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Ideals in L(X )

L(X ) is the Banach algebra of bounded linear operators on the
Banach space X .

A closed ideal in L(X ) is a closed subspace I of L(X ) such that
for all T ∈ L(X ) and S ∈ I, TS and ST are in I.

There are some classical closed ideals in L(X ). As long as X
has the approximation property, K (X ) the set of compact
operators is the smallest one. Another is W (X ), the set of
weakly compact operators; operators T that map the unit ball
into a weakly compact set. So W (X ) = L(X ) iff X is reflexive.
An especially important closed ideal is S(X ), the space of
strictly singular operators on X . An operator T is strictly
singular if it is not an into isomorphism when restricted to any
infinite dimensional subspace.
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Ideals in L(X )

A maximal algebraic ideal is automatically closed since the
invertible elements in a Banach algebra form an open set, so
every (always proper) closed ideal is contained in a closed
maximal ideal. What are the maximal ones? Is there even a
largest ideal?

LetM(X ) denote all operators T on X s.t. the identity operator
IX does not factor through T (IX 6= BTA). It is obvious that
M(X ) is an ideal in L(X ) if it is closed under addition, in which
case it clearly is the largest ideal in L(X ). It is known, but non
trivial, thatM(Lp) is closed under addition, and also that
M(Lp) is the set of Lp-singular operators, that is the set of
operators that are not an isomorphism when restricted to any
subspace isomorphic to Lp. [Enflo, Starbird ’79] for p = 1;
[Johnson, Maurey, S, Tzafriri ’79] for 1 < p 6= 2 <∞.
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ideals in L(X )

A common way of constructing a (not necessarily closed) ideal
in L(X ) is to take some operator U : Y → Z between Banach
spaces and let IU be the collection of all operators on X that
factor through U, i.e., all T ∈ L(X ) s.t. there exist A ∈ L(X ,Y )
and B ∈ L(Z ,X ) s.t. T = BUA.

L(X )IUL(X ) ⊂ IU is clear, so IU is an ideal in L(X ) if IU is
closed under addition. One usually guarantees this by using a
U s.t. U ⊕U : Y ⊕ Y → Z ⊕ Z factors through U, and these are
the only U that I will use. Then the closure IU will be a proper
ideal in L(X ) as long as IX does not factor through U.
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Large and Small Ideals

IU : All T ∈ L(X ) that factor through U.

S(X ): Strictly singular operators on X .

An ideal I is small if I ⊂ S(X ); otherwise it is large.

So, for example, IU is small if U is strictly singular and U ⊕ U
factors through U.

And, for example, IU is large if U = IY for some complemented
subspace Y of X and Y ⊕ Y is isomorphic to Y .

To simplify notation, I’ll write IY instead of IIY .
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Ideals in L(L1)

An ideal I is small if I ⊂ S(X ); otherwise it is large.

Small closed ideals in L(L1) include K (L1), S(L1), and W (L1).
But W (L1) = S(L1) Dunford-Pettis property of L1.

Large closed ideals in L(L1) include I`1 and the largest ideal
M(L1) (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in L(L1) contains I`1 and I`1
contains any small ideal in L(L1).

Until recently this is all that were known. This led Pietsch to ask
in his 1979 book “Operator Ideals" whether there are infinitely
many closed ideals in L(L1).
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Ideals in L(L1) - the difficulty

It is easy to build closed ideals in L(X ); in particular, in L(L1);
but difficult to prove that ideals are different. For example, for
1 < p <∞, let ILp be the (non closed) ideal of operators on L1
that factor through Lp. These are all different, but their closures
ILp are all equal to the weakly compact operators on L1.

One would guess that the key to solving Pietsch’s problem was
to find just one new closed ideal in L(L1). A couple of years ago
Bill and I did that. The ideal is the closure of IJ2 , where
J2 : `1 → L1 maps the unit vector basis of `1 onto the
Rademacher functions IID Bernoulli random variables that take on the values 1 and−1, each

with probability 1/2. We were excited when we were able to prove that
IJ2 is different from the previously known ideals. We then
looked at IJp , 1 < p < 2, where Jp : `1 → L1 maps the unit
vector basis of `1 onto IID p-stable random variables. The
ideals IJp are all different, but it turns out that all the IJp are
equal to IJ2 !
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Ideals in L(L1)

Theorem.

[JPS] There are at least 2ℵ0 (small) closed ideals in L(L1).

It remains open whether there are infinitely many large closed
ideals in L(L1). This is connected to the unsolved problem
whether every infinite dimensional complemented subspace of
L1 is isomorphic either to `1 or to L1. Also open is whether
there are more than 2ℵ0 closed ideals in L(L1).

The new ideals are a familty (IUq )2<q<∞, where
Uq : `1 → L1{−1,1}N maps the unit vector basis of `1 to a
carefully chosen Λ(q)-set of characters. (A set of characters is
Λ(q) if the L1 norm is equivalent to the Lq norm on their linear
span.) Bourgain’s solution to Rudin’s Λ(q)-set problem is used
(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different.
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Large Ideals in L(Lp), 1 < p 6= 2 <∞

An ideal I is small if I ⊂ S(X ); otherwise it is large.

[S ’75] There are infinitely many isomorphically different
complemented subspaces of Lp, each isomorphic to its square,
hence there are infinitely many (large) closed ideals in L(Lp).

[Bourgain, Rosenthal, S ’81] There are ℵ1 isomorphically
different complemented subspaces of Lp, each isomorphic to its
square, hence there are ℵ1 (large) closed ideals in L(Lp).

This leaves open whether there are there more than ℵ1
(large?/small?) closed ideals in L(Lp)? Maybe there are even
22ℵ0 (large?/small?) closed ideals.
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Small Ideals in L(Lp), 1 < p 6= 2 <∞

The following solved the first problem for small ideals

Theorem. (Schlumprecht,Zsak ’18)

There are infinitely many; in fact, at least 2ℵ0 ; (small) closed
ideals in L(Lp), 1 < p 6= 2 <∞.

The ideals constructed in [SZ ’18] are all of the form IU with U
a basis to basis mapping from `r to `s but the bases for `r , `s
are not the standard unit vector basis.

Whether there are more than 2ℵ0 small closed ideals in L(Lp)
remains open.

But,
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

We recently proved,

Theorem. (JS ’19)

There are 22ℵ0 ; (large) closed ideals in L(Lp), 1 < p 6= 2 <∞.

The proof relays on fine properties of spaces spanned by
independent random variables in Lp, 2 < p <∞, a topic
investigated mostly by Rosenthal in the 1970-s.
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

Recall that for a sequence u = {uj}∞j=1 of positive real numbers
and for p > 2, the Banach space Xp,u is the real sequence
space with norm

‖{aj}∞j=1‖ = max{(
∞∑

j=1

|aj |p)1/p, (
∞∑

j=1

|ajuj |2)1/2}.

Rosenthal proved that Xp,u is isomorphic to a complemented
subspace of Lp with the isomorphism constant and the
complementation constant depending only on p.

If u is such that limj→0 uj = 0 but
∑∞

j=1 |uj |
2p

p−2 =∞ then one
gets a space isomorphically different from `p, `2 and `p ⊕ `2.
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

‖{aj}∞j=1‖Xp,u = max{(
∑∞

j=1 |aj |p)1/p, (
∑∞

j=1 |ajuj |2)1/2}.

However, for different u satisfying the two conditions above the
different Xp,u spaces are mutually isomorphic. We denote by Xp
any of these spaces. We’ll need more properties of the spaces
Xp,u but right now we only need the representation above and
we think of Xp,u as a subspace of `p ⊕∞ `2.

Let {ej}∞j=1 be the unit vector basis of `p and {fj}∞j=1 be the unit
vector basis of `2. Let v = {vj}∞j=1 and w = {wj}∞j=1 be two
positive real sequences such that δj = wj/vj → 0 as j →∞. Set

gv
j = ej + vj fj ∈ `p ⊕∞ `2 and gw

j = ej + wj fj ∈ `p ⊕∞ `2.

Then {gv
j }∞j=1 is the unit vector basis of Xp,v and {gw

j }∞j=1 is the
unit vector basis of Xp,w .
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

gv
j = ej + vj fj ∈ `p ⊕∞ `2 and gw

j = ej + wj fj ∈ `p ⊕∞ `2.

Define also ∆ = ∆(w , v)

∆ : Xp,w → Xp,v

by
∆gw

j = δjgv
j .

Note that ∆ is the restriction to Xp,w of

K : `p ⊕∞ `2 → `p ⊕∞ `2

defined by
K (ej) = δjej and K (fj) = fj

Consequently, ‖∆‖ ≤ ‖K‖ = max{1,max1≤j<∞ δj}.
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

Denote by {hw
j } the dual basis to {gw

j } (and by {hv
j } the dual

basis to {gv
j },

It was proved by Rosenthal that [hw
j ] and [hv

j ] contain copies of
`r for all q = p/(p − 1) ≤ r ≤ 2

A major part in our proof is the fact that for any sequence ri ↗ 2

and ni such that n
1
ri
− 1

2

i ↗∞ (i.e. d(`ni
ri
, `ni

2 )→∞) there are
sequences v = {vj}∞j=1 and w = {wj}∞j=1 such that
δj = wj/vj → 0 and

∆∗ isomorphically uniformly preserves these copies of `ni
ri

.

(∆∗ also preserves the modular space `{ri}.)
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞

For 1 < p < 2, we construct new ideals of the form

I∆∗(w ,v),

that is the ideal of all operators factoring through ∆∗(w , v), for
different sequences (w , v) = {wi , vi}.

More precisely, we build a continuum C of different sequences
(w , v) such that I∆∗(w ,v) are all different. This already produces
a continuum of different ideals.

If A ⊂ C one can look at the closed ideal generated by
{∆∗(w , v)}(w ,v)∈A We show moreover that (with the right
choice of C) if A 6= B then the two closed ideal generated by A
and B are different.

This produces the required 22ℵ0 ideals.
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More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

For appropriate (w , v) the operator T = ∆∗(w , v) has the
following properties:

X (in our case X∗p,v ) is a Banach space with a 1-unconditional basis
{ei} (in our case {hv

i }). T : X → X is a norm one operator satisfying:

(a) For every M there is a finite dimensional subspace E of X
such that d(E) > M and ‖Tx‖ ≥ 1/2 for all x ∈ E .

and
(b) For every m there is an n such that every m-dimensional
subspace E of [ei ]i≥n satisfies γ2(T|E ) ≤ 2.

We proved the following Proposition.

Gideon Schechtman Ideals in L(Lp)



More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

For appropriate (w , v) the operator T = ∆∗(w , v) has the
following properties:

X (in our case X∗p,v ) is a Banach space with a 1-unconditional basis
{ei} (in our case {hv

i }). T : X → X is a norm one operator satisfying:

(a) For every M there is a finite dimensional subspace E of X
such that d(E) > M and ‖Tx‖ ≥ 1/2 for all x ∈ E .

and
(b) For every m there is an n such that every m-dimensional
subspace E of [ei ]i≥n satisfies γ2(T|E ) ≤ 2.

We proved the following Proposition.

Gideon Schechtman Ideals in L(Lp)



More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

For appropriate (w , v) the operator T = ∆∗(w , v) has the
following properties:

X (in our case X∗p,v ) is a Banach space with a 1-unconditional basis
{ei} (in our case {hv

i }). T : X → X is a norm one operator satisfying:

(a) For every M there is a finite dimensional subspace E of X
such that d(E) > M and ‖Tx‖ ≥ 1/2 for all x ∈ E .

and
(b) For every m there is an n such that every m-dimensional
subspace E of [ei ]i≥n satisfies γ2(T|E ) ≤ 2.

We proved the following Proposition.

Gideon Schechtman Ideals in L(Lp)



More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

For appropriate (w , v) the operator T = ∆∗(w , v) has the
following properties:

X (in our case X∗p,v ) is a Banach space with a 1-unconditional basis
{ei} (in our case {hv

i }). T : X → X is a norm one operator satisfying:

(a) For every M there is a finite dimensional subspace E of X
such that d(E) > M and ‖Tx‖ ≥ 1/2 for all x ∈ E .

and
(b) For every m there is an n such that every m-dimensional
subspace E of [ei ]i≥n satisfies γ2(T|E ) ≤ 2.

We proved the following Proposition.

Gideon Schechtman Ideals in L(Lp)



More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

For appropriate (w , v) the operator T = ∆∗(w , v) has the
following properties:

X (in our case X∗p,v ) is a Banach space with a 1-unconditional basis
{ei} (in our case {hv

i }). T : X → X is a norm one operator satisfying:

(a) For every M there is a finite dimensional subspace E of X
such that d(E) > M and ‖Tx‖ ≥ 1/2 for all x ∈ E .

and
(b) For every m there is an n such that every m-dimensional
subspace E of [ei ]i≥n satisfies γ2(T|E ) ≤ 2.

We proved the following Proposition.

Gideon Schechtman Ideals in L(Lp)



More Large Ideals in L(Lp), 1 < p 6= 2 <∞, main
proposition

Proposition

Let T : X = [ei ]→ X satisfy (a) and (b). Then there exist a
subsequence of N, 1 = p1 < q1 < p2 < q2 < . . . with the
following properties:

Denoting for each k, Gk = [ei ]
qk
i=pk

. Let C be a continuum of
subsequences of N each two of which has a finite intersection.
For each α ∈ C, Pα : X → [Gk ]k∈α denotes the natural basis
projection and Tα = TPα.

If α1, . . . , αs ∈ C (possibly with repetitions) and
α ∈ C \ {α1, . . . , αs} then for all A1, . . . ,As ∈ L(X ) and all
B1, . . . ,Bs ∈ L(X )

‖Tα −
s∑

i=1

AiTαi Bi‖ ≥ 1/4.
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If I have more time

If I have time left
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back to small ideals in L(L1)

Theorem.

[JPS] There are at least 2ℵ0 small closed ideals in L(L1).

The new ideals are a familty (IUq )2<q<∞, where
Uq : `1 → L1{−1,1}N maps the unit vector basis of `1 to a
carefully chosen Λ(q)-set of characters.

The following lemma is the heart of the proof.

Lemma

Let 1 ≤ p < q <∞, {v1, . . . , vN} ⊂ Lq, and let T : L1 → LN
p
2

1 be
an operator. Suppose that C and ε satisfy

1 maxεi =±1 ‖
∑N

i=1 εivi‖q ≤ CN1/2, and
2 min1≤i≤N ‖Tvi‖1 ≥ ε.

Then ‖T‖ ≥ (ε/C)N
q−p
2q .
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back to small ideals in L(L1)

Proof: Take u∗i in LNp/2

∞ = (LN
p
2

1 )∗ with |u∗i | ≡ 1 so that
〈u∗i ,Tvi〉 = ‖Tvi‖1 ≥ ε. Then

εN ≤
N∑

i=1

〈T ∗u∗i , vi〉 :=

∫ 1

0

N∑
i=1

(T ∗u∗i )(b)vi (b) db

≤
∫ 1

0
sup

a∈[0,1]

|
N∑

i=1

(T ∗u∗i )(a)vi (b)|db

=:

∫ 1

0
‖

N∑
i=1

vi (b)T ∗u∗i ‖L∞[0,1]
db

≤ ‖T‖
∫ 1

0
‖

N∑
i=1

vi (b)u∗i ‖LNp/2
∞

db

≤ ‖T‖N
p

2q

∫ 1

0

( ∫
[N

p
2 ]

|
N∑

i=1

u∗i (c)vi (b)|q dc
) 1

q db
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back to small ideals in L(L1)

εN ≤
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i=1

〈T ∗u∗i , vi〉 :=

∫ 1

0

N∑
i=1

(T ∗u∗i )(b)vi (b) db

≤ .....
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p

2q

∫ 1

0

( ∫
[N

p
2 ]

|
N∑

i=1

u∗i (c)vi (b)|q dc
) 1

q db

≤ ‖T‖N
p

2q
( ∫

[N
p
2 ]

∫ 1

0
|

N∑
i=1

u∗i (c)vi (b)|q db dc
)

1
q

≤ C‖T‖N
p+q
2q .

So,
‖T‖ ≥ (ε/C)N1− p+q

2q = (ε/C)N
q−p
2q .
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Small ideals in L(L∞)

When X is non reflexive, distinct closed ideals in L(X ) do not
naturally generate distinct closed ideals in L(X ∗).

For example, L(L1) has at least two closed large ideals; the
ideal of operators that factor through `1 and the unique maximal
ideal, but L(L∞) has no large ideals.

However, distinct small ideals in L(L1) do dualize to produce
distinct small ideals in L(L∞). Consequently, L(L∞) contains a
continuum of small ideals.

The proof uses special properties of L1.
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Thank you!
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