The free Banach lattice generated by a lattice

José David Rodríguez Abellán University of Murcia

MTM2014-541982-P, MTM2017-86182-P (AEI/FEDER, UE) FPI Fundación Séneca

Workshop on Banach spaces and Banach lattices - 09/09/2019

(日) (同) (E) (E) (E)

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

イロン イロン イヨン イヨン 三日

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and

イロン イロン イヨン イヨン 三日

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', y \le y', r, s \ge 0 \implies rx + sy \le rx' + sy'$

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', y \le y', r, s \ge 0 \implies rx + sy \le rx' + sy'$

Definition

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

 $|x| = x \vee -x$

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

• C(K) with $f \leq g$ iff $f(x) \leq g(x)$ for all x.

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- C(K) with $f \leq g$ iff $f(x) \leq g(x)$ for all x.
- $L^{p}(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for almost x.

• Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧.

(日) (同) (E) (E) (E)

 Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \le |f|$ then $g \in Y$.

イロト イロト イヨト イヨト 二日

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \le |f|$ then $g \in Y$. This makes X/Y a Banach lattice.

イロン イロン イヨン イヨン 三日

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

・ロ・・ (日・・ ヨ・・ ヨ・・ ヨ

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

It exists and is unique up to isometries.

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

It exists and is unique up to isometries. For $a \in A$, take $\delta_a : [-1, 1]^A \longrightarrow \mathbb{R}$ the evaluation function.

Theorem (de Pagter, Wickstead; Avilés, Rodríguez, Tradacete)

The free Banach lattice generated by a set A is the closure of the vector lattice generated by $\{\delta_a : a \in A\}$ in $\mathbb{R}^{[-1,1]^A}$ under the norm

$$\|f\| = \sup\left\{\sum_{i=1}^{m} |f(x_i^*)| : \sup_{a \in A} \sum_{i=1}^{m} |x_i^*(a)| \le 1\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition (Avilés, Rodríguez, Tradacete 2018)

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every bounded operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

Definition (Avilés, Rodríguez, Tradacete 2018)

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every bounded operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

It exists and is unique up to isometries.

Definition (Avilés, Rodríguez, Tradacete 2018)

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every bounded operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

It exists and is unique up to isometries. For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation function.

Theorem (Avilés, Rodríguez, Tradacete)

The free Banach lattice generated by E is the closure of the vector lattice generated by $\{\delta_x : x \in E\}$ in \mathbb{R}^{E^*} under the norm

$$\|f\| = \sup\left\{\sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The free Banach lattice generated by a lattice \mathbb{L}

Definition

A lattice \mathbb{L} is distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for every $x, y, z \in \mathbb{L}$.

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

A lattice \mathbb{L} is distributive if $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for every $x, y, z \in \mathbb{L}$.

Definition (Avilés, R. A. 2018)

Given a lattice \mathbb{L} , the free Banach lattice generated by \mathbb{L} is a Banach lattice F together with a lattice homomorphism $\phi : \mathbb{L} \longrightarrow F$ such that for every Banach lattice X and every bounded lattice homomorphism $T : \mathbb{L} \longrightarrow X$, there exists a unique Banach lattice homomorphism $\hat{T} : F \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $||\hat{T}|| = ||T||$.

The free Banach lattice generated by a lattice $\mathbb L$

• The uniqueness of F (up to Banach lattices isometries) is easy.

The free Banach lattice generated by a lattice \mathbb{L}

- The uniqueness of F (up to Banach lattices isometries) is easy.
- For the existence one can take the quotient of FBL(L) by the closed ideal 𝒴 generated by the set

$$\{\delta_{x\vee y} - \delta_x \vee \delta_y, \ \delta_{x\wedge y} - \delta_x \wedge \delta_y : x, y \in \mathbb{L}\},\$$

where, for $x \in \mathbb{L}$,

$$\delta_{x}: [-1,1]^{\mathbb{L}} \longrightarrow [-1,1]$$

is the map given by $\delta_x(x^*) = x^*(x)$ for every $x^* \in [-1,1]^{\mathbb{L}}$, together with the lattice homomorphism

$$\phi : \mathbb{L} \longrightarrow FBL(\mathbb{L})/\mathscr{I}$$

given by $\phi(x) = \delta_x + \mathscr{I}$ for every $x \in \mathbb{L}$.

(ロ) (回) (E) (E) (E) (O)

Let $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] : x^* \text{ is a lattice-homomorphism}\}.$

Let $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] : x^* \text{ is a lattice-homomorphism}\}.$ For every $x \in \mathbb{L}$, let

 $\delta_{\!x}:\mathbb{L}^*\longrightarrow [-1,1]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

be the map given by $\dot{\delta_x}(x^*) = x^*(x)$ for every $x^* \in \mathbb{L}^*.$

Let $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] : x^* \text{ is a lattice-homomorphism}\}.$ For every $x \in \mathbb{L}$, let

 $\dot{\delta_x}:\mathbb{L}^*\longrightarrow [-1,1]$

be the map given by $\dot{\delta_x}(x^*) = x^*(x)$ for every $x^* \in \mathbb{L}^*$. Given $f \in \mathbb{R}^{\mathbb{L}^*}$, define

 $\|f\|_{*} = \sup\{\sum_{i=1}^{n} |f(x_{i}^{*})| : n \in \mathbb{N}, x_{1}^{*}, \dots, x_{n}^{*} \in \mathbb{L}^{*}, \sup_{x \in \mathbb{L}} \sum_{i=1}^{n} |x_{i}^{*}(x)| \leq 1\}.$

Let $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] : x^* \text{ is a lattice-homomorphism}\}.$ For every $x \in \mathbb{L}$, let

$$\delta_{x}:\mathbb{L}^{*}\longrightarrow [-1,1]$$

be the map given by $\dot{\delta}_x(x^*) = x^*(x)$ for every $x^* \in \mathbb{L}^*$. Given $f \in \mathbb{R}^{\mathbb{L}^*}$, define

$$\|f\|_* = \sup\{\sum_{i=1}^n |f(x_i^*)| : n \in \mathbb{N}, x_1^*, \dots, x_n^* \in \mathbb{L}^*, \sup_{x \in \mathbb{L}} \sum_{i=1}^n |x_i^*(x)| \le 1\}.$$

Theorem (Avilés, R. A.)

Consider $FBL_*\langle \mathbb{L} \rangle$ to be the Banach lattice generated by $\{\dot{\delta}_x : x \in \mathbb{L}\}$ inside the Banach lattice of all functions $f \in \mathbb{R}^{\mathbb{L}^*}$ with $\|f\|_* < \infty$, endowed with the norm $\|\cdot\|_*$ and the pointwise operations. Then $FBL_*\langle \mathbb{L} \rangle$, together with the assignment $\phi(x) = \dot{\delta}_x$ is the free Banach lattice generated by \mathbb{L} .

Idea of the proof

The Banach lattice homomorphism

$$R_{\mathscr{I}}: FBL(\mathbb{L})/\mathscr{I} \longrightarrow FBL_*\langle \mathbb{L} \rangle$$

given by $R_{\mathscr{I}}(f + \mathscr{I}) = f|_{\mathbb{L}^*}$ for every $f + \mathscr{I} \in FBL(\mathbb{L})/\mathscr{I}$ is an isometry such that $R(\delta_x + \mathscr{I}) = \dot{\delta_x}$.

Idea of the proof

The Banach lattice homomorphism

$$R_{\mathscr{I}}: FBL(\mathbb{L})/\mathscr{I} \longrightarrow FBL_*\langle \mathbb{L} \rangle$$

given by $R_{\mathscr{I}}(f + \mathscr{I}) = f|_{\mathbb{L}^*}$ for every $f + \mathscr{I} \in FBL(\mathbb{L})/\mathscr{I}$ is an isometry such that $R(\delta_x + \mathscr{I}) = \dot{\delta_x}$.

• It is easy to check that

$$\|f\|_{\mathbb{L}^*}\|_* \leq \|f\|_{\mathscr{I}} := \inf\{\|g\| : f - g \in \mathscr{I}\}.$$

Idea of the proof

The Banach lattice homomorphism

$$R_{\mathscr{I}}: FBL(\mathbb{L})/\mathscr{I} \longrightarrow FBL_*\langle \mathbb{L} \rangle$$

given by $R_{\mathscr{I}}(f + \mathscr{I}) = f|_{\mathbb{L}^*}$ for every $f + \mathscr{I} \in FBL(\mathbb{L})/\mathscr{I}$ is an isometry such that $R(\delta_x + \mathscr{I}) = \dot{\delta_x}$.

• It is easy to check that

$$\|f\|_{\mathbb{L}^*}\|_* \leq \|f\|_{\mathscr{I}} := \inf\{\|g\| : f - g \in \mathscr{I}\}.$$

• How to prove that $\|f\|_{\mathscr{I}} \leq \|f|_{\mathbb{L}^*}\|_*$?.

Idea of the proof

- \mathbb{L} finite: $FBL(\mathbb{L})$ consists exactly of all the positively homogeneous continuous functions on $[-1,1]^{\mathbb{L}}$ (De Pagter and Wickstead).

Idea of the proof

- \mathbb{L} finite: $FBL(\mathbb{L})$ consists exactly of all the positively homogeneous continuous functions on $[-1,1]^{\mathbb{L}}$ (De Pagter and Wickstead).
- $\mathbb L$ infinite:
 - Reduction to the finite case supposing that f can be written as $f = P(\delta_{x_1}, \ldots, \delta_{x_n})$ for some $x_1, \ldots, x_n \in \mathbb{L}$, where P is a formula that involves linear combinations and the lattice operations \lor and \land .

Idea of the proof

- \mathbb{L} finite: $FBL(\mathbb{L})$ consists exactly of all the positively homogeneous continuous functions on $[-1,1]^{\mathbb{L}}$ (De Pagter and Wickstead).
- $\mathbb L$ infinite:
 - Reduction to the finite case supposing that f can be written as $f = P(\delta_{x_1}, \ldots, \delta_{x_n})$ for some $x_1, \ldots, x_n \in \mathbb{L}$, where P is a formula that involves linear combinations and the lattice operations \vee and \wedge .
 - If $\mathbb{F}_0 \subset \mathbb{L}$, with \mathbb{L} distributive and \mathbb{F}_0 finite, then there exists a finite sublattice $\mathbb{F}_1 \subset \mathbb{L}$ such that for every lattice \mathbb{M} and every lattice homomorphism $y^* : \mathbb{F}_1 \longrightarrow \mathbb{M}$ there exists a lattice homomorphism $z^* : \mathbb{L} \longrightarrow \mathbb{M}$ such that $z^*|_{\mathbb{F}_0} = y^*|_{\mathbb{F}_0}$.

Chain conditions on the free Banach lattice of a linear order

Definition

A Banach lattice X satisfies the countable chain condition (ccc), if whenever $\{f_i : i \in I\}$ are positive elements and $f_i \wedge f_j = 0$ for all $i \neq j$, then we must have that |I| is countable.

イロト イロト イヨト イヨト 二日

A Banach lattice X satisfies the countable chain condition (ccc), if whenever $\{f_i : i \in I\}$ are positive elements and $f_i \wedge f_j = 0$ for all $i \neq j$, then we must have that |I| is countable.

Let \mathbb{L} be a **linearly ordered set** and $FBL\langle \mathbb{L} \rangle = FBL_*\langle \mathbb{L} \rangle$ the free Banach lattice generated by \mathbb{L} . Then,

Theorem (Avilés, R. A.)

 $FBL\langle \mathbb{L}\rangle$ has the countable chain condition if and only if \mathbb{L} is order-isomorphic to a subset of the real line.

Chain conditions on the free Banach lattice of a linear order

The key of the proof is the following lemma:

Lemma (Avilés, R. A.) For a linearly ordered set $\mathbb L$ the following are equivalent:

Chain conditions on the free Banach lattice of a linear order

The key of the proof is the following lemma:

Lemma (Avilés, R. A.)
For a linearly ordered set L the following are equivalent:
L is order-isomorphic to a subset of the real line.

Chain conditions on the free Banach lattice of a linear order

The key of the proof is the following lemma:

Lemma (Avilés, R. A.)

For a linearly ordered set ${\mathbb L}$ the following are equivalent:

- 1 L is order-isomorphic to a subset of the real line.
- 2 \mathbb{L} is separable in the order topology, and the set of leaps $\{(a,b) \in \mathbb{L} \times \mathbb{L} : [a,b] = \{a,b\}\}$ is countable.

Chain conditions on the free Banach lattice of a linear order

The key of the proof is the following lemma:

Lemma (Avilés, R. A.)

For a linearly ordered set \mathbb{L} the following are equivalent:

- **1** \mathbb{L} is order-isomorphic to a subset of the real line.
- ℤ is separable in the order topology, and the set of leaps {(a, b) ∈ L×L : [a, b] = {a, b}} is countable.
- Sor every uncountable family of triples

$$\mathscr{F} = \{\{x_1^i, x_2^i, x_3^i\} : x_1^i, x_2^i, x_3^i \in \mathbb{L}, \ x_1^i < x_2^i < x_3^i, \ i \in J\}$$

there exist $i \neq j$ such that $x_1^i \leq x_2^j \leq x_3^i$ and $x_1^j \leq x_2^i \leq x_3^j$.

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

```
• FBL(A) (de Pagter, Wickstead).
```

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

- FBL(A) (de Pagter, Wickstead).
- Every finite dimensional Banach lattice (de Pagter, Wickstead).

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

- FBL(A) (de Pagter, Wickstead).
- Every finite dimensional Banach lattice (de Pagter, Wickstead).
- C(K) for K a compact neighborhood retract of ℝⁿ (de Pagter, Wickstead).

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

- FBL(A) (de Pagter, Wickstead).
- Every finite dimensional Banach lattice (de Pagter, Wickstead).
- C(K) for K a compact neighborhood retract of ℝⁿ (de Pagter, Wickstead).
- ℓ_1 (de Pagter, Wickstead).

Definition

A Banach lattice P is projective if whenever X is a Banach lattice, J a closed ideal in X and $Q: X \longrightarrow X/J$ the quotient map, then for every Banach lattice homomorphism $T: P \longrightarrow X/J$ and $\varepsilon > 0$, there is a Banach lattice homomorphism $\hat{T}: P \longrightarrow X$ such that $T = Q \circ \hat{T}$ and $\|\hat{T}\| \le (1+\varepsilon)\|T\|$.

Theorem

- FBL(A) (de Pagter, Wickstead).
- Every finite dimensional Banach lattice (de Pagter, Wickstead).
- C(K) for K a compact neighborhood retract of ℝⁿ (de Pagter, Wickstead).
- ℓ_1 (de Pagter, Wickstead).
- $FBL\langle \mathbb{L} \rangle$ for a finite lattice \mathbb{L} (Avilés, R. A.).

The following Banach lattices are not projective:

• $L_p([0,1])$ for finite p (de Pagter, Wickstead).

The following Banach lattices are not projective:

• $L_p([0,1])$ for finite p (de Pagter, Wickstead).

・ロト ・四ト ・ヨト ・ヨト - ヨ

• c (de Pagter, Wickstead).

The following Banach lattices are not projective:

• $L_p([0,1])$ for finite p (de Pagter, Wickstead).

- c (de Pagter, Wickstead).
- ℓ_{∞} (de Pagter, Wickstead).

- $L_p([0,1])$ for finite p (de Pagter, Wickstead).
- c (de Pagter, Wickstead).
- ℓ_{∞} (de Pagter, Wickstead).
- $\ell_p(I)$ $(1 \le p < \infty)$ and $c_0(I)$ for an uncountable set I (de Pagter, Wickstead).

The following Banach lattices are not projective:

- $L_p([0,1])$ for finite p (de Pagter, Wickstead).
- c (de Pagter, Wickstead).
- ℓ_{∞} (de Pagter, Wickstead).
- $\ell_p(I)$ $(1 \le p < \infty)$ and $c_0(I)$ for an uncountable set I (de Pagter, Wickstead).

イロト (部) (日) (日) (日) (日)

• $FBL\langle \mathbb{L} \rangle$ for an infinite linear order \mathbb{L} (Avilés, R. A.).

The following Banach lattices are not projective:

- $L_p([0,1])$ for finite p (de Pagter, Wickstead).
- c (de Pagter, Wickstead).
- ℓ_{∞} (de Pagter, Wickstead).
- $\ell_p(I)$ $(1 \le p < \infty)$ and $c_0(I)$ for an uncountable set I (de Pagter, Wickstead).

イロト (部) (日) (日) (日) (日)

- $FBL\langle \mathbb{L} \rangle$ for an infinite linear order \mathbb{L} (Avilés, R. A.).
- c₀ and *FBL*[c₀] (Avilés, Martínez-Cervantes, R. A.).

- A. Avilés, G. Plebanek, J. D. Rodríguez Abellán, Chain conditions in free Banach lattices, J. Math. Anal. Appl. 465 (2018), 1223–1229.
- A. Avilés, J. D. Rodríguez Abellán, *The free Banach lattice generated by a lattice*, Positivity, 23 (2019), 581–597.
- A. Avilés, J. D. Rodríguez Abellán, *Projectivity of the free* Banach lattice generated by a lattice, Archiv der Mathematik. To appear.
- A. Avilés, J. Rodríguez, P. Tradacete, *The free Banach lattice generated by a Banach space*, J. Funct. Anal. 274 (2018), 2955–2977.
- B. de Pagter, A. W. Wisckstead, *Free and projective Banach lattices*, Proc. Royal Soc. Edinburgh Sect. A, 145 (2015), 105–143.