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The Banach-Stone theorem

@ All topological spaces are assumed to be Hausdorff.
@ Let F stands for R or C.

@ For simplicity, we will work with compact spaces, altough all the
presented results hold for locally compact spaces.

@ Let K be a compact space. C(K,TF) stands for the Banach space
of all continuous F-valued functions defined on K endowed with
the supremum norm.

Theorem (Banach-Stone)

Let Ky, K> be compact spaces. The spaces C(K1,F) and C(Kz, F) are
isometrically isomorphic if and only if Ki and K, are homeomorphic.
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Replacing isometries by Banach space isomorphis

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism T : C(K1,F) — C(Ka,F) such that
[ TII||T="|| < 2, then the spaces K and K, are homeomorphic.
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Replacing isometries by Banach space isc

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism T : C(K1,F) — C(Ka,F) such that
[ TII||T="|| < 2, then the spaces K and K, are homeomorphic.

Theorem (Cohen, 1975)

There exist non-homeomorphic compact spaces K; , K> and an
isomorphism T : C(Ky,R) — C(Kz, R) with | T || T~'|| = 2.

Theorem (Cengiz, 1978, the "weak Banach-Stone theorem")

If there exists an isomorphism T : C(K1,F) — C(Ka,F), then Ky and
K> have the same cardinality.
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Affine functions of compact convex set

@ Let X be a compact convex set in a locally convex (Hausdorff)
space.
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Affine functions of compact convex set

@ Let X be a compact convex set in a locally convex (Hausdorff)
space.

@ Let A(X,F) stand for the space of affine continuous F-valued
functions on X.

@ Let M'(X) denote the space of Radon probability measures on

o If u € M'(X), then its barycenter r(u) satisfies
f(r(n)) = [y fdu, f € A(X,F). Also, . represents r(u). The
barycenter exists and it is unique.

4/20



Definition (Choquet ordering)

Let p,v € M'(X). Then pu < v if [, kdu < [, kdv for each convex
continuous function k on X.
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Definition (Choquet ordering)

Let u,v € M'(X). Then u < v if [, kdu < [, kdv for each convex
continuous function k on X.

Theorem (Choquet-Bishop-de-Leeuw)

For each x € X there exist a <-maximal measure y € M'(X) with
r(p) = x.

Definition (simplex)

The set X is a simplex if for each x € X there exist a unique
<-maximal measure p € M'(X) with r(u) = x.
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Bauer simplicies

Definition (Bauer simplex)
A simplex X is a Bauer simplex if ext X is closed.
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Bauer simplicies

Definition (Bauer simplex)
A simplex X is a Bauer simplex if ext X is closed.

If X is a Bauer simplex, then A(X,F) = C(ext X, F).

If K is a compact, then C(K,F) = A(M'(K),F).
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Reformulation of isomorphisms theorem

Theorem (Banach-Stone)

If X, Y are Bauer simplices and A(X,F) is isometric to A(Y,F), then
ext X is homeomorphic toext Y.

Theorem (Amir, Cambern)

If X, 'Y are Bauer simplices and there exists an isomorphism
T: AX,F) = A(Y,F) with | T|| | T~"|| <2, thenext X is
homeomorphic toext Y .

Theorem (Cohen)

If X, Y are Bauer simplices and there exists an isomorphism
T : A(X,F) — A(Y,T), then the cardinality of ext X is equal to the
cardinality ofext Y .
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Results of Chu and Cohen

| A

Theorem (Chu-Cohen, 1992)

Given compact convex sets X and Y , the sets ext X andext Y are
homeomorphic provided there exists an isomorphism

T: AX,R) — A(Y,R) with | T| || T~"|| < 2 and one of the following
conditions hold:

@ (i) X and Y are simplices such that their extreme points are weak
peak points;

@ (i) X and Y are metrizable and their extreme points are weak
peak points.

Definition

A point x € X is a weak peak point if given € € (0, 1) and an open set
U C X containing x, there exists a in the unit ball B (x r) of A(X,F)
such that |a| < eonext X\ Uand a(x) > 1 —e.

N,
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| A

Theorem (Chu-Cohen, 1992)

Given compact convex sets X and Y , the sets ext X andext Y are
homeomorphic provided there exists an isomorphism

T: AX,R) — A(Y,R) with | T|| || T~"|| < 2 and one of the following
conditions hold:

@ (i) X and Y are simplices such that their extreme points are weak
peak points;

@ (i) X and Y are metrizable and their extreme points are weak
peak points.

Definition

A point x € X is a weak peak point if given € € (0, 1) and an open set
U C X containing x, there exists a in the unit ball B (x r) of A(X,F)
such that |a| < eonext X\ U and a(x) > 1 —e.

\

@ If X is a Bauer simplex, then A(X,F) = C(ext X, F), thus the
assumption of weak peak points is always fulfilled in this case.
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The assumption of weak peak points

Theorem (Hess, 1978)

For each e € (0,1) there exist metrizable simplices X, Y and an
isomorphism T : A(X,R) — A(Y,R) with | T|||T~"|| <1+ ¢ such
that ext X is not homeomorphic to ext Y.
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The assumption of weak peak points

Theorem (Hess, 1978)

For each e € (0,1) there exist metrizable simplices X, Y and an
isomorphism T : A(X,R) — A(Y,R) with | T|||T~"|| <1+ ¢ such
that ext X is not homeomorphic to ext Y.

Theorem (Ludvik, Spurny, 2011)

Given compact convex sets X and Y , the sets ext X andext Y are
homeomorphic provided there exists an isomorphism

T: AX,R) — A(Y,R) with | T|| || T~"|| < 2, extreme points of X and
Y are weak peak points and both ext X and ext Y are Lindelof.
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Small bound isomorphisms of spaces of affine
continuous functions

Theorem (Dostal, Spurny)

Given compact convex sets X and Y, the sets ext X and ext Y are
homeomorphic provided there exists an isomorphism

T: AX,R) = A(Y,R) with | T|| || T~"|| < 2, and extreme points of X
and'Y are weak peak points.
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Small bound isomorphisms of spaces of affir
continuous functions I

Theorem (Dostal, Spurny)

Given compact convex sets X and Y, the sets ext X and ext Y are
homeomorphic provided there exists an isomorphism

T: AX,R) = A(Y,R) with | T|| || T~"|| < 2, and extreme points of X
and Y are weak peak points.

v

Theorem (R., Spurny)

Given compact convex sets X and Y, the sets ext X and ext Y are
homeomorphic provided there exists an isomorphism

T: A(X,C) — A(Y,C) with | T|| || T~"|| < 2 and extreme points of X
and Y are weak peak points.
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General subspaces of continuous functions

@ If H is a closed subspace of C(K,F), then the closed dual unit
ball By is a compact convex set with its weak*-topology.
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General subspaces of continuous functions

@ If H is a closed subspace of C(K,F), then the closed dual unit
ball By is a compact convex set with its weak*-topology.

@ K may be continuously mapped in By~ via the evaluation
mapping ¢ : X — ¢x, where ¢y is a point in By« defined by

dx(h) = h(x), heH.

@ The Choquet boundary Chy, K of H is the set of points x € K
satisfying that ¢, is an extreme point of By .

@ A point x € Chy K is a weak peak point (with respect to H), if for
each neighbourhood U of x and ¢ € (0, 1) there exists h € By,
such that h(x) > 1 —e and |h| < e on Chy K\ U.
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Results on general subspaces of continuous funct

@ If # = C(K,F), then Chy K = K and by the Urysohn’s Lemma,
each point of K is a weak peak point.

o If # = A(X,F), then Chy X = ext X.
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Results on general subspaces of continu

@ If H = C(K,T), then Chy K = K and by the Urysohn’s Lemma,
each point of K is a weak peak point.

o If # = A(X,F), then Chy X = ext X.

Theorem (R., Spurny)

Fori=1,2, let H; be a closed subspace of C(K;,F) for some compact
Hausdorff space K;. Assume that each point of the Choquet boundary
Chy, Ki is a weak peak point.

@ Let T: 1y — H be an isomorphism satisfying | T|| - || T~'|| < 2.
Then Chy, Ky is homeomorphic to Chyy, Ka.

@ Let T: Hi — Ho be anisomorphism. Then Chy, Ki and Chy, Ko
have the same cardinality.
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The isomorphic Banach-Stone property:

Definition

The Banach space E has the isomorphic Banach-Stone property
(IBSP), if there exists « > 1 such that for all compact spaces Kj, Ko,
the existence of an isomorphism T : C(Ki, E) — C(Kz, E) with

[ TII||T~"|| < « implies that K; and Kz are homeomorphic. The
largest possible constant « is called the Banach-Stone constant of E
and is denoted by BS(E).
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The isomorphic Banach-Stone property:

It is known that the following Banach spaces E have the IBSP:

o finite-dimensional Hilbert spaces, and BS(E) > /2 (Cambern,
1976),

@ uniformly convex spaces, and BS(E) > (1 — 6g(1))~', where
0e : [0,2] — [0, 1] is the modulus of convexity of E (Cambern,
1985),

@ uniformly non-square spaces (Behrends, Cambern, 1988),

@ reflexive spaces with A(E) > 1, and BS(E) > A(E) (Cidral,
Galego, R.-Villamizar, 2015), where

)\(E) = inf{max{||e1 aF /\62” A€ S]F} 161,60 € SE}
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The parameter

@ In the real case, the parameter \(E) is called the Schaffer
constant of E.
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The parameter

@ In the real case, the parameter \(E) is called the Schaffer
constant of E.

@ 1 < \(E) < 2for each Banach space E.

o \F)=2.

@ For each uniformly convex space E with dimension at least two,
(1 —0e(1))~" < M\(E) (Cidral, Galego, R.-Villamizar, 2015).

@ It holds that 25 = A(],) = BS(J,) for 2 < p < o (Cidral, Galego,
R.-Villamizar, 2015).

@ For real Banach spaces E, the fact that A\(E) > 1 implies that E
is reflexive.
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Subspaces of vector-valued functions

@ (Al-Halees, Fleming, 2015) Several results in the spirit of the
isomorphic Banach-stone theorem for subspaces H C C(K, E),
that are so called C(K,F)-modules, that is, closed with respect to
multiplication by functions from C(K, F).
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Subspaces of vector-valued functions

@ (Al-Halees, Fleming, 2015) Several results in the spirit of the
isomorphic Banach-stone theorem for subspaces H C C(K, E),
that are so called C(K,F)-modules, that is, closed with respect to
multiplication by functions from C(K, F).

@ The authors posed a question if this module condition could be
weakened or removed.
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Subspaces of vector-valued functions

@ If H is a closed subspace of C(K, E), then we define the notions
of Choquet boundary and weak peak points similarly as in the
scalar case.
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Subspaces of vector-valued functions

@ If H is a closed subspace of C(K, E), then we define the notions
of Choquet boundary and weak peak points similarly as in the
scalar case.

e If # =C(K, E), then Chy K = K and each point of K is a weak peak
point.

e If H = A(X, E), the space of affine continuous E-valued functions on a
compact convex set X, then Chy, X = ext X and a the definition of weak
peak points of H coincides with the one for A(X, F).

Theorem (R., Spurny)

Let fori = 1,2, H; be a closed subpace of C(K;, E;) for some compact
space K; and a reflexive Banach space E; over F with \(E;) > 1. Let
each point of Chy, K; be a weak peak point. If there exists an
isomorphism T : Hy — Ha with | T|| || T~1|| < min{A(E1), A(E2)}, then
Chy, K1 and Chy, K> are homeomorphic.

y
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The weak Banach-Stone property

Definition

A Banach space E has the weak Banach-Stone property (WBSP) if
for all compact spaces K, Ko, the existence of an isomorphism

T :C(Ky, E) — C(Kz, E) implies that Ky and K are either both finite or
they have the same cardinality.
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The weak Banach-Stone property

| A\

Definition

A Banach space E has the weak Banach-Stone property (WBSP) if
for all compact spaces K, Ko, the existence of an isomorphism

T :C(Ky, E) — C(Kz, E) implies that Ky and K are either both finite or
they have the same cardinality.

Example
It is known that the following Banach spaces have the (WBSP):

@ spaces having nontrivial Rademacher cotype, such that either E
is separable or E* has the Radon-Nikodym property (Candido,
Galego, 2013),

@ spaces not containing an isomorphic copy of ¢, (Galego,
Rincon-Villamizar, 2015).
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Thw weak Banach-Stone property

Theorem (R., Spurny)

Letfori = 1,2, H; be a closed subpace of C(K;, E;) for some compact
space K; and a Banach space E; over IF not containing an isomorphic
copy of ¢y. Let each point of Chy, Ki be a weak peak point. If there
exists an isomorphism T : H1 — Ho, then either both the spaces
Chy, Ki and Chy, Kz are finite or they have the same cardinality.
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