Faculty of Electrical Engineering Czech Technical University in Prague

Projections onto spaces of polynomials

Tommaso Russo (Joint work in progress with P. Hájek)

Workshop on Banach spaces and Banach lattices Madrid, Spain September 9–13, 2019

International Mobility of Researchers in CTU Project number: CZ.02.2.69/0.0/0.0/16_027/0008465

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- **Grothendieck (1955).** The AP passes from X^* to X
- Hence, this would be a stronger result.

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP)

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- **Grothendieck (1955).** The AP passes from X* to X
- Hence, this would be a stronger result.

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

• In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- Grothendieck (1955). The AP passes from X* to X;
- Hence, this would be a stronger result.

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

• In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- **Grothendieck (1955).** The AP passes from X* to X;
- Hence, this would be a stronger result.

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

• In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

Grothendieck (1955). The AP passes from X^{*} to X;

Hence, this would be a stronger result.

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T: X \to X$ such that $||Tx x|| < \varepsilon$ ($x \in K$);
- X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

• In particular, $\mathcal{F}(\ell_2)$ has the MAP (\equiv 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- Grothendieck (1955). The AP passes from X^{*} to X;
- Hence, this would be a stronger result.

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- ▶ $\mathcal{P}(^2X)$ is the Banach space of bounded 2-, on ogneous polynomials on X.
 - ▶ $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear matrix $X \to \mathbb{R}$ su that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are **not** Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of *Li*
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.
- Consequently, $\mathcal{P}(^2X)$ is naturally isomorphic t Lip₀(B_X), via the restriction map

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- $\mathcal{P}(^2X)$ is the Banach space of bounded 2-homogeneous polynomials on X.
 - ▶ $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear mathematical that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$

But polynomials are **not** Lipschitz functions!

- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of *Li*
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.

Consequently, $\mathcal{P}(^2X)$ is naturally isomorphic t Lip₀(B_X), via the restriction map

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- P(²X) is the Banach space of bounded 2-homogeneous polynomials on X.
 - ▶ $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are **not** Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of *Li*
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.
- Consequently, \$\mathcal{P}(^2X)\$ is naturally isomorphic t Lip₀(B_X), via the restriction map

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- P(²X) is the Banach space of bounded 2-homogeneous polynomials on X.
 - $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are not Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of Lip_0
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.

 Consequently, P(²X) is naturally isomorphic t Lip₀(B_X), via the restriction map

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- P(²X) is the Banach space of bounded 2-homogeneous polynomials on X.
 - $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are not Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of *Lip*
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$

• Consequently, $\mathcal{P}(^2X)$ is naturally isomorphic to $Lip_0(B_X)$, via the restriction map

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- P(²X) is the Banach space of bounded 2-homogeneous polynomials on X.
 - $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are not Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of $Lip_0(B_X)$;
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.

Consequently, $\mathcal{P}(^2X)$ is naturally isomorphic to $Lip_0(B_X)$, via the restriction map

2

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- P(²X) is the Banach space of bounded 2-homogeneous polynomials on X.
 - ▶ $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- But polynomials are not Lipschitz functions!
- ► However, they are Lipschitz on the unit ball.
 - Therefore, $\mathcal{P}(^2X)$ is a natural subspace of $Lip_0(B_X)$;
 - Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{Lip}$.
- ► Consequently, P(²X) is naturally isomorphic to a subspace of Lip₀(B_X), via the restriction map

$P \mapsto P \upharpoonright_{B_X}$.

The AP passes to complemented subspaces;

- **•** Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have
- ▶ So, if $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is complemented that have the AP.

Question

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

- Kaufmann (2015). $Lip_0(X)$ is isomorphic to
- Thus, a positive answer to this question wou fails to have the AP.

 B_{ℓ_2}) fails

- The AP passes to complemented subspaces;
- ▶ Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have the AP;
- ▶ So, if $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is complemented the have the AP.

Question

Is $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

- Kaufmann (2015). $Lip_0(X)$ is isomorphic to
- Thus, a positive answer to this question wou fails to have the AP.

- The AP passes to complemented subspaces;
- Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have the AP;
- So, if P(²ℓ₂) ⊆ Lip₀(B_{ℓ₂}) is complemented, then Lip₀(B_{ℓ₂}) fails to have the AP.

Question

Is $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

- Kaufmann (2015). $Lip_0(X)$ is isomorphic to Li
- Thus, a positive answer to this question wou fails to have the AP.

- The AP passes to complemented subspaces;
- Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have the AP;
- So, if P(²ℓ₂) ⊆ Lip₀(B_{ℓ₂}) is complemented, then Lip₀(B_{ℓ₂}) fails to have the AP.

Question

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

• Kaufmann (2015). $Lip_0(X)$ is isomorphic to L

 Thus, a positive answer to this question would fails to have the AP.

- The AP passes to complemented subspaces;
- Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have the AP;
- So, if P(²ℓ₂) ⊆ Lip₀(B_{ℓ₂}) is complemented, then Lip₀(B_{ℓ₂}) fails to have the AP.

Question

Is $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

• Kaufmann (2015). $Lip_0(X)$ is isomorphic to $Lip_0(B_X)$;

Thus, a positive answer to this question would fails to have the AP.

- The AP passes to complemented subspaces;
- Dineed and Mujica (2015). $\mathcal{P}(^{2}\ell_{2})$ does not have the AP;
- So, if P(²ℓ₂) ⊆ Lip₀(B_{ℓ₂}) is complemented, then Lip₀(B_{ℓ₂}) fails to have the AP.

Question

Is $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

- Kaufmann (2015). $Lip_0(X)$ is isomorphic to $Lip_0(B_X)$;
- ► Thus, a positive answer to this question would yield that $Lip_0(\ell_2)$ fails to have the AP.

Question (Repetita iuvant)

Is $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

 The above question is also about the possibilit Lindenstrauss' result to polynomials;

If 'yes', we can answer in the negative Godef

If 'no', Lindenstrauss' result admits no personal version

Question (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

- The above question is also about the possibility Lindenstrauss' result to polynomials;
- If 'yes', we can answer in the negative Godef
- If 'no', Lindenstrauss' result admits no personal version

Question (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

 The above question is also about the possibility Lindenstrauss' result to polynomials;

If 'yes', we can answer in the negative Godefront electronic

If 'no', Lindenstrauss' result admits no personal version.

Question (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

- The above question is also about the possibility to extend Lindenstrauss' result to polynomials;
 - If 'yes', we can answer in the negative Godefrond electric
- If 'no', Lindenstrauss' result admits no petroomal version.

Question (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

- The above question is also about the possibility to extend Lindenstrauss' result to polynomials;
- If 'yes', we can answer in the negative Godefroy's question;

If 'no', Lindenstrauss' result admits no performant version.

Question (Repetita iuvant)

Is $\mathcal{P}({}^{2}\ell_{2}) \subseteq Lip_{0}(\mathcal{B}_{\ell_{2}})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

• Evidently,
$$X^* = \mathcal{P}(^1X)$$
;

- The above question is also about the possibility to extend Lindenstrauss' result to polynomials;
- If 'yes', we can answer in the negative Godefroy's question;
- If 'no', Lindenstrauss' result admits no polynomial version.

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with
- But, at least, we can tell that this is not the
- Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is

The result follows from a finite-dimensional, quanti

Lheorem (Hájek and R.

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}(^2E_n)$, then

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}$$

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with
- But, at least, we can tell that this is not the
- Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is i

The result follows from a finite-dimensional, quanti

Theorem (Hájek and R.

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}({}^2E_n)$, then

roach

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}$$

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with;
- But, at least, we can tell that this is not the open and the second s
- Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is is

The result follows from a finite-dimensional, quanti

Theorem (Hájek and R.

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}(^2E_n)$, then

approach phic to *l*

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}$$

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with;
- But, at least, we can tell that this is not the correct approach.

nic to la

• Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is is

The result follows from a finite-dimensional, quantitative counter

Theorem (Hájek and R.)

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}({}^2E_n)$, then

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}.$$

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with;
- But, at least, we can tell that this is not the correct approach.
- Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is isomorphic to ℓ_{∞} .

The result follows from a finite-dimensional, quantitative counter

Theorem (Hájek and R.)

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}({}^2E_n)$, then

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}.$$

NO. $\mathcal{P}(^{2}\ell_{2}) \subseteq Lip_{0}(B_{\ell_{2}})$ is not complemented.

- We didn't solve the problem we started with;
- But, at least, we can tell that this is not the correct approach.
- Aron and Schottenloher (1976). $\mathcal{P}({}^{n}\ell_{1})$ is isomorphic to ℓ_{∞} .

The result follows from a finite-dimensional, quantitative counterpart.

Theorem (Hájek and R.)

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}({}^2E_n)$, then

$$\|Q\| \ge c \cdot \left(n - 2\sqrt{2}\right)^{1/5}$$

▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;

▶ **Tzafriri (1974).** If a Banach space admits an unconditional basis, then there is $p \in \{1, 2, \infty\}$ such that $(t_{n=1}^{\infty})$ uniformly complemented in X;

If, additionally, X has non-trivial type, it must

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- $\ell_p \ (1$
- $\blacktriangleright L_p (1$

Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in *Lin* ($B_{\ell_{1}}$) (Aron–Schottenloher).

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ► Tzafriri (1974). If a Banach space admits an unconditional basis, then there is p ∈ {1, 2, ∞} such that (ℓⁿ_p)[∞]_{n=1} is uniformly complemented in X;

If, additionally, X has non-trivial type, it must

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- $\ell_p (1$
- L_p (1

Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in $Lin(B_{\ell_{1}})$ (Aron–Schottenloher).

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ► Tzafriri (1974). If a Banach space admits an unconditional basis, then there is p ∈ {1, 2, ∞} such that (ℓⁿ_p)[∞]_{n=1} is uniformly complemented in X;
- If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- $\ell_p \ (1$
- ▶ L_p (1 < $p < \infty$);
- Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in $Lin_{0}(B_{\ell_{1}})$ (Aron–Schottenloher).

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ► Tzafriri (1974). If a Banach space admits an unconditional basis, then there is p ∈ {1, 2, ∞} such that (ℓⁿ_p)[∞]_{n=1} is uniformly complemented in X;
- If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- $\ell_p \ (1$
- ▶ L_p (1
- ▶ Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in $Lip_{0}(B_{\ell_{1}})$ (Aron–Schottenloher).

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ► Tzafriri (1974). If a Banach space admits an unconditional basis, then there is p ∈ {1, 2, ∞} such that (ℓⁿ_p)[∞]_{n=1} is uniformly complemented in X;
- If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- ▶ l_p (1 < p < ∞);
- $L_p (1$

▶ Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in $Lip_{0}(B_{\ell_{1}})$ (Aron–Schottenloher).

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^{\infty}$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ► Tzafriri (1974). If a Banach space admits an unconditional basis, then there is p ∈ {1, 2, ∞} such that (ℓⁿ_p)[∞]_{n=1} is uniformly complemented in X;
- If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- ▶ l_p (1 < p < ∞);
- ▶ L_p (1 < p < ∞);

▶ Recall: $\mathcal{P}(^{2}\ell_{1})$ is complemented in $Lip_{0}(B_{\ell_{1}})$ (Aron–Schottenloher).

Thank you for your attention !

The abstract

The actual talk

