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@ X is reflexive (obvious) @ X is weakly sequentially complete
and non-reflexive (e.g. ¢1 and L;)

@ X* is separable
[ <= (Bx:,w*) is metrizable ] @ X = (") for uncountable

(Bxs,w™") is Fréchet-Urysohn — X €6D — X 2 /3. J

Theorem (Odell-Rosenthal, Bourgain-Fremlin-Talagrand)

Suppose X is separable. Then:

(Bx+,w") is Fréchet-Urysohn <= X € 6D < X 5 /{;.
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