^6 + a_7 z^7 + a_8 z^8 + a_9 z^9$ $F_2(z) = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_5 z^5$

7/13

$$\alpha = -16, k = 6.$$

- $M = [F_1, F_2]_{7^6}$
- $F_1(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_6 z^6 + a_7 z^7 + a_8 z^8 + a_9 z^9$ $F_2(z) = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_5 z^5$
- a_4 , b_5 different role: $(2z^6 + 5)F_1(z) + (9z^6 + 8)F_2(z) =$

=
$$(c_0,...,c_3,5a_4,8b_5,c_6,...,c_9,2a_4,9b_5,c_{12},...,c_{15},0,0,c_{18},...)$$

$$\alpha = -16, k = 6.$$

- $M = [F_1, F_2]_{z^6}$
- $F_1(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_6 z^6 + a_7 z^7 + a_8 z^8 + a_9 z^9$ $F_2(z) = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_5 z^5$
- a_4 , b_5 different role: $(2z^6+5)F_1(z)+(9z^6+8)F_2(z)=$

=
$$(c_0, ..., c_3, 5a_4, 8b_5, c_6, ..., c_9, 2a_4, 9b_5, c_{12}, ..., c_{15}, 0, 0, c_{18}, ...)$$

⇒ unique expression ⇒ "Fourier analysis"

Seco (UC3M/ICMAT)

$$\alpha = -16, k = 6.$$

- $M = [F_1, F_2]_{7^6}$
- $F_1(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_6 z^6 + a_7 z^7 + a_8 z^8 + a_9 z^9$ $F_2(z) = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_5 z^5$
- a_4 , b_5 different role: $(2z^6 + 5)F_1(z) + (9z^6 + 8)F_2(z) =$ = $(c_0, ..., c_3, 5a_4, 8b_5, c_6, ..., c_9, 2a_4, 9b_5, c_{12}, ..., c_{15}, 0, 0, c_{18}, ...)$
- ⇒ unique expression ⇒ "Fourier analysis"
- $\bullet \Rightarrow M = \{f_1(z^6)F_1(z) + f_2(z^6)F_2(z) : f_1, f_2 \in D_\alpha\}$

ICMAT

7/13

Linear relations

$$f\in M\ominus z^6M\Leftrightarrow \langle f,z^{6s}F_j\rangle=0 \ (s\geq 1,j=1,2).$$

Definition

ICMAT

Linear relations

$$f \in M \ominus z^6M \Leftrightarrow \langle f, z^{6s}F_j \rangle = 0 \ (s \ge 1, j = 1, 2).$$

Definition

•
$$A_{s,1} = \langle z^{6(s-1)} F_1, z^{6s} F_1 \rangle = \sum_{h=0}^{3} \overline{a_h} a_{6+h} \omega_{6s+h}$$

Seco (UC3M/ICMAT)

Linear relations

$$f \in M \ominus z^6M \Leftrightarrow \langle f, z^{6s}F_j \rangle = 0 \ (s \ge 1, j = 1, 2).$$

Definition

- $A_{s,1} = \langle z^{6(s-1)} F_1, z^{6s} F_1 \rangle = \sum_{h=0}^{3} \overline{a_h} a_{6+h} \omega_{6s+h}$
- $\bullet \ A_{s,2} = \langle z^{6s}F_1, z^{6s}F_2 \rangle$

8/13

Linear relations

$$f \in M \ominus z^6M \Leftrightarrow \langle f, z^{6s}F_j \rangle = 0 \ (s \ge 1, j = 1, 2).$$

Definition

- $A_{s,1} = \langle z^{6(s-1)} F_1, z^{6s} F_1 \rangle = \sum_{h=0}^{3} \overline{a_h} a_{6+h} \omega_{6s+h}$
- $\bullet \ A_{s,2} = \langle z^{6s}F_1, z^{6s}F_2 \rangle$
- $\bullet \ \ A_{s,3} = \|z^{6s}F_1\|^2, \, A_{s,4} = \|z^{6s}F_2\|^2$

8/13

Seco (UC3M/ICMAT) Wandering property ICMAT

Linear relations

$$f \in M \ominus z^6M \Leftrightarrow \langle f, z^{6s}F_j \rangle = 0 \ (s \ge 1, j = 1, 2).$$

Definition

•
$$A_{s,1} = \langle z^{6(s-1)} F_1, z^{6s} F_1 \rangle = \sum_{h=0}^{3} \overline{a_h} a_{6+h} \omega_{6s+h}$$

•
$$A_{s,2} = \langle z^{6s} F_1, z^{6s} F_2 \rangle$$

$$\bullet \ \ A_{s,3} = \|z^{6s}F_1\|^2, \, A_{s,4} = \|z^{6s}F_2\|^2$$

•
$$A_{s,5} = \langle z^{6(s-1)}F_1, z^{6s}F_2 \rangle$$

8/13

Seco (UC3M/ICMAT) Wandering property ICMAT

Linear relations

$$f \in M \ominus z^6M \Leftrightarrow \langle f, z^{6s}F_j \rangle = 0 \ (s \ge 1, j = 1, 2).$$

Definition

•
$$A_{s,1} = \langle z^{6(s-1)} F_1, z^{6s} F_1 \rangle = \sum_{h=0}^{3} \overline{a_h} a_{6+h} \omega_{6s+h}$$

- $A_{s,2} = \langle z^{6s} F_1, z^{6s} F_2 \rangle$
- $A_{s,3} = ||z^{6s}F_1||^2$, $A_{s,4} = ||z^{6s}F_2||^2$
- $A_{s,5} = \langle z^{6(s-1)}F_1, z^{6s}F_2 \rangle$

Lemma

 $f \in M$. Then $f \perp z^6M \Leftrightarrow \forall s \geq 1$ both

$$0 = \hat{f}_1(s+1)\overline{A_{s+1,1}} + \hat{f}_2(s+1)\overline{A_{s+1,5}} + \hat{f}_1(s)A_{s,3} + \hat{f}_2(s)\overline{A_{s,2}} + \hat{f}_1(s-1)A_{s,1}$$

and

$$0 = \hat{f}_1(s)A_{s,2} + \hat{f}_2(s)A_{s,4} + \hat{f}_1(s-1)A_{s,5}.$$

• Suppose $f \in M \ominus z^6 M$. If $A_{2,1} = A_{3,1} = A_{2,5} = A_{3,5} = 0 \Rightarrow \hat{f}_1(2) = \hat{f}_2(2) = 0$.

- Suppose $f \in M \ominus z^6 M$. If $A_{2,1} = A_{3,1} = A_{2,5} = A_{3,5} = 0 \Rightarrow \hat{f}_1(2) = \hat{f}_2(2) = 0$.
- If $(previous) + A_{1,1} = 0$, then $M \perp z^6 M$ spanned by F_2 and F_4 where

$$F_4(z) = F_1(z)(1 - \frac{z^6 A_{1,5} \overline{A_{1,2}}}{|A_{1,2}|^2 - A_{1,3} A_{1,4}}) = (1 + z^6/c)F_1(z).$$

- Suppose $f \in M \ominus z^6 M$. If $A_{2,1} = A_{3,1} = A_{2,5} = A_{3,5} = 0 \Rightarrow \hat{f}_1(2) = \hat{f}_2(2) = 0$.
- If $(previous) + A_{1,1} = 0$, then $M \perp z^6 M$ spanned by F_2 and F_4 where

$$F_4(z) = F_1(z)(1 - \frac{z^6 A_{1,5} \overline{A_{1,2}}}{|A_{1,2}|^2 - A_{1,3} A_{1,4}}) = (1 + z^6/c)F_1(z).$$

• Notice then $F_1 \in [M \ominus z^6 M] \Leftrightarrow 1 + z/c$ cyclic $\Leftrightarrow c \ge 1$.

ICMAT

9/13

Seco (UC3M/ICMAT) Wandering property

- Suppose $f \in M \ominus z^6 M$. If $A_{2,1} = A_{3,1} = A_{2,5} = A_{3,5} = 0 \Rightarrow \hat{f}_1(2) = \hat{f}_2(2) = 0$.
- If $(previous) + A_{1,1} = 0$, then $M \perp z^6 M$ spanned by F_2 and F_4 where

$$F_4(z) = F_1(z)(1 - \frac{z^6 A_{1,5} \overline{A_{1,2}}}{|A_{1,2}|^2 - A_{1,3} A_{1,4}}) = (1 + z^6/c)F_1(z).$$

- Notice then $F_1 \in [M \ominus z^6 M] \Leftrightarrow 1 + z/c$ cyclic $\Leftrightarrow c \ge 1$.
- Optimization problem on 12 variables, with 5 restrictions to show c < 1.

ICMAT

9/13

Seco (UC3M/ICMAT) Wandering property

$$\textit{B}_0 := \inf \frac{\textit{A}_{1,3}\textit{A}_{1,4} - |\textit{A}_{1,2}|^2}{|\textit{A}_{1,2}\textit{A}_{1,5}|} < 1$$

$$\textit{B}_0 := \inf \frac{\textit{A}_{1,3} \textit{A}_{1,4} - |\textit{A}_{1,2}|^2}{|\textit{A}_{1,2} \textit{A}_{1,5}|} < 1$$

inf on $(a_0,...,a_3,a_6,...,a_9,b_0,...,b_3) \in \mathbb{C}^{12}$:

$$B_0 := \inf \frac{A_{1,3}A_{1,4} - |A_{1,2}|^2}{|A_{1,2}A_{1,5}|} < 1$$

inf on $(a_0, ..., a_3, a_6, ..., a_9, b_0, ..., b_3) \in \mathbb{C}^{12}$:

$$N\begin{pmatrix} a_0\overline{a_6}\\ a_1\overline{a_7}\\ a_2\overline{a_8}\\ a_3\overline{a_9} \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad N\begin{pmatrix} b_0\overline{a_6}\\ b_1\overline{a_7}\\ b_2\overline{a_8}\\ b_3\overline{a_9} \end{pmatrix} = \begin{pmatrix} \overline{A_{1,5}}\\0\\0 \end{pmatrix},$$

$$B_0 := \inf \frac{A_{1,3}A_{1,4} - |A_{1,2}|^2}{|A_{1,2}A_{1,5}|} < 1$$

inf on $(a_0, ..., a_3, a_6, ..., a_9, b_0, ..., b_3) \in \mathbb{C}^{12}$:

$$N\begin{pmatrix} a_0\overline{a_6}\\ a_1\overline{a_7}\\ a_2\overline{a_8}\\ a_3\overline{a_9} \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad N\begin{pmatrix} b_0\overline{a_6}\\ b_1\overline{a_7}\\ b_2\overline{a_8}\\ b_3\overline{a_9} \end{pmatrix} = \begin{pmatrix} \overline{A_{1,5}}\\0\\0 \end{pmatrix},$$

and N is the 3×4 matrix given by

$$N = \begin{pmatrix} \omega_6 & \omega_7 & \omega_8 & \omega_9 \\ \omega_{12} & \omega_{13} & \omega_{14} & \omega_{15} \\ \omega_{18} & \omega_{19} & \omega_{20} & \omega_{21} \end{pmatrix} \quad N_0 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ \omega_6 & \omega_7 & \omega_8 & \omega_9 \\ \omega_{12} & \omega_{13} & \omega_{14} & \omega_{15} \\ \omega_{18} & \omega_{19} & \omega_{20} & \omega_{21} \end{pmatrix}$$

Seco (UC3M/ICMAT) Wandering property ICMAT 10/13

• Restrictions give $a_6, ..., a_9$ and $b_0, ..., b_3$ in terms of $a_0, ..., a_3$ and 3 mute variables.

- Restrictions give a₆, ..., a₉ and b₀, ..., b₃ in terms of a₀, ..., a₃ and 3 mute variables.
- Objective function, homogeneous $\Rightarrow a_0 = 1$.

- Restrictions give a₆, ..., a₉ and b₀, ..., b₃ in terms of a₀, ..., a₃ and 3 mute variables.
- Objective function, homogeneous $\Rightarrow a_0 = 1$.
- Classical calculus techniques and "good luck" reduce from 6 complex to 3 real positive variables: Find $d_1, d_2, d_3 \in \mathbb{R}^+$ such that:

$$4C_2C_4 < 1$$

where

- Restrictions give a₆, ..., a₉ and b₀, ..., b₃ in terms of a₀, ..., a₃ and 3 mute variables.
- Objective function, homogeneous $\Rightarrow a_0 = 1$.
- Classical calculus techniques and "good luck" reduce from 6 complex to 3 real positive variables: Find $d_1, d_2, d_3 \in \mathbb{R}^+$ such that:

$$4C_2C_4 < 1$$
,

where

$$C_2 = 1 + \sum_{i=1}^3 \frac{E_i^2 \omega_{2k+i}}{d_i}, \quad C_4 = \sum_{i=1}^3 \frac{G_i^2 \omega_{k+i} d_i}{E_i^2},$$

- Restrictions give a₆, ..., a₉ and b₀, ..., b₃ in terms of a₀, ..., a₃ and 3 mute variables.
- Objective function, homogeneous $\Rightarrow a_0 = 1$.
- Classical calculus techniques and "good luck" reduce from 6 complex to 3 real positive variables: Find $d_1, d_2, d_3 \in \mathbb{R}^+$ such that:

$$4C_2C_4 < 1$$
,

where

$$C_2 = 1 + \sum_{i=1}^3 rac{E_i^2 \omega_{2k+i}}{d_i}, \quad C_4 = \sum_{i=1}^3 rac{G_i^2 \omega_{k+i} d_i}{E_i^2}, \ N_0^{-1} = egin{pmatrix} 1 & 0 & 0 & 0 \ E_1 & G_1 & \dots & \dots \ E_2 & G_2 & \dots & \dots \ E_3 & G_3 & \dots & \dots \end{pmatrix}.$$

The solution to the problem

• For us, this becomes something like d_1, d_2, d_3 :

$$4 \cdot 10^{-6} \cdot \big(1 + \frac{82}{d_1} + \frac{440}{d_2} + \frac{194}{d_3}\big) \cdot \big(14d_1 + 4d_2 + d_3\big) < 1.$$

ICMAT

12/13

Seco (UC3M/ICMAT) Wandering property

The solution to the problem

• For us, this becomes something like d_1, d_2, d_3 :

$$4 \cdot 10^{-6} \cdot \big(1 + \frac{82}{d_1} + \frac{440}{d_2} + \frac{194}{d_3}\big) \cdot \big(14d_1 + 4d_2 + d_3\big) < 1.$$

• A simple educated guess d = (1, 4, 6) gives a good enough result (*lhs* < 0.033), and then $B_0 < 0.22$.

Seco (UC3M/ICMAT) Wand

12/13

The solution to the problem

• For us, this becomes something like d_1, d_2, d_3 :

$$4 \cdot 10^{-6} \cdot \big(1 + \frac{82}{d_1} + \frac{440}{d_2} + \frac{194}{d_3}\big) \cdot \big(14d_1 + 4d_2 + d_3\big) < 1.$$

• A simple educated guess d = (1, 4, 6) gives a good enough result (*lhs* < 0.033), and then $B_0 < 0.22$.

Remark

Changing those 12 values in the adequate place of the sequence ω will give an equiv. norm in any D_{α} with the same result for any $k \geq 6$.

12/13

Seco (UC3M/ICMAT) Wandering property ICMAT

