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Banach lattices

Definition

A lattice is a partially ordered set (L,≤) such that every two
elements x and y have a supremum x ∨y and an infimum x ∧y .

Definition

A vector lattice is a (real) vector space L that is also a lattice and

x ≤ x ′, y ≤ y ′, r ,s ≥ 0 ⇒ rx + sy ≤ rx ′+ sy ′

Definition

A Banach lattice is a vector lattice L that is also a Banach space
and for all x ,y ∈ L, |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

|x |= x ∨−x
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Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space
and for all x ,y ∈ L, |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

Definition

A homomorphism T : X −→ Y between Banach lattices is a
bounded operator such that T (x ∨y) = T (x)∨T (y) and
T (x ∧y) = T (x)∧T (y).

C (K ) with f ≤ g iff f (x)≤ g(x) for all x .

Lp(µ) with f ≤ g iff f (x)≤ g(x) for almost x .
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Sublattices, ideals and quotients

Let X be a Banach lattice and Y ⊂ X

Y is a Banach sublattice if it is closed linear subspace that is
moreover closed under operations ∨, ∧.

This makes Y a
Banach lattice.

Y is an ideal if moreover, if f ∈ Y and |g | ≤ |f | then g ∈ Y .

This makes X/Y a Banach lattice.
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The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map A−→ F such
that every bounded map A−→ X extends to a unique Banach
lattice homomorphism FBL(A)−→ X of the same norm.

It exists and is unique up to isometries.
For a ∈ A, take δa : [−1,1]A −→ R the evaluation function.

Theorem (de Pagter, Wickstead; Avilés, Rodŕıguez, Tradacete)

The free Banach lattice generated by a set A is the closure of the
vector lattice generated by {δa : a ∈ A} in R[−1,1]A under the norm

‖f ‖= sup

{
m

∑
i=1

|f (x∗i )| : sup
a∈A

m

∑
i=1

|x∗i (a)| ≤ 1

}
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The free Banach lattice generated by a Banach space E

Definition (Avilés, Rodŕıguez, Tradacete 2018)

F = FBL[E ] if there is an inclusion mapping E −→ F and every
bounded operator E −→ X extends to a unique homomorphism
FBL(E )−→ X of the same norm.

It exists and is unique up to isometries.
For x ∈ E , take δx : E ∗ −→ R the evaluation function.

Theorem (Avilés, Rodŕıguez, Tradacete)

The free Banach lattice generated by E is the closure of the vector
lattice generated by {δx : x ∈ E} in RE ∗ under the norm

‖f ‖= sup

{
m

∑
i=1

|f (x∗i )| : sup
x∈BE

m

∑
i=1

|x∗i (x)| ≤ 1

}
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The free Banach lattice generated by a lattice L

Definition

A lattice L is distributive if x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) for every x ,y ,z ∈ L.

Definition (Avilés, R. A. 2018)

Given a lattice L, the free Banach lattice generated by L is a
Banach lattice F together with a lattice homomorphism
φ : L−→ F such that for every Banach lattice X and every
bounded lattice homomorphism T : L−→ X , there exists a unique
Banach lattice homomorphism T̂ : F −→ X such that T = T̂ ◦φ

and ||T̂ ||= ||T ||.
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The free Banach lattice generated by a lattice L

The uniqueness of F (up to Banach lattices isometries) is easy.

For the existence one can take the quotient of FBL(L) by the
closed ideal I generated by the set

{δx∨y −δx ∨δy , δx∧y −δx ∧δy : x ,y ∈ L},

where, for x ∈ L,

δx : [−1,1]L −→ [−1,1]

is the map given by δx(x∗) = x∗(x) for every x∗ ∈ [−1,1]L,
together with the lattice homomorphism

φ : L−→ FBL(L)/I

given by φ(x) = δx +I for every x ∈ L.
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A description of the free Banach lattice generated by a
lattice

Let L∗ = {x∗ : L−→ [−1,1] : x∗ is a lattice-homomorphism}.

For every x ∈ L, let
δ̇x : L∗ −→ [−1,1]

be the map given by δ̇x(x∗) = x∗(x) for every x∗ ∈ L∗.
Given f ∈ RL∗ , define

‖f ‖∗ = sup{
n

∑
i=1

|f (x∗i )| : n ∈N, x∗1 , . . . ,x∗n ∈ L∗, sup
x∈L

n

∑
i=1

|x∗i (x)| ≤ 1}.

Theorem (Avilés, R. A.)

Consider FBL∗〈L〉 to be the Banach lattice generated by
{δ̇x : x ∈ L} inside the Banach lattice of all functions f ∈ RL∗ with
‖f ‖∗ < ∞, endowed with the norm ‖ · ‖∗ and the pointwise
operations. Then FBL∗〈L〉, together with the assignment
φ(x) = δ̇x is the free Banach lattice generated by L.
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A description of the free Banach lattice generated by a
lattice

Idea of the proof

The Banach lattice homomorphism

RI : FBL(L)/I −→ FBL∗〈L〉

given by RI (f +I ) = f |L∗ for every f +I ∈ FBL(L)/I is an
isometry such that R(δx +I ) = δ̇x .

It is easy to check that

‖f |L∗‖∗ ≤ ‖f ‖I := inf{‖g‖ : f −g ∈I }.

How to prove that ‖f ‖I ≤ ‖f |L∗‖∗?.
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A description of the free Banach lattice generated by a
lattice

Idea of the proof

- L finite: FBL(L) consists exactly of all the positively
homogeneous continuous functions on [−1,1]L (De Pagter and
Wickstead).

- L infinite:

Reduction to the finite case supposing that f can be written
as f = P(δx1 , . . . ,δxn) for some x1, . . . ,xn ∈ L, where P is a
formula that involves linear combinations and the lattice
operations ∨ and ∧.

If F0 ⊂ L, with L distributive and F0 finite, then there exists a
finite sublattice F1 ⊂ L such that for every lattice M and
every lattice homomorphism y∗ : F1 −→M there exists a
lattice homomorphism z∗ : L−→M such that z∗|F0 = y∗|F0 .
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Chain conditions on the free Banach lattice of a linear
order

Definition

A Banach lattice X satisfies the countable chain condition (ccc), if
whenever {fi : i ∈ I} are positive elements and fi ∧ fj = 0 for all
i 6= j , then we must have that |I | is countable.

Let L be a linearly ordered set and FBL〈L〉= FBL∗〈L〉 the free
Banach lattice generated by L. Then,

Theorem (Avilés, R. A.)

FBL〈L〉 has the countable chain condition if and only if L is
order-isomorphic to a subset of the real line.



Chain conditions on the free Banach lattice of a linear
order

Definition

A Banach lattice X satisfies the countable chain condition (ccc), if
whenever {fi : i ∈ I} are positive elements and fi ∧ fj = 0 for all
i 6= j , then we must have that |I | is countable.

Let L be a linearly ordered set and FBL〈L〉= FBL∗〈L〉 the free
Banach lattice generated by L. Then,

Theorem (Avilés, R. A.)

FBL〈L〉 has the countable chain condition if and only if L is
order-isomorphic to a subset of the real line.



Chain conditions on the free Banach lattice of a linear
order

The key of the proof is the following lemma:

Lemma (Avilés, R. A.)

For a linearly ordered set L the following are equivalent:

1 L is order-isomorphic to a subset of the real line.

2 L is separable in the order topology, and the set of leaps
{(a,b) ∈ L×L : [a,b] = {a,b}} is countable.

3 For every uncountable family of triples

F = {{x i1,x i2,x i3} : x i1,x
i
2,x

i
3 ∈ L, x i1 < x i2 < x i3, i ∈ J}

there exist i 6= j such that x i1 ≤ x j2 ≤ x i3 and x j1 ≤ x i2 ≤ x j3.
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Projective Banach lattices

Definition

A Banach lattice P is projective if whenever X is a Banach lattice,
J a closed ideal in X and Q : X −→ X/J the quotient map, then
for every Banach lattice homomorphism T : P −→ X/J and ε > 0,
there is a Banach lattice homomorphism T̂ : P −→ X such that
T = Q ◦ T̂ and ‖T̂‖ ≤ (1 + ε)‖T‖.

Theorem

The following Banach lattices are projective:

FBL(A) (de Pagter, Wickstead).

Every finite dimensional Banach lattice (de Pagter,
Wickstead).

C (K ) for K a compact neighborhood retract of Rn (de
Pagter, Wickstead).

`1 (de Pagter, Wickstead).

FBL〈L〉 for a finite lattice L (Avilés, R. A.).
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