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1

The starting point

▶ A Banach space X has the AP if for every compact set K ⊆ X and
ε > 0 there exists a finite-rank, bounded linear operator T : X → X
such that ∥Tx − x∥ < ε (x ∈ K);

▶ X has λ-BAP if additionally ∥T∥ ⩽ λ.

Theorem (Godefroy and Kalton, 2003)
A Banach space X has the λ-BAP if and only if F(X) has the λ-BAP.

▶ In particular, F(ℓ2) has the MAP (≡ 1-BAP).

Problem (Godefroy)
Does Lip0(ℓ2) have the AP?

▶ Grothendieck (1955). The AP passes from X∗ to X;
▶ Hence, this would be a stronger result.
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Our approach

For a Banach space X, P(2X) is a subspace of Lip0(X).
▶ P(2X) is the Banach space of bounded 2-homogeneous polynomials

on X.
▶ P ∈ P(2X) if there is a bounded bilinear map M : X × X → R such

that P(x) = M(x, x);
▶ ∥P∥P = supx∈BX |P(x)|.

▶ But polynomials are not Lipschitz functions!
▶ However, they are Lipschitz on the unit ball.

▶ Therefore, P(2X) is a natural subspace of Lip0(BX);
▶ Moreover, ∥ · ∥P is equivalent to ∥ · ∥Lip.

▶ Consequently, P(2X) is naturally isomorphic to a subspace of
Lip0(BX), via the restriction map

P 7→ P↾BX .
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Why such approach?

▶ The AP passes to complemented subspaces;
▶ Dineed and Mujica (2015). P(2ℓ2) does not have the AP;
▶ So, if P(2ℓ2) ⊆ Lip0(Bℓ2) is complemented, then Lip0(Bℓ2) fails to

have the AP.

Question
Is P(2ℓ2) ⊆ Lip0(Bℓ2) a complemented subspace?

▶ Kaufmann (2015). Lip0(X) is isomorphic to Lip0(BX);
▶ Thus, a positive answer to this question would yield that Lip0(ℓ2)

fails to have the AP.
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Some more motivation

Question (Repetita iuvant)
Is P(2ℓ2) ⊆ Lip0(Bℓ2) a complemented subspace?

Theorem (Lindenstrauss, 1964)
X∗ is a 1-complemented subspace of Lip0(X).

▶ Evidently, X∗ = P(1X);
▶ The above question is also about the possibility to extend

Lindenstrauss’ result to polynomials;
▶ If ‘yes’, we can answer in the negative Godefroy’s question;
▶ If ‘no’, Lindenstrauss’ result admits no polynomial version.
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Sooo..., Yes or no?

Theorem (Hájek and R.)
NO. P(2ℓ2) ⊆ Lip0(Bℓ2) is not complemented.

▶ We didn’t solve the problem we started with;
▶ But, at least, we can tell that this is not the correct approach.
▶ Aron and Schottenloher (1976). P(nℓ1) is isomorphic to ℓ∞.

The result follows from a finite-dimensional, quantitative counterpart.

Theorem (Hájek and R.)
Let En be Rn with euclidean norm. If Q is any projection from Lip0(BEn)
onto P(2En), then

∥Q∥ ⩾ c ·
(

n − 2
√
2
)1/5

.
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A few consequences

▶ If a Banach space X contains (ℓn
2)

∞
n=1 uniformly complemented, then

P(2X) is not complemented in Lip0(BX);
▶ Tzafriri (1974). If a Banach space admits an unconditional basis,

then there is p ∈ {1, 2,∞} such that (ℓn
p)

∞
n=1 is uniformly

complemented in X;
▶ If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)
If a Banach space X an unconditional basis and non-trivial type, then
P(2X) is not complemented in Lip0(BX).

▶ ℓp (1 < p < ∞);
▶ Lp (1 < p < ∞);
▶ Recall: P(2ℓ1) is complemented in Lip0(Bℓ1) (Aron–Schottenloher).
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A few consequences

▶ If a Banach space X contains (ℓn
2)

∞
n=1 uniformly complemented, then

P(2X) is not complemented in Lip0(BX);
▶ Tzafriri (1974). If a Banach space admits an unconditional basis,

then there is p ∈ {1, 2,∞} such that (ℓn
p)

∞
n=1 is uniformly

complemented in X;
▶ If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)
If a Banach space X an unconditional basis and non-trivial type, then
P(2X) is not complemented in Lip0(BX).

▶ ℓp (1 < p < ∞);
▶ Lp (1 < p < ∞);
▶ Recall: P(2ℓ1) is complemented in Lip0(Bℓ1) (Aron–Schottenloher).
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Thank you for your attention!


