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The Banach-Stone theorem

All topological spaces are assumed to be Hausdorff.

Let F stands for R or C.
For simplicity, we will work with compact spaces, altough all the
presented results hold for locally compact spaces.
Let K be a compact space. C(K ,F) stands for the Banach space
of all continuous F-valued functions defined on K endowed with
the supremum norm.

Theorem (Banach-Stone)

Let K1, K2 be compact spaces. The spaces C(K1,F) and C(K2,F) are
isometrically isomorphic if and only if K1 and K2 are homeomorphic.
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Replacing isometries by Banach space isomorphisms

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism T : C(K1,F)→ C(K2,F) such that
‖T‖

∥∥T−1
∥∥ < 2, then the spaces K1 and K2 are homeomorphic.

Theorem (Cohen, 1975)

There exist non-homeomorphic compact spaces K1 , K2 and an
isomorphism T : C(K1,R)→ C(K2,R) with ‖T‖

∥∥T−1
∥∥ = 2.

Theorem (Cengiz, 1978, the "weak Banach-Stone theorem")

If there exists an isomorphism T : C(K1,F)→ C(K2,F), then K1 and
K2 have the same cardinality.
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Affine functions of compact convex set

Let X be a compact convex set in a locally convex (Hausdorff)
space.

Let A(X ,F) stand for the space of affine continuous F-valued
functions on X .
LetM1(X ) denote the space of Radon probability measures on
X .
If µ ∈M1(X ), then its barycenter r(µ) satisfies
f (r(µ)) =

∫
X fdµ, f ∈ A(X ,F). Also, µ represents r(µ). The

barycenter exists and it is unique.
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Simplices

Definition (Choquet ordering)

Let µ, ν ∈M1(X ). Then µ ≺ ν if
∫

X kdµ ≤
∫

X kdν for each convex
continuous function k on X.

Theorem (Choquet-Bishop-de-Leeuw)

For each x ∈ X there exist a ≺-maximal measure µ ∈M1(X ) with
r(µ) = x.

Definition (simplex)

The set X is a simplex if for each x ∈ X there exist a unique
≺-maximal measure µ ∈M1(X ) with r(µ) = x .
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Bauer simplicies

Definition (Bauer simplex)

A simplex X is a Bauer simplex if extX is closed.

Theorem

If X is a Bauer simplex, then A(X ,F) = C(extX ,F).

Theorem

If K is a compact, then C(K ,F) = A(M1(K ),F).
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Reformulation of isomorphisms theorem

Theorem (Banach-Stone)

If X ,Y are Bauer simplices and A(X ,F) is isometric to A(Y ,F), then
extX is homeomorphic to extY.

Theorem (Amir, Cambern)

If X ,Y are Bauer simplices and there exists an isomorphism
T : A(X ,F)→ A(Y ,F) with ‖T‖

∥∥T−1
∥∥ < 2, then extX is

homeomorphic to extY .

Theorem (Cohen)

If X ,Y are Bauer simplices and there exists an isomorphism
T : A(X ,F)→ A(Y ,F), then the cardinality of extX is equal to the
cardinality of extY .
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Results of Chu and Cohen

Theorem (Chu-Cohen, 1992)

Given compact convex sets X and Y , the sets extX and extY are
homeomorphic provided there exists an isomorphism
T : A(X ,R)→ A(Y ,R) with ‖T‖

∥∥T−1
∥∥ < 2 and one of the following

conditions hold:
(i) X and Y are simplices such that their extreme points are weak
peak points;
(ii) X and Y are metrizable and their extreme points are weak
peak points.

Definition

A point x ∈ X is a weak peak point if given ε ∈ (0,1) and an open set
U ⊂ X containing x , there exists a in the unit ball BA(X ,F) of A(X ,F)
such that |a| < ε on extX \ U and a(x) > 1− ε.

If X is a Bauer simplex, then A(X ,F) = C(extX ,F), thus the
assumption of weak peak points is always fulfilled in this case.
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The assumption of weak peak points

Theorem (Hess, 1978)

For each ε ∈ (0,1) there exist metrizable simplices X ,Y and an
isomorphism T : A(X ,R)→ A(Y ,R) with ‖T‖

∥∥T−1
∥∥ < 1 + ε such

that extX is not homeomorphic to extY.

Theorem (Ludvik, Spurny, 2011)

Given compact convex sets X and Y , the sets extX and extY are
homeomorphic provided there exists an isomorphism
T : A(X ,R)→ A(Y ,R) with ‖T‖

∥∥T−1
∥∥ < 2, extreme points of X and

Y are weak peak points and both extX and extY are Lindelof.
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Small bound isomorphisms of spaces of affine
continuous functions

Theorem (Dostal, Spurny)

Given compact convex sets X and Y , the sets extX and extY are
homeomorphic provided there exists an isomorphism
T : A(X ,R)→ A(Y ,R) with ‖T‖

∥∥T−1
∥∥ < 2, and extreme points of X

and Y are weak peak points.

Theorem (R., Spurny)

Given compact convex sets X and Y , the sets extX and extY are
homeomorphic provided there exists an isomorphism
T : A(X ,C)→ A(Y ,C) with ‖T‖

∥∥T−1
∥∥ < 2 and extreme points of X

and Y are weak peak points.
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General subspaces of continuous functions

If H is a closed subspace of C(K ,F), then the closed dual unit
ball BH∗ is a compact convex set with its weak∗-topology.

K may be continuously mapped in BH∗ via the evaluation
mapping φ : x 7→ φx , where φx is a point in BH∗ defined by

φx(h) = h(x), h ∈ H.

The Choquet boundary ChH K of H is the set of points x ∈ K
satisfying that φx is an extreme point of BH∗ .
A point x ∈ ChH K is a weak peak point (with respect to H), if for
each neighbourhood U of x and ε ∈ (0,1) there exists h ∈ BH
such that h(x) > 1− ε and |h| < ε on ChH K \ U.
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Results on general subspaces of continuous functions

Example

If H = C(K ,F), then ChH K = K and by the Urysohn’s Lemma,
each point of K is a weak peak point.
If H = A(X ,F), then ChH X = extX .

Theorem (R., Spurný)

For i = 1,2, let Hi be a closed subspace of C(Ki ,F) for some compact
Hausdorff space Ki . Assume that each point of the Choquet boundary
ChHi Ki is a weak peak point.

Let T : H1 → H2 be an isomorphism satisfying ‖T‖ ·
∥∥T−1

∥∥ < 2.
Then ChH1 K1 is homeomorphic to ChH2 K2.
Let T : H1 → H2 be an isomorphism. Then ChH1 K1 and ChH2 K2
have the same cardinality.
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The isomorphic Banach-Stone property

Definition
The Banach space E has the isomorphic Banach-Stone property
(IBSP), if there exists α > 1 such that for all compact spaces K1, K2,
the existence of an isomorphism T : C(K1,E)→ C(K2,E) with
‖T‖

∥∥T−1
∥∥ < α implies that K1 and K2 are homeomorphic. The

largest possible constant α is called the Banach-Stone constant of E
and is denoted by BS(E).
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The isomorphic Banach-Stone property

Example

It is known that the following Banach spaces E have the IBSP:
finite-dimensional Hilbert spaces, and BS(E) ≥

√
2 (Cambern,

1976),
uniformly convex spaces, and BS(E) ≥ (1− δE(1))−1, where
δE : [0,2]→ [0,1] is the modulus of convexity of E (Cambern,
1985),
uniformly non-square spaces (Behrends, Cambern, 1988),
reflexive spaces with λ(E) > 1, and BS(E) ≥ λ(E) (Cidral,
Galego, R.-Villamizar, 2015), where

λ(E) = inf{max{‖e1 + λe2‖ : λ ∈ SF} : e1,e2 ∈ SE}.
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The parameter λ(E)

In the real case, the parameter λ(E) is called the Schaffer
constant of E .

1 ≤ λ(E) ≤ 2 for each Banach space E .
λ(F) = 2.
For each uniformly convex space E with dimension at least two,
(1− δE(1))−1 < λ(E) (Cidral, Galego, R.-Villamizar, 2015).

It holds that 2
1
p = λ(lp) = BS(lp) for 2 ≤ p <∞ (Cidral, Galego,

R.-Villamizar, 2015).
For real Banach spaces E , the fact that λ(E) > 1 implies that E
is reflexive.
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Subspaces of vector-valued functions

(Al-Halees, Fleming, 2015) Several results in the spirit of the
isomorphic Banach-stone theorem for subspaces H ⊆ C(K ,E),
that are so called C(K ,F)-modules, that is, closed with respect to
multiplication by functions from C(K ,F).

The authors posed a question if this module condition could be
weakened or removed.
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Subspaces of vector-valued functions

If H is a closed subspace of C(K ,E), then we define the notions
of Choquet boundary and weak peak points similarly as in the
scalar case.

Example

If H = C(K ,E), then ChH K = K and each point of K is a weak peak
point.

If H = A(X ,E), the space of affine continuous E-valued functions on a
compact convex set X , then ChH X = extX and a the definition of weak
peak points of H coincides with the one for A(X ,F).

Theorem (R., Spurný)

Let for i = 1,2, Hi be a closed subpace of C(Ki ,Ei) for some compact
space Ki and a reflexive Banach space Ei over F with λ(Ei) > 1. Let
each point of ChHi Ki be a weak peak point. If there exists an
isomorphism T : H1 → H2 with ‖T‖

∥∥T−1
∥∥ < min{λ(E1), λ(E2)}, then

ChH1 K1 and ChH2 K2 are homeomorphic.
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The weak Banach-Stone property

Definition
A Banach space E has the weak Banach-Stone property (WBSP) if
for all compact spaces K1, K2, the existence of an isomorphism
T : C(K1,E)→ C(K2,E) implies that K1 and K2 are either both finite or
they have the same cardinality.

Example

It is known that the following Banach spaces have the (WBSP):
spaces having nontrivial Rademacher cotype, such that either E
is separable or E∗ has the Radon-Nikodym property (Candido,
Galego, 2013),
spaces not containing an isomorphic copy of c0 (Galego,
Rincón-Villamizar, 2015).
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Thw weak Banach-Stone property

Theorem (R., Spurný)

Let for i = 1,2, Hi be a closed subpace of C(Ki ,Ei) for some compact
space Ki and a Banach space Ei over F not containing an isomorphic
copy of c0. Let each point of ChHi Ki be a weak peak point. If there
exists an isomorphism T : H1 → H2, then either both the spaces
ChH1 K1 and ChH2 K2 are finite or they have the same cardinality.
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