New constructions of closed ideals in $L(L_p)$, $1 \le p \ne 2 < \infty$

Gideon Schechtman

Madrid September 2019

Based on two papers

the first joint with Bill Johnson and Gilles Pisier

the second joint with Bill Johnson

< ロ > < 同 > < 三 >

New constructions of closed ideals in $L(L_p)$, $1 \le p \ne 2 < \infty$

Gideon Schechtman

Madrid September 2019

Based on two papers

the first joint with Bill Johnson and Gilles Pisier

the second joint with Bill Johnson

< ロ > < 同 > < 三 >

A closed ideal in L(X) is a closed subspace \mathcal{I} of L(X) such that for all $T \in L(X)$ and $S \in \mathcal{I}$, *TS* and *ST* are in \mathcal{I} .

There are some classical closed ideals in L(X). As long as X has the approximation property, K(X) the set of compact operators is the smallest one. Another is W(X), the set of weakly compact operators; operators T that map the unit ball into a weakly compact set. So W(X) = L(X) iff X is reflexive. An especially important closed ideal is S(X), the space of strictly singular operators on X. An operator T is strictly singular if it is not an into isomorphism when restricted to any infinite dimensional subspace.

ヘロト ヘワト ヘビト ヘビト

A closed ideal in L(X) is a closed subspace \mathcal{I} of L(X) such that for all $T \in L(X)$ and $S \in \mathcal{I}$, *TS* and *ST* are in \mathcal{I} .

There are some classical closed ideals in L(X). As long as X has the approximation property, K(X) the set of compact operators is the smallest one. Another is W(X), the set of weakly compact operators; operators T that map the unit ball into a weakly compact set. So W(X) = L(X) iff X is reflexive. An especially important closed ideal is S(X), the space of strictly singular operators on X. An operator T is strictly singular if it is not an into isomorphism when restricted to any infinite dimensional subspace.

・ロト ・ 日本・ ・ 日本・

A closed ideal in L(X) is a closed subspace \mathcal{I} of L(X) such that for all $T \in L(X)$ and $S \in \mathcal{I}$, *TS* and *ST* are in \mathcal{I} .

There are some classical closed ideals in L(X). As long as X has the approximation property, K(X) the set of compact operators is the smallest one. Another is W(X), the set of weakly compact operators; operators T that map the unit ball into a weakly compact set. So W(X) = L(X) iff X is reflexive. An especially important closed ideal is S(X), the space of strictly singular operators on X. An operator T is strictly singular if it is not an into isomorphism when restricted to any infinite dimensional subspace.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

A closed ideal in L(X) is a closed subspace \mathcal{I} of L(X) such that for all $T \in L(X)$ and $S \in \mathcal{I}$, *TS* and *ST* are in \mathcal{I} .

There are some classical closed ideals in L(X). As long as X has the approximation property, K(X) the set of compact operators is the smallest one. Another is W(X), the set of weakly compact operators; operators T that map the unit ball into a weakly compact set. So W(X) = L(X) iff X is reflexive. An especially important closed ideal is S(X), the space of strictly singular operators on X. An operator T is strictly singular if it is not an into isomorphism when restricted to any infinite dimensional subspace.

ヘロア 人間 アメヨア 人口 ア

A closed ideal in L(X) is a closed subspace \mathcal{I} of L(X) such that for all $T \in L(X)$ and $S \in \mathcal{I}$, *TS* and *ST* are in \mathcal{I} .

There are some classical closed ideals in L(X). As long as X has the approximation property, K(X) the set of compact operators is the smallest one. Another is W(X), the set of weakly compact operators; operators T that map the unit ball into a weakly compact set. So W(X) = L(X) iff X is reflexive. An especially important closed ideal is S(X), the space of strictly singular operators on X. An operator T is strictly singular if it is not an into isomorphism when restricted to any infinite dimensional subspace.

ヘロン ヘアン ヘビン ヘビン

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

・ロト ・回ト ・ヨト ・ヨト

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

・ロット (雪) (日) (日)

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

日本 本間本 本国本 本国本

ъ

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

ロトス通とスヨトスヨト

э

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T ($I_X \neq BTA$). It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators, that is the set of operators that are not an isomorphism when restricted to any subspace isomorphic to L_p . [Enflo, Starbird '79] for p = 1; [Johnson, Maurey, S, Tzafriri '79] for 1 .

> < 回 > < 回 > < 回 >

3

A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U : Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. there exist $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_U L(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will use. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

ヘロン 人間 とくほ とくほ とう

A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U : Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. there exist $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_U L(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will use. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U : Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. there exist $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_U L(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will use. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Large and Small Ideals

 \mathcal{I}_U : All $T \in L(X)$ that factor through U.

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and $Y \oplus Y$ is isomorphic to Y.

To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

・ロン ・四 と ・ ヨ と ・ ヨ と …

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and $Y \oplus Y$ is isomorphic to Y.

To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

ヘロン 人間 とくほ とくほ とう

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if *U* is strictly singular and $U \oplus U$ factors through *U*.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and $Y \oplus Y$ is isomorphic to Y.

To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

ヘロン 人間 とくほ とくほ とう

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if *U* is strictly singular and $U \oplus U$ factors through *U*.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace *Y* of *X* and *Y* \oplus *Y* is isomorphic to *Y*.

To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if *U* is strictly singular and $U \oplus U$ factors through *U*.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace *Y* of *X* and $Y \oplus Y$ is isomorphic to *Y*.

To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So, for example, $\overline{\mathcal{I}}_U$ is small if *U* is strictly singular and $U \oplus U$ factors through *U*.

And, for example, $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace *Y* of *X* and $Y \oplus Y$ is isomorphic to *Y*.

To simplify notation, I'll write \mathcal{I}_{Y} instead of $\mathcal{I}_{l_{Y}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$ (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in $L(L_1)$ contains $\overline{\mathcal{I}}_{\ell_1}$ and $\overline{\mathcal{I}}_{\ell_1}$ contains any small ideal in $L(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

・ロト ・ 理 ト ・ ヨ ト ・

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$ (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in $L(L_1)$ contains $\overline{\mathcal{I}}_{\ell_1}$ and $\overline{\mathcal{I}}_{\ell_1}$ contains any small ideal in $L(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

・ロト ・ 理 ト ・ ヨ ト ・

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$ (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in $L(L_1)$ contains $\overline{\mathcal{I}}_{\ell_1}$ and $\overline{\mathcal{I}}_{\ell_1}$ contains any small ideal in $L(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

イロト 不得 とくほ とくほ とうほ

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$ (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in $L(L_1)$ contains $\overline{\mathcal{I}}_{\ell_1}$ and $\overline{\mathcal{I}}_{\ell_1}$ contains any small ideal in $L(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$ (and also the Dunford–Pettis opertors).

Incidently, Every large ideal in $L(L_1)$ contains $\overline{\mathcal{I}}_{\ell_1}$ and $\overline{\mathcal{I}}_{\ell_1}$ contains any small ideal in $L(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

 $\overline{\mathcal{I}}_{.l_{2}}$ is different from the previously known ideals. We then ・ロト ・四ト ・ヨト ・ヨト

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

 $\overline{\mathcal{I}}_{.l_{2}}$ is different from the previously known ideals. We then ◆□ > ◆□ > ◆豆 > ◆豆 > →

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

One would guess that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. A couple of years ago Bill and I did that. The ideal is the closure of \mathcal{I}_{d_0} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that ・ロン ・四 と ・ ヨ と ・ ヨ と …

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

One would guess that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. A couple of years ago Bill and I did that. The ideal is the closure of \mathcal{I}_{d_0} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then ヘロン 人間 とくほ とくほ とう

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

One would guess that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. A couple of years ago Bill and I did that. The ideal is the closure of \mathcal{I}_{d_0} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_p}$, $1 , where <math>J_p : \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto IID *p*-stable random variables. The ヘロン 人間 とくほど くほとう

It is easy to build closed ideals in L(X); in particular, in $L(L_1)$; but difficult to prove that ideals are different. For example, for $1 , let <math>\mathcal{I}_{L_p}$ be the (non closed) ideal of operators on L_1 that factor through L_p . These are all different, but their closures $\overline{\mathcal{I}}_{L_p}$ are all equal to the weakly compact operators on L_1 .

One would guess that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. A couple of years ago Bill and I did that. The ideal is the closure of \mathcal{I}_{d_0} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_p}$, $1 , where <math>J_p : \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto IID *p*-stable random variables. The ideals \mathcal{I}_{J_n} are all different, but it turns out that all the $\overline{\mathcal{I}}_{J_n}$ are equal to \mathcal{I}_{J_2} ! ヘロン 人間 とくほ とくほ とう

Ideals in $L(L_1)$

Theorem.

[JPS] There are at least 2^{\aleph_0} (small) closed ideals in $L(L_1)$.

It remains open whether there are infinitely many large closed ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different. 🛓 🚬

Theorem.

[JPS] There are at least 2^{\aleph_0} (small) closed ideals in $L(L_1)$.

It remains open whether there are infinitely many large closed ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different.

Theorem.

[JPS] There are at least 2^{\aleph_0} (small) closed ideals in $L(L_1)$.

It remains open whether there are infinitely many large closed ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different.

Theorem.

[JPS] There are at least 2^{\aleph_0} (small) closed ideals in $L(L_1)$.

It remains open whether there are infinitely many large closed ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different. a no

Theorem.

[JPS] There are at least 2^{\aleph_0} (small) closed ideals in $L(L_1)$.

It remains open whether there are infinitely many large closed ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

The problem is to show that these ideals are all different.

[S '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many (large) closed ideals in $L(L_p)$.

[Bourgain, Rosenthal, S '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 (large) closed ideals in $L(L_p)$.

This leaves open whether there are there more than \aleph_1 (large?/small?) closed ideals in $L(L_p)$? Maybe there are even $2^{2^{\aleph_0}}$ (large?/small?) closed ideals.

[S '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many (large) closed ideals in $L(L_p)$.

[Bourgain, Rosenthal, S '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 (large) closed ideals in $L(L_p)$.

This leaves open whether there are there more than \aleph_1 (large?/small?) closed ideals in $L(L_p)$? Maybe there are even $2^{2^{\aleph_0}}$ (large?/small?) closed ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

[S '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many (large) closed ideals in $L(L_p)$.

[Bourgain, Rosenthal, S '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 (large) closed ideals in $L(L_p)$.

This leaves open whether there are there more than \aleph_1 (large?/small?) closed ideals in $L(L_p)$? Maybe there are even $2^{2^{\aleph_0}}$ (large?/small?) closed ideals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

[S '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many (large) closed ideals in $L(L_p)$.

[Bourgain, Rosenthal, S '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 (large) closed ideals in $L(L_p)$.

This leaves open whether there are there more than \aleph_1 (large?/small?) closed ideals in $L(L_p)$? Maybe there are even $2^{2^{\aleph_0}}$ (large?/small?) closed ideals.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The following solved the first problem for small ideals

Theorem. (Schlumprecht,Zsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; (small) closed ideals in $L(L_p)$, 1 .

The ideals constructed in [SZ '18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

But,

ヘロト ヘアト ヘヨト

The following solved the first problem for small ideals

Theorem. (Schlumprecht, Zsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; (small) closed ideals in $L(L_p)$, 1 .

The ideals constructed in [SZ '18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

But,

(日)

The following solved the first problem for small ideals

Theorem. (Schlumprecht,Zsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; (small) closed ideals in $L(L_p)$, 1 .

The ideals constructed in [SZ '18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

But,

・ロト ・ 日 ・ ・ ヨ ・ .

프 > 프

The following solved the first problem for small ideals

Theorem. (Schlumprecht, Zsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; (small) closed ideals in $L(L_p)$, 1 .

The ideals constructed in [SZ '18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

But,

・ロット (雪) ・ (目)

The following solved the first problem for small ideals

Theorem. (Schlumprecht, Zsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; (small) closed ideals in $L(L_p)$, 1 .

The ideals constructed in [SZ '18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

But,

・ロト ・ 『 ト ・ ヨ ト

We recently proved,

Theorem. (JS '19)

There are $2^{2^{\aleph_0}}$; (large) closed ideals in $L(L_p)$, 1 .

The proof relays on fine properties of spaces spanned by independent random variables in L_p , 2 , a topic investigated mostly by Rosenthal in the 1970-s.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

We recently proved,

Theorem. (JS '19)

There are $2^{2^{\aleph_0}}$; (large) closed ideals in $L(L_p)$, 1 .

The proof relays on fine properties of spaces spanned by independent random variables in L_p , 2 , a topic investigated mostly by Rosenthal in the 1970-s.

<ロ> <問> <問> < E> < E> < E> < E

Recall that for a sequence $u = \{u_j\}_{j=1}^{\infty}$ of positive real numbers and for p > 2, the Banach space $X_{p,u}$ is the real sequence space with norm

$$\|\{a_j\}_{j=1}^{\infty}\| = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$$

Rosenthal proved that $X_{p,u}$ is isomorphic to a complemented subspace of L_p with the isomorphism constant and the complementation constant depending only on *p*.

If u is such that $\lim_{j\to 0} u_j = 0$ but $\sum_{j=1}^{\infty} |u_j|^{\frac{2p}{p-2}} = \infty$ then one gets a space isomorphically different from ℓ_p, ℓ_2 and $\ell_p \oplus \ell_2$.

ヘロン 人間 とくほど くほとう

Recall that for a sequence $u = \{u_j\}_{j=1}^{\infty}$ of positive real numbers and for p > 2, the Banach space $X_{p,u}$ is the real sequence space with norm

$$\|\{a_j\}_{j=1}^{\infty}\| = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$$

Rosenthal proved that $X_{p,u}$ is isomorphic to a complemented subspace of L_p with the isomorphism constant and the complementation constant depending only on *p*.

If u is such that $\lim_{j\to 0} u_j = 0$ but $\sum_{j=1}^{\infty} |u_j|^{\frac{2p}{p-2}} = \infty$ then one gets a space isomorphically different from ℓ_p, ℓ_2 and $\ell_p \oplus \ell_2$.

Recall that for a sequence $u = \{u_j\}_{j=1}^{\infty}$ of positive real numbers and for p > 2, the Banach space $X_{p,u}$ is the real sequence space with norm

$$\|\{a_j\}_{j=1}^{\infty}\| = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$$

Rosenthal proved that $X_{p,u}$ is isomorphic to a complemented subspace of L_p with the isomorphism constant and the complementation constant depending only on *p*.

If u is such that $\lim_{j\to 0} u_j = 0$ but $\sum_{j=1}^{\infty} |u_j|^{\frac{2p}{p-2}} = \infty$ then one gets a space isomorphically different from ℓ_p, ℓ_2 and $\ell_p \oplus \ell_2$.

Recall that for a sequence $u = \{u_j\}_{j=1}^{\infty}$ of positive real numbers and for p > 2, the Banach space $X_{p,u}$ is the real sequence space with norm

$$\|\{a_j\}_{j=1}^{\infty}\| = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$$

Rosenthal proved that $X_{p,u}$ is isomorphic to a complemented subspace of L_p with the isomorphism constant and the complementation constant depending only on *p*.

If *u* is such that $\lim_{j\to 0} u_j = 0$ but $\sum_{j=1}^{\infty} |u_j|^{\frac{2p}{p-2}} = \infty$ then one gets a space isomorphically different from ℓ_p, ℓ_2 and $\ell_p \oplus \ell_2$.

$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

 $g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$ and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

ヘロト 人間 とくほとくほとう

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_ju_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

 $g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$ and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

ヘロト 人間 とくほとくほとう

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

$$g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$$
 and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

ヘロト 人間 とくほとくほとう

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

 $g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$ and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

<ロ> <四> <四> <四> <三</td>

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

 $g_j^v = e_j + v_j f_j \in \ell_p \oplus_\infty \ell_2$ and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_\infty \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

 $g_j^v = e_j + v_j f_j \in \ell_p \oplus_\infty \ell_2$ and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_\infty \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

<ロ> (四) (四) (三) (三) (三)

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

$$g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$$
 and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

<ロ> (四) (四) (三) (三) (三)

$$\|\{a_j\}_{j=1}^{\infty}\|_{X_{p,u}} = \max\{(\sum_{j=1}^{\infty} |a_j|^p)^{1/p}, (\sum_{j=1}^{\infty} |a_j u_j|^2)^{1/2}\}.$$

However, for different *u* satisfying the two conditions above the different $X_{p,u}$ spaces are mutually isomorphic. We denote by X_p any of these spaces. We'll need more properties of the spaces $X_{p,u}$ but right now we only need the representation above and we think of $X_{p,u}$ as a subspace of $\ell_p \oplus_{\infty} \ell_2$.

Let $\{e_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_p and $\{f_j\}_{j=1}^{\infty}$ be the unit vector basis of ℓ_2 . Let $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ be two positive real sequences such that $\delta_j = w_j/v_j \to 0$ as $j \to \infty$. Set

$$g_j^{v} = e_j + v_j f_j \in \ell_p \oplus_\infty \ell_2$$
 and $g_j^{w} = e_j + w_j f_j \in \ell_p \oplus_\infty \ell_2$.

Then $\{g_j^v\}_{j=1}^\infty$ is the unit vector basis of $X_{p,v}$ and $\{g_j^w\}_{j=1}^\infty$ is the unit vector basis of $X_{p,w}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

$$g_j^v = e_j + v_j f_j \in \ell_p \oplus_\infty \ell_2$$
 and $g_j^w = e_j + w_j f_j \in \ell_p \oplus_\infty \ell_2$.
efine also $\Delta = \Delta(w, v)$

$$\Delta:X_{
ho,w} o X_{
ho,v}$$

by

$$\Delta g_j^w = \delta_j g_j^v.$$

Note that Δ is the restriction to $X_{\rho,w}$ of

$$K: \ell_p \oplus_\infty \ell_2 \to \ell_p \oplus_\infty \ell_2$$

defined by

$$K(e_j) = \delta_j e_j$$
 and $K(f_j) = f_j$

Consequently, $\|\Delta\| \leq \|K\| = \max\{1, \max_{1 \leq j \leq \infty} \delta_{j}\}$, is a set of the set o

$$g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$$
 and $g_j^{w} = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.
Define also $\Delta = \Delta(w, \nu)$

$$\Delta: X_{\rho,w} \to X_{\rho,v}$$

by

$$\Delta g_j^w = \delta_j g_j^v.$$

Note that Δ is the restriction to $X_{p,w}$ of

$$K: \ell_p \oplus_\infty \ell_2 \to \ell_p \oplus_\infty \ell_2$$

defined by

$$K(e_j) = \delta_j e_j$$
 and $K(f_j) = f_j$

Consequently, $\|\Delta\| \leq \|K\| = \max\{1, \max_{1 \leq j \leq \infty} \delta_{j}\}$, (\mathbb{R})

$$g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$$
 and $g_j^{w} = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.
Define also $\Delta = \Delta(w, \nu)$

$$\Delta: X_{p,w} \to X_{p,v}$$

by

$$\Delta g_j^w = \delta_j g_j^v.$$

Note that Δ is the restriction to $X_{\rho,w}$ of

$$K: \ell_{p} \oplus_{\infty} \ell_{2} \to \ell_{p} \oplus_{\infty} \ell_{2}$$

defined by

$$K(e_j) = \delta_j e_j$$
 and $K(f_j) = f_j$

Consequently, $\|\Delta\| \leq \|K\| = \max\{1, \max_{1 \leq j \leq \infty} \delta_{j}\}$, $z \in \mathbb{R}$

$$g_j^{\nu} = e_j + v_j f_j \in \ell_p \oplus_{\infty} \ell_2$$
 and $g_j^{w} = e_j + w_j f_j \in \ell_p \oplus_{\infty} \ell_2$.
Define also $\Delta = \Delta(w, \nu)$

$$\Delta: X_{\rho,w} \to X_{\rho,v}$$

by

$$\Delta g_j^w = \delta_j g_j^v.$$

Note that Δ is the restriction to $X_{\rho,w}$ of

$$K: \ell_{p} \oplus_{\infty} \ell_{2} \to \ell_{p} \oplus_{\infty} \ell_{2}$$

defined by

$$K(e_j) = \delta_j e_j$$
 and $K(f_j) = f_j$

Consequently, $\|\Delta\| \leq \|K\| = \max\{1, \max_{1 \leq j \leq \infty} \delta_j\}, \quad \text{ for all } j \leq \infty \leq j \leq \infty$

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_i = w_i/v_i \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

・ロット (雪) () () () ()

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_i = w_i/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

<ロ> (四) (四) (三) (三) (三)

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_i\}_{j=1}^{\infty}$ and $w = \{w_i\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

<ロ> (四) (四) (三) (三) (三) (三)

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

<ロ> (四) (四) (三) (三) (三) (三)

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

<ロ> (四) (四) (三) (三) (三) (三)

Denote by $\{h_j^w\}$ the dual basis to $\{g_j^w\}$ (and by $\{h_j^v\}$ the dual basis to $\{g_j^v\}$,

It was proved by Rosenthal that $[h_j^w]$ and $[h_j^v]$ contain copies of ℓ_r for all $q = p/(p-1) \le r \le 2$

A major part in our proof is the fact that for any sequence $r_i \nearrow 2$ and n_i such that $n_i^{\frac{1}{r_i} - \frac{1}{2}} \nearrow \infty$ (i.e. $d(\ell_{r_i}^{n_i}, \ell_2^{n_i}) \to \infty$) there are sequences $v = \{v_j\}_{j=1}^{\infty}$ and $w = \{w_j\}_{j=1}^{\infty}$ such that $\delta_j = w_j/v_j \to 0$ and

 Δ^* isomorphically uniformly preserves these copies of $\ell_{r_i}^{n_i}$.

(Δ^* also preserves the modular space $\ell_{\{r_i\}}$.)

<ロ> (四) (四) (三) (三) (三) (三)

For 1 , we construct new ideals of the form

 $\overline{\mathcal{I}}_{\Delta^*(w,v)},$

that is the ideal of all operators factoring through $\Delta^*(w, v)$, for different sequences $(w, v) = \{w_i, v_i\}$.

More precisely, we build a continuum C of different sequences (w, v) such that $\overline{\mathcal{I}}_{\Delta^*(w,v)}$ are all different. This already produces a continuum of different ideals.

If $\mathcal{A} \subset \mathcal{C}$ one can look at the closed ideal generated by $\{\Delta^*(w, v)\}_{(w,v)\in\mathcal{A}}$ We show moreover that (with the right choice of \mathcal{C}) if $\mathcal{A} \neq \mathcal{B}$ then the two closed ideal generated by \mathcal{A} and \mathcal{B} are different.

This produces the required $2^{2^{\aleph_0}}$ ideals.

・ロト ・ 同ト ・ ヨト ・ ヨト

For 1 , we construct new ideals of the form

 $\overline{\mathcal{I}}_{\Delta^*(w,v)},$

that is the ideal of all operators factoring through $\Delta^*(w, v)$, for different sequences $(w, v) = \{w_i, v_i\}$.

More precisely, we build a continuum C of different sequences (w, v) such that $\overline{\mathcal{I}}_{\Delta^*(w,v)}$ are all different. This already produces a continuum of different ideals.

If $\mathcal{A} \subset \mathcal{C}$ one can look at the closed ideal generated by $\{\Delta^*(w, v)\}_{(w,v)\in\mathcal{A}}$ We show moreover that (with the right choice of \mathcal{C}) if $\mathcal{A} \neq \mathcal{B}$ then the two closed ideal generated by \mathcal{A} and \mathcal{B} are different.

This produces the required $2^{2^{\aleph_0}}$ ideals.

ヘロト ヘワト ヘビト ヘビト

For 1 , we construct new ideals of the form

 $\overline{\mathcal{I}}_{\Delta^*(w,v)},$

that is the ideal of all operators factoring through $\Delta^*(w, v)$, for different sequences $(w, v) = \{w_i, v_i\}$.

More precisely, we build a continuum C of different sequences (w, v) such that $\overline{\mathcal{I}}_{\Delta^*(w,v)}$ are all different. This already produces a continuum of different ideals.

If $\mathcal{A} \subset \mathcal{C}$ one can look at the closed ideal generated by $\{\Delta^*(w, v)\}_{(w,v)\in\mathcal{A}}$ We show moreover that (with the right choice of \mathcal{C}) if $\mathcal{A} \neq \mathcal{B}$ then the two closed ideal generated by \mathcal{A} and \mathcal{B} are different.

This produces the required $2^{2^{\aleph_0}}$ ideals.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

For 1 , we construct new ideals of the form

 $\overline{\mathcal{I}}_{\Delta^*(w,v)},$

that is the ideal of all operators factoring through $\Delta^*(w, v)$, for different sequences $(w, v) = \{w_i, v_i\}$.

More precisely, we build a continuum C of different sequences (w, v) such that $\overline{\mathcal{I}}_{\Delta^*(w,v)}$ are all different. This already produces a continuum of different ideals.

If $\mathcal{A} \subset \mathcal{C}$ one can look at the closed ideal generated by $\{\Delta^*(w, v)\}_{(w,v)\in\mathcal{A}}$ We show moreover that (with the right choice of \mathcal{C}) if $\mathcal{A} \neq \mathcal{B}$ then the two closed ideal generated by \mathcal{A} and \mathcal{B} are different.

This produces the required $2^{2^{\aleph_0}}$ ideals.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

For appropriate (w, v) the operator $T = \Delta^*(w, v)$ has the following properties:

X (in our case $x_{\rho,\nu}^*$) is a Banach space with a 1-unconditional basis $\{e_i\}$ (in our case $\{h_i^\nu\}$). $T: X \to X$ is a norm one operator satisfying:

(a) For every *M* there is a finite dimensional subspace *E* of *X* such that d(E) > M and $||Tx|| \ge 1/2$ for all $x \in E$.

and

(b) For every *m* there is an *n* such that every *m*-dimensional subspace *E* of $[e_i]_{i \ge n}$ satisfies $\gamma_2(T_{|E}) \le 2$.

We proved the following Proposition.

ヘロト 人間 とくほとく ほとう

For appropriate (w, v) the operator $T = \Delta^*(w, v)$ has the following properties:

X (in our case $x_{\rho,\nu}^*$) is a Banach space with a 1-unconditional basis $\{e_i\}$ (in our case $\{h_i^\nu\}$). $T: X \to X$ is a norm one operator satisfying:

(a) For every *M* there is a finite dimensional subspace *E* of *X* such that d(E) > M and $||Tx|| \ge 1/2$ for all $x \in E$.

and

(b) For every *m* there is an *n* such that every *m*-dimensional subspace *E* of $[e_i]_{i \ge n}$ satisfies $\gamma_2(T_{|E}) \le 2$.

We proved the following Proposition.

ヘロン ヘアン ヘビン ヘビン

For appropriate (w, v) the operator $T = \Delta^*(w, v)$ has the following properties:

X (in our case $x_{\rho,\nu}^*$) is a Banach space with a 1-unconditional basis $\{e_i\}$ (in our case $\{h_i^\nu\}$). $T: X \to X$ is a norm one operator satisfying:

(a) For every *M* there is a finite dimensional subspace *E* of *X* such that d(E) > M and $||Tx|| \ge 1/2$ for all $x \in E$.

and

(b) For every *m* there is an *n* such that every *m*-dimensional subspace *E* of $[e_i]_{i \ge n}$ satisfies $\gamma_2(T_{|E}) \le 2$.

We proved the following Proposition.

・ロト ・ 理 ト ・ ヨ ト ・

For appropriate (w, v) the operator $T = \Delta^*(w, v)$ has the following properties:

X (in our case $x_{\rho,\nu}^*$) is a Banach space with a 1-unconditional basis $\{e_i\}$ (in our case $\{h_i^\nu\}$). $T: X \to X$ is a norm one operator satisfying:

(a) For every *M* there is a finite dimensional subspace *E* of *X* such that d(E) > M and $||Tx|| \ge 1/2$ for all $x \in E$.

and

(b) For every *m* there is an *n* such that every *m*-dimensional subspace *E* of $[e_i]_{i \ge n}$ satisfies $\gamma_2(T_{|E}) \le 2$.

We proved the following Proposition.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

For appropriate (w, v) the operator $T = \Delta^*(w, v)$ has the following properties:

X (in our case $x_{\rho,\nu}^*$) is a Banach space with a 1-unconditional basis $\{e_i\}$ (in our case $\{h_i^\nu\}$). $T: X \to X$ is a norm one operator satisfying:

(a) For every *M* there is a finite dimensional subspace *E* of *X* such that d(E) > M and $||Tx|| \ge 1/2$ for all $x \in E$.

and

(b) For every *m* there is an *n* such that every *m*-dimensional subspace *E* of $[e_i]_{i \ge n}$ satisfies $\gamma_2(T_{|E}) \le 2$.

We proved the following Proposition.

・ロト ・ 理 ト ・ ヨ ト ・

Proposition

Let $T : X = [e_i] \rightarrow X$ satisfy (a) and (b). Then there exist a subsequence of \mathbb{N} , $1 = p_1 < q_1 < p_2 < q_2 < \ldots$ with the following properties:

Denoting for each k, $G_k = [e_i]_{i=\rho_k}^{q_k}$. Let C be a continuum of subsequences of \mathbb{N} each two of which has a finite intersection. For each $\alpha \in C$, $P_\alpha : X \to [G_k]_{k \in \alpha}$ denotes the natural basis projection and $T_\alpha = TP_\alpha$.

If $\alpha_1, \ldots, \alpha_s \in C$ (possibly with repetitions) and $\alpha \in C \setminus \{\alpha_1, \ldots, \alpha_s\}$ then for all $A_1, \ldots, A_s \in L(X)$ and all $B_1, \ldots, B_s \in L(X)$

Proposition

Let $T : X = [e_i] \rightarrow X$ satisfy (a) and (b). Then there exist a subsequence of \mathbb{N} , $1 = p_1 < q_1 < p_2 < q_2 < \ldots$ with the following properties:

Denoting for each k, $G_k = [e_i]_{i=p_k}^{q_k}$. Let C be a continuum of subsequences of \mathbb{N} each two of which has a finite intersection. For each $\alpha \in C$, $P_\alpha : X \to [G_k]_{k \in \alpha}$ denotes the natural basis projection and $T_\alpha = TP_\alpha$.

If $\alpha_1, \ldots, \alpha_s \in C$ (possibly with repetitions) and $\alpha \in C \setminus \{\alpha_1, \ldots, \alpha_s\}$ then for all $A_1, \ldots, A_s \in L(X)$ and all $B_1, \ldots, B_s \in L(X)$

Proposition

Let $T : X = [e_i] \rightarrow X$ satisfy (a) and (b). Then there exist a subsequence of \mathbb{N} , $1 = p_1 < q_1 < p_2 < q_2 < \ldots$ with the following properties:

Denoting for each k, $G_k = [e_i]_{i=p_k}^{q_k}$. Let C be a continuum of subsequences of \mathbb{N} each two of which has a finite intersection. For each $\alpha \in C$, $P_\alpha : X \to [G_k]_{k \in \alpha}$ denotes the natural basis projection and $T_\alpha = TP_\alpha$.

If $\alpha_1, \ldots, \alpha_s \in C$ (possibly with repetitions) and $\alpha \in C \setminus \{\alpha_1, \ldots, \alpha_s\}$ then for all $A_1, \ldots, A_s \in L(X)$ and all $B_1, \ldots, B_s \in L(X)$

$$\|T_{\alpha}-\sum^{s}A_{i}T_{\alpha_{i}}B_{i}\|\geq 1/4.$$

If I have time left

・ロト ・回 ト ・ ヨト ・ ヨトー

2

Theorem.

[JPS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters.

The following lemma is the heart of the proof.

Lemma

Let $1 \le p < q < \infty$, $\{v_1, \ldots, v_N\} \subset L_q$, and let $T : L_1 \to L_1^{N^2}$ be an operator. Suppose that *C* and ϵ satisfy • $\max_{\epsilon_i = \pm 1} \| \sum_{i=1}^N \epsilon_i v_i \|_q \le CN^{1/2}$, and • $\min_{1 \le i \le N} \| Tv_i \|_1 \ge \epsilon$. Then $\| T \| \ge (\epsilon/C)N^{\frac{q-p}{2q}}$.

Theorem.

[JPS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters.

The following lemma is the heart of the proof.

_emma

Let $1 \le p < q < \infty$, $\{v_1, \ldots, v_N\} \subset L_q$, and let $T : L_1 \to L_1^{N^2}$ be an operator. Suppose that *C* and ϵ satisfy • $\max_{\epsilon_i = \pm 1} \| \sum_{i=1}^N \epsilon_i v_i \|_q \le CN^{1/2}$, and • $\min_{1 \le i \le N} \| Tv_i \|_1 \ge \epsilon$. Then $\| T \| \ge (\epsilon/C) N^{\frac{q-p}{2q}}$.

Theorem.

[JPS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters.

The following lemma is the heart of the proof.

Lemma

Let $1 \le p < q < \infty$, $\{v_1, \ldots, v_N\} \subset L_q$, and let $T : L_1 \to L_1^{N_2^{\nu}}$ be an operator. Suppose that C and ϵ satisfy $max_{\epsilon_i=\pm 1} \| \sum_{i=1}^N \epsilon_i v_i \|_q \le CN^{1/2}$, and $min_{1 \le i \le N} \| Tv_i \|_1 \ge \epsilon$. Then $\|T\| \ge (\epsilon/C)N^{\frac{q-p}{2q}}$.

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\epsilon N \leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db$$

$$\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db$$

$$=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db$$

$$\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N/2}} \, db$$

$$\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db$$

Gideon Schechtman

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\epsilon N \leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) db$$

$$\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| db$$

$$=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}^{N/2}} db$$

$$\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N/2}} db$$

$$\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q dc)^{\frac{1}{q}} db$$

Gideon Schechtman

Ideals in $L(L_p)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\epsilon N \leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db$$

$$\leq \int_0^1 \sup_{a \in [0,1]} \left| \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b) \right| \, db$$

$$=: \int_0^1 \left\| \sum_{i=1}^{N} v_i(b) T^* u_i^* \right\|_{L_{\infty}[0,1]} \, db$$

$$\leq \|T\| \int_0^1 \| \sum_{i=1}^{N} v_i(b) u_i^* \|_{L_{\infty}^{N^{2/2}}} \, db$$

$$\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \left(\int_{[N^{\frac{p}{2}}]} \left| \sum_{i=1}^{N} u_i^*(c) v_i(b) \right|^q \, dc \right)^{\frac{1}{q}} \, db$$

Gideon Schechtman

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\epsilon N \leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db$$

$$\leq \int_0^1 \sup_{a \in [0,1]} \left| \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b) \right| \, db$$

$$=: \int_0^1 \left\| \sum_{i=1}^{N} v_i(b) T^* u_i^* \right\|_{L_{\infty}[0,1]} \, db$$

$$\leq \|T\| \int_0^1 \| \sum_{i=1}^{N} v_i(b) u_i^* \|_{L_{\infty}^{N^{p/2}}} \, db$$

$$\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \left(\int_{[N^{\frac{p}{2}}]} \left| \sum_{i=1}^{N} u_i^*(c) v_i(b) \right|^q \, dc \right)^{\frac{1}{q}} \, db$$

Gideon Schechtman

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{p/2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}]}} |\sum_{i=1}^N u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}]}} \int_0^1 |\sum_{i=1}^N u_i^*(c) v_i(b)|^q \, db \, dc \big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}}. \end{split}$$

So,

$||T|| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$

Gideon Schechtman

Ideals in $L(L_p)$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}]}} |\sum_{i=1}^N u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}]}} \int_0^1 |\sum_{i=1}^N u_i^*(c) v_i(b)|^q \, db \, dc \big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}}. \end{split}$$

So,

$||T|| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$

Gideon Schechtman

Ideals in $L(L_p)$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \Big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}}. \end{split}$$

So,

 $||T|| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$

Gideon Schechtman

Ideals in $L(L_p)$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \Big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}} \, . \end{split}$$

So,

 $||T|| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$

Gideon Schechtman

Ideals in $L(L_p)$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}]}} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}]}} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \Big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}}. \end{split}$$

So,

 $||T|| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(b) v_i(b) \, db \\ &\leq \dots \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \big(\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc \big)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \big(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \Big)^{\frac{1}{q}} \\ &\leq C \|T\| N^{\frac{p+q}{2q}}. \end{split}$$

So,

$$\|T\| \ge (\epsilon/C)N^{1-\frac{p+q}{2q}} = (\epsilon/C)N^{\frac{q-p}{2q}}.$$

Gideon Schechtman

Ideals in $L(L_p)$

∃ 𝒫𝔄𝔅

For example, $L(L_1)$ has at least two closed large ideals; the ideal of operators that factor through ℓ_1 and the unique maximal ideal, but $L(L_{\infty})$ has no large ideals.

However, distinct small ideals in $L(L_1)$ do dualize to produce distinct small ideals in $L(L_\infty)$. Consequently, $L(L_\infty)$ contains a continuum of small ideals.

The proof uses special properties of L_1 .

ヘロト 人間 ト ヘヨト ヘヨト

For example, $L(L_1)$ has at least two closed large ideals; the ideal of operators that factor through ℓ_1 and the unique maximal ideal, but $L(L_{\infty})$ has no large ideals.

However, distinct small ideals in $L(L_1)$ do dualize to produce distinct small ideals in $L(L_\infty)$. Consequently, $L(L_\infty)$ contains a continuum of small ideals.

The proof uses special properties of L_1 .

ヘロト ヘ団ト ヘヨト ヘヨト

For example, $L(L_1)$ has at least two closed large ideals; the ideal of operators that factor through ℓ_1 and the unique maximal ideal, but $L(L_{\infty})$ has no large ideals.

However, distinct small ideals in $L(L_1)$ do dualize to produce distinct small ideals in $L(L_\infty)$. Consequently, $L(L_\infty)$ contains a continuum of small ideals.

The proof uses special properties of L_1 .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For example, $L(L_1)$ has at least two closed large ideals; the ideal of operators that factor through ℓ_1 and the unique maximal ideal, but $L(L_{\infty})$ has no large ideals.

However, distinct small ideals in $L(L_1)$ do dualize to produce distinct small ideals in $L(L_\infty)$. Consequently, $L(L_\infty)$ contains a continuum of small ideals.

The proof uses special properties of L_1 .

イロト イポト イヨト イヨト 三日

Thank you!

Gideon Schechtman Ideals in $L(L_p)$

◆□ > ◆□ > ◆豆 > ◆豆 >