Jakub Rondoš

Banach-Stone type theorems for subspaces of continuous functions

Department of Mathematical Analysis, Charles University, Prague

• All topological spaces are assumed to be Hausdorff.

- All topological spaces are assumed to be Hausdorff.
- Let \mathbb{F} stands for \mathbb{R} or \mathbb{C} .

- All topological spaces are assumed to be Hausdorff.
- Let \mathbb{F} stands for \mathbb{R} or \mathbb{C} .
- For simplicity, we will work with compact spaces, altough all the presented results hold for locally compact spaces.

- All topological spaces are assumed to be Hausdorff.
- Let \mathbb{F} stands for \mathbb{R} or \mathbb{C} .
- For simplicity, we will work with compact spaces, altough all the presented results hold for locally compact spaces.
- Let K be a compact space. C(K, F) stands for the Banach space of all continuous F-valued functions defined on K endowed with the supremum norm.

- All topological spaces are assumed to be Hausdorff.
- Let \mathbb{F} stands for \mathbb{R} or \mathbb{C} .
- For simplicity, we will work with compact spaces, altough all the presented results hold for locally compact spaces.
- Let K be a compact space. C(K, F) stands for the Banach space of all continuous F-valued functions defined on K endowed with the supremum norm.

Theorem (Banach-Stone)

Let K_1 , K_2 be compact spaces. The spaces $C(K_1, \mathbb{F})$ and $C(K_2, \mathbb{F})$ are isometrically isomorphic if and only if K_1 and K_2 are homeomorphic.

Replacing isometries by Banach space isomorphisms

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism $T : C(K_1, \mathbb{F}) \to C(K_2, \mathbb{F})$ such that $||T|| ||T^{-1}|| < 2$, then the spaces K_1 and K_2 are homeomorphic.

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism $T : C(K_1, \mathbb{F}) \to C(K_2, \mathbb{F})$ such that $||T|| ||T^{-1}|| < 2$, then the spaces K_1 and K_2 are homeomorphic.

Theorem (Cohen, 1975)

There exist non-homeomorphic compact spaces K_1 , K_2 and an isomorphism $T : C(K_1, \mathbb{R}) \to C(K_2, \mathbb{R})$ with $||T|| ||T^{-1}|| = 2$.

Theorem (Amir, 1965 and Cambern, 1966)

If there exists an isomorphism $T : C(K_1, \mathbb{F}) \to C(K_2, \mathbb{F})$ such that $||T|| ||T^{-1}|| < 2$, then the spaces K_1 and K_2 are homeomorphic.

Theorem (Cohen, 1975)

There exist non-homeomorphic compact spaces K_1 , K_2 and an isomorphism $T : C(K_1, \mathbb{R}) \to C(K_2, \mathbb{R})$ with $||T|| ||T^{-1}|| = 2$.

Theorem (Cengiz, 1978, the "weak Banach-Stone theorem")

If there exists an isomorphism $T : C(K_1, \mathbb{F}) \to C(K_2, \mathbb{F})$, then K_1 and K_2 have the same cardinality.

• Let X be a compact convex set in a locally convex (Hausdorff) space.

- Let X be a compact convex set in a locally convex (Hausdorff) space.
- Let A(X, 𝔅) stand for the space of affine continuous 𝔅-valued functions on X.

- Let X be a compact convex set in a locally convex (Hausdorff) space.
- Let A(X, 𝔅) stand for the space of affine continuous 𝔅-valued functions on X.
- Let *M*¹(*X*) denote the space of Radon probability measures on *X*.

- Let X be a compact convex set in a locally convex (Hausdorff) space.
- Let A(X, 𝔅) stand for the space of affine continuous 𝔅-valued functions on X.
- Let $\mathcal{M}^1(X)$ denote the space of Radon probability measures on *X*.
- If μ ∈ M¹(X), then its barycenter r(μ) satisfies f(r(μ)) = ∫_X fdμ, f ∈ A(X, 𝔅). Also, μ represents r(μ). The barycenter exists and it is unique.

Definition (Choquet ordering)

Let $\mu, \nu \in \mathcal{M}^1(X)$. Then $\mu \prec \nu$ if $\int_X kd\mu \leq \int_X kd\nu$ for each convex continuous function k on X.

Definition (Choquet ordering)

Let $\mu, \nu \in \mathcal{M}^1(X)$. Then $\mu \prec \nu$ if $\int_X k d\mu \leq \int_X k d\nu$ for each convex continuous function k on X.

Theorem (Choquet-Bishop-de-Leeuw)

For each $x \in X$ there exist a \prec -maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$.

Definition (Choquet ordering)

Let $\mu, \nu \in \mathcal{M}^1(X)$. Then $\mu \prec \nu$ if $\int_X kd\mu \leq \int_X kd\nu$ for each convex continuous function k on X.

Theorem (Choquet-Bishop-de-Leeuw)

For each $x \in X$ there exist a \prec -maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$.

Definition (simplex)

The set *X* is a simplex if for each $x \in X$ there exist a unique \prec -maximal measure $\mu \in M^1(X)$ with $r(\mu) = x$.

Definition (Bauer simplex)

A simplex X is a Bauer simplex if ext X is closed.

Definition (Bauer simplex)

A simplex X is a Bauer simplex if ext X is closed.

Theorem

If X is a Bauer simplex, then $\mathcal{A}(X, \mathbb{F}) = \mathcal{C}(\operatorname{ext} X, \mathbb{F})$.

Definition (Bauer simplex)

A simplex X is a Bauer simplex if ext X is closed.

Theorem

If X is a Bauer simplex, then $\mathcal{A}(X, \mathbb{F}) = \mathcal{C}(\operatorname{ext} X, \mathbb{F})$.

Theorem

If *K* is a compact, then $C(K, \mathbb{F}) = \mathcal{A}(\mathcal{M}^1(K), \mathbb{F})$.

Theorem (Banach-Stone)

If X, Y are Bauer simplices and $\mathcal{A}(X, \mathbb{F})$ is isometric to $\mathcal{A}(Y, \mathbb{F})$, then ext X is homeomorphic to ext Y.

Theorem (Amir, Cambern)

If X, Y are Bauer simplices and there exists an isomorphism $T : \mathcal{A}(X, \mathbb{F}) \to \mathcal{A}(Y, \mathbb{F})$ with $||T|| ||T^{-1}|| < 2$, then ext X is homeomorphic to ext Y.

Theorem (Cohen)

If X, Y are Bauer simplices and there exists an isomorphism $T : \mathcal{A}(X, \mathbb{F}) \to \mathcal{A}(Y, \mathbb{F})$, then the cardinality of ext X is equal to the cardinality of ext Y.

Theorem (Chu-Cohen, 1992)

Given compact convex sets X and Y, the sets ext X and ext Y are homeomorphic provided there exists an isomorphism $T: \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 2$ and one of the following conditions hold:

- (i) X and Y are simplices such that their extreme points are weak peak points;
- (ii) X and Y are metrizable and their extreme points are weak peak points.

Definition

A point $x \in X$ is a weak peak point if given $\varepsilon \in (0, 1)$ and an open set $U \subset X$ containing x, there exists a in the unit ball $B_{\mathcal{A}(X,\mathbb{F})}$ of $\mathcal{A}(X,\mathbb{F})$ such that $|a| < \varepsilon$ on ext $X \setminus U$ and $a(x) > 1 - \varepsilon$.

Theorem (Chu-Cohen, 1992)

Given compact convex sets X and Y, the sets ext X and ext Y are homeomorphic provided there exists an isomorphism $T: \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 2$ and one of the following conditions hold:

- (i) X and Y are simplices such that their extreme points are weak peak points;
- (ii) X and Y are metrizable and their extreme points are weak peak points.

Definition

A point $x \in X$ is a weak peak point if given $\varepsilon \in (0, 1)$ and an open set $U \subset X$ containing x, there exists a in the unit ball $B_{\mathcal{A}(X,\mathbb{F})}$ of $\mathcal{A}(X,\mathbb{F})$ such that $|a| < \varepsilon$ on ext $X \setminus U$ and $a(x) > 1 - \varepsilon$.

 If X is a Bauer simplex, then A(X, 𝔅) = C(ext X, 𝔅), thus the assumption of weak peak points is always fulfilled in this case.

Theorem (Hess, 1978)

For each $\varepsilon \in (0, 1)$ there exist metrizable simplices X, Y and an isomorphism $T : \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 1 + \varepsilon$ such that ext X is not homeomorphic to ext Y.

Theorem (Hess, 1978)

For each $\varepsilon \in (0, 1)$ there exist metrizable simplices X, Y and an isomorphism $T : \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 1 + \varepsilon$ such that ext X is not homeomorphic to ext Y.

Theorem (Ludvik, Spurny, 2011)

Given compact convex sets *X* and *Y*, the sets ext *X* and ext *Y* are homeomorphic provided there exists an isomorphism $T : \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 2$, extreme points of *X* and *Y* are weak peak points and both ext *X* and ext *Y* are Lindelof.

Small bound isomorphisms of spaces of affine continuous functions

Theorem (Dostal, Spurny)

Given compact convex sets *X* and *Y*, the sets ext *X* and ext *Y* are homeomorphic provided there exists an isomorphism $T : \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 2$, and extreme points of *X* and *Y* are weak peak points.

Small bound isomorphisms of spaces of affine continuous functions

Theorem (Dostal, Spurny)

Given compact convex sets *X* and *Y*, the sets ext *X* and ext *Y* are homeomorphic provided there exists an isomorphism $T : \mathcal{A}(X, \mathbb{R}) \to \mathcal{A}(Y, \mathbb{R})$ with $||T|| ||T^{-1}|| < 2$, and extreme points of *X* and *Y* are weak peak points.

Theorem (R., Spurny)

Given compact convex sets X and Y, the sets ext X and ext Y are homeomorphic provided there exists an isomorphism $T : \mathcal{A}(X, \mathbb{C}) \to \mathcal{A}(Y, \mathbb{C})$ with $||T|| ||T^{-1}|| < 2$ and extreme points of X and Y are weak peak points.

 If *H* is a closed subspace of *C*(*K*, 𝔽), then the closed dual unit ball *B*_{*H*^{*}} is a compact convex set with its *weak**-topology.

- If *H* is a closed subspace of *C*(*K*, 𝔽), then the closed dual unit ball *B*_{*H*^{*}} is a compact convex set with its *weak**-topology.
- K may be continuously mapped in B_{H^{*}} via the evaluation mapping φ : x ↦ φ_x, where φ_x is a point in B_{H^{*}} defined by

 $\phi_x(h) = h(x), \quad h \in \mathcal{H}.$

- If *H* is a closed subspace of *C*(*K*, 𝔽), then the closed dual unit ball *B*_{*H*^{*}} is a compact convex set with its *weak**-topology.
- K may be continuously mapped in B_{H^{*}} via the evaluation mapping φ : x ↦ φ_x, where φ_x is a point in B_{H^{*}} defined by

 $\phi_{\mathbf{x}}(h) = h(\mathbf{x}), \quad h \in \mathcal{H}.$

The Choquet boundary Ch_H K of H is the set of points x ∈ K satisfying that φ_x is an extreme point of B_{H*}.

- If *H* is a closed subspace of *C*(*K*, 𝔽), then the closed dual unit ball *B*_{*H*^{*}} is a compact convex set with its *weak**-topology.
- K may be continuously mapped in B_{H^{*}} via the evaluation mapping φ : x ↦ φ_x, where φ_x is a point in B_{H^{*}} defined by

 $\phi_{\mathbf{x}}(h) = h(\mathbf{x}), \quad h \in \mathcal{H}.$

- The Choquet boundary Ch_H K of H is the set of points x ∈ K satisfying that φ_x is an extreme point of B_{H*}.
- A point x ∈ Ch_H K is a *weak peak point* (with respect to H), if for each neighbourhood U of x and ε ∈ (0, 1) there exists h ∈ B_H such that h(x) > 1 − ε and |h| < ε on Ch_H K \ U.

Results on general subspaces of continuous functions

Example

- If $\mathcal{H} = \mathcal{C}(K, \mathbb{F})$, then $Ch_{\mathcal{H}} K = K$ and by the Urysohn's Lemma, each point of K is a weak peak point.
- If $\mathcal{H} = \mathcal{A}(X, \mathbb{F})$, then $\operatorname{Ch}_{\mathcal{H}} X = \operatorname{ext} X$.

Example

- If *H* = C(K, 𝔅), then Ch_H K = K and by the Urysohn's Lemma, each point of K is a weak peak point.
- If $\mathcal{H} = \mathcal{A}(X, \mathbb{F})$, then $\operatorname{Ch}_{\mathcal{H}} X = \operatorname{ext} X$.

Theorem (R., Spurný)

For i = 1, 2, let \mathcal{H}_i be a closed subspace of $\mathcal{C}(K_i, \mathbb{F})$ for some compact Hausdorff space K_i . Assume that each point of the Choquet boundary $Ch_{\mathcal{H}_i} K_i$ is a weak peak point.

- Let T: H₁ → H₂ be an isomorphism satisfying ||T|| · ||T⁻¹|| < 2. Then Ch_{H1} K₁ is homeomorphic to Ch_{H2} K₂.
- Let $T : \mathcal{H}_1 \to \mathcal{H}_2$ be an isomorphism. Then $Ch_{\mathcal{H}_1} K_1$ and $Ch_{\mathcal{H}_2} K_2$ have the same cardinality.

Definition

The Banach space *E* has the *isomorphic Banach-Stone property* (IBSP), if there exists $\alpha > 1$ such that for all compact spaces K_1, K_2 , the existence of an isomorphism $T : C(K_1, E) \to C(K_2, E)$ with $||T|| ||T^{-1}|| < \alpha$ implies that K_1 and K_2 are homeomorphic. The largest possible constant α is called the Banach-Stone constant of *E* and is denoted by BS(E).

Example

It is known that the following Banach spaces *E* have the IBSP:

- finite-dimensional Hilbert spaces, and $BS(E) \ge \sqrt{2}$ (Cambern, 1976),
- uniformly convex spaces, and $BS(E) \ge (1 \delta_E(1))^{-1}$, where $\delta_E : [0, 2] \rightarrow [0, 1]$ is the modulus of convexity of *E* (Cambern, 1985),
- uniformly non-square spaces (Behrends, Cambern, 1988),
- reflexive spaces with $\lambda(E) > 1$, and $BS(E) \ge \lambda(E)$ (Cidral, Galego, R.-Villamizar, 2015), where

 $\lambda(E) = \inf\{\max\{\|e_1 + \lambda e_2\| : \lambda \in S_{\mathbb{F}}\} : e_1, e_2 \in S_E\}.$

In the real case, the parameter λ(E) is called the Schaffer constant of E.

- In the real case, the parameter λ(E) is called the Schaffer constant of E.
- $1 \leq \lambda(E) \leq 2$ for each Banach space *E*.

- In the real case, the parameter λ(E) is called the Schaffer constant of E.
- $1 \leq \lambda(E) \leq 2$ for each Banach space *E*.
- $\lambda(\mathbb{F}) = 2.$

- In the real case, the parameter λ(E) is called the Schaffer constant of E.
- $1 \le \lambda(E) \le 2$ for each Banach space *E*.
- $\lambda(\mathbb{F}) = 2.$
- For each uniformly convex space *E* with dimension at least two, $(1 \delta_E(1))^{-1} < \lambda(E)$ (Cidral, Galego, R.-Villamizar, 2015).

- In the real case, the parameter λ(E) is called the Schaffer constant of E.
- $1 \le \lambda(E) \le 2$ for each Banach space *E*.
- $\lambda(\mathbb{F}) = 2.$
- For each uniformly convex space *E* with dimension at least two, $(1 \delta_E(1))^{-1} < \lambda(E)$ (Cidral, Galego, R.-Villamizar, 2015).
- It holds that $2^{\frac{1}{p}} = \lambda(l_p) = BS(l_p)$ for $2 \le p < \infty$ (Cidral, Galego, R.-Villamizar, 2015).

- In the real case, the parameter λ(E) is called the Schaffer constant of E.
- $1 \le \lambda(E) \le 2$ for each Banach space *E*.
- $\lambda(\mathbb{F}) = 2.$
- For each uniformly convex space *E* with dimension at least two, $(1 \delta_E(1))^{-1} < \lambda(E)$ (Cidral, Galego, R.-Villamizar, 2015).
- It holds that $2^{\frac{1}{p}} = \lambda(I_p) = BS(I_p)$ for $2 \le p < \infty$ (Cidral, Galego, R.-Villamizar, 2015).
- For real Banach spaces *E*, the fact that λ(*E*) > 1 implies that *E* is reflexive.

 (Al-Halees, Fleming, 2015) Several results in the spirit of the isomorphic Banach-stone theorem for subspaces H ⊆ C(K, E), that are so called C(K, F)-modules, that is, closed with respect to multiplication by functions from C(K, F).

- (Al-Halees, Fleming, 2015) Several results in the spirit of the isomorphic Banach-stone theorem for subspaces H ⊆ C(K, E), that are so called C(K, F)-modules, that is, closed with respect to multiplication by functions from C(K, F).
- The authors posed a question if this module condition could be weakened or removed.

Subspaces of vector-valued functions

 If H is a closed subspace of C(K, E), then we define the notions of Choquet boundary and weak peak points similarly as in the scalar case.

Subspaces of vector-valued functions

 If H is a closed subspace of C(K, E), then we define the notions of Choquet boundary and weak peak points similarly as in the scalar case.

Example

- If H = C(K, E), then Ch_H K = K and each point of K is a weak peak point.
- If *H* = *A*(*X*, *E*), the space of affine continuous *E*-valued functions on a compact convex set *X*, then Ch_{*H*} *X* = ext *X* and a the definition of weak peak points of *H* coincides with the one for *A*(*X*, 𝔽).

Subspaces of vector-valued functions

 If H is a closed subspace of C(K, E), then we define the notions of Choquet boundary and weak peak points similarly as in the scalar case.

Example

- If H = C(K, E), then Ch_H K = K and each point of K is a weak peak point.
- If *H* = *A*(*X*, *E*), the space of affine continuous *E*-valued functions on a compact convex set *X*, then Ch_{*H*} *X* = ext *X* and a the definition of weak peak points of *H* coincides with the one for *A*(*X*, 𝔽).

Theorem (R., Spurný)

Let for $i = 1, 2, \mathcal{H}_i$ be a closed subpace of $\mathcal{C}(K_i, E_i)$ for some compact space K_i and a reflexive Banach space E_i over \mathbb{F} with $\lambda(E_i) > 1$. Let each point of $\operatorname{Ch}_{\mathcal{H}_i} K_i$ be a weak peak point. If there exists an isomorphism $T : \mathcal{H}_1 \to \mathcal{H}_2$ with $||T|| ||T^{-1}|| < \min{\{\lambda(E_1), \lambda(E_2)\}}$, then $\operatorname{Ch}_{\mathcal{H}_1} K_1$ and $\operatorname{Ch}_{\mathcal{H}_2} K_2$ are homeomorphic.

Definition

A Banach space *E* has the *weak Banach-Stone property* (WBSP) if for all compact spaces K_1 , K_2 , the existence of an isomorphism $T : C(K_1, E) \rightarrow C(K_2, E)$ implies that K_1 and K_2 are either both finite or they have the same cardinality.

Definition

A Banach space *E* has the *weak Banach-Stone property* (WBSP) if for all compact spaces K_1 , K_2 , the existence of an isomorphism $T : C(K_1, E) \to C(K_2, E)$ implies that K_1 and K_2 are either both finite or they have the same cardinality.

Example

It is known that the following Banach spaces have the (WBSP):

- spaces having nontrivial Rademacher cotype, such that either E is separable or E* has the Radon-Nikodym property (Candido, Galego, 2013),
- spaces not containing an isomorphic copy of *c*₀ (Galego, Rincón-Villamizar, 2015).

Theorem (R., Spurný)

Let for $i = 1, 2, \mathcal{H}_i$ be a closed subpace of $\mathcal{C}(K_i, E_i)$ for some compact space K_i and a Banach space E_i over \mathbb{F} not containing an isomorphic copy of c_0 . Let each point of $Ch_{\mathcal{H}_i}K_i$ be a weak peak point. If there exists an isomorphism $T : \mathcal{H}_1 \to \mathcal{H}_2$, then either both the spaces $Ch_{\mathcal{H}_1}K_1$ and $Ch_{\mathcal{H}_2}K_2$ are finite or they have the same cardinality.

Thank you.