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Preliminaries

All Banach spaces considered here will be real.

Let K be a locally compact Hausdorff space and X a Banach space. The
Banach space of all continuous functions from K to X which vanishes at
infinite is denoted by C0(K ,X ). The norm is the sup-norm. When K is
compact, we denote it by C (K ,X ). Finally if X = R we write C0(K ) and
C (K ) instead of C0(K ,X ) and C (K ,X ), respectively.

Remark

If X is a Banach lattice, C0(K ,X ) is a Banach lattice with the usual order.

By a Banach lattice isomorphism we mean a linear operator T such that
T and T−1 are both positive operators.
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A result due to Kaplansky establishes that C (K ) and C (S) are Banach
lattice isomorphic if and only if K and S are homeomorphic. There are
examples showing that Kaplansky’s theorem does not hold for C0(K ,X )
spaces.

So, we have the following question:

Problem

If C0(K ,X ) and C0(S ,X ) are related as Banach lattices, what can we say
about K and S?

In first part of talk we show some results answering question above. In
second one, we posed two questions about c0(Γ).
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Isomorphisms between C0(K ,X ) spaces

Recall that for a Banach space X , the Schäffer constant of X is defined by

λ(X ) := inf{max{‖x + y‖, ‖x − y‖} : ‖x‖ = ‖y‖ = 1}.

The following result generalizes the classical Banach-stone theorem.

Theorem (Cidral, Galego, Rincón-Villamizar)

Let X be a Banach space with λ(X ) > 1. If T : C0(K ,X )→ C0(S ,X ) is
an isomorphism satisfying ‖T‖‖T−1‖ < λ(X ), then K and S are
homeomorphic.
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Theorem above is optimal

Example

Let K = {1} and S = {1, 2}. Let T : `p → `p ⊕∞ `p be given by

T ((xn)) = ((x2n), (x2n−1)).

It is not difficult to show that T is an isomorphism with
‖T‖‖T−1‖ = 21/p and λ(`p) = 21/p if p ≥ 2. On the other hand, T
induces an isomorphism from C0(K , `p) onto C0(S , `p).

What about Banach lattices?

Michael Alexánder Rincón Villamizar (Universidad Industrial de Santander (UIS))Some aspects of the lattice structure of C0(K , X ) and c0(Γ)September, 2019 5 / 17



Theorem above is optimal

Example

Let K = {1} and S = {1, 2}. Let T : `p → `p ⊕∞ `p be given by

T ((xn)) = ((x2n), (x2n−1)).

It is not difficult to show that T is an isomorphism with
‖T‖‖T−1‖ = 21/p and λ(`p) = 21/p if p ≥ 2. On the other hand, T
induces an isomorphism from C0(K , `p) onto C0(S , `p).

What about Banach lattices?

Michael Alexánder Rincón Villamizar (Universidad Industrial de Santander (UIS))Some aspects of the lattice structure of C0(K , X ) and c0(Γ)September, 2019 5 / 17



Theorem above is optimal

Example

Let K = {1} and S = {1, 2}. Let T : `p → `p ⊕∞ `p be given by

T ((xn)) = ((x2n), (x2n−1)).

It is not difficult to show that T is an isomorphism with
‖T‖‖T−1‖ = 21/p and λ(`p) = 21/p if p ≥ 2. On the other hand, T
induces an isomorphism from C0(K , `p) onto C0(S , `p).

What about Banach lattices?

Michael Alexánder Rincón Villamizar (Universidad Industrial de Santander (UIS))Some aspects of the lattice structure of C0(K , X ) and c0(Γ)September, 2019 5 / 17



There is a lot of literature in this line.

Definition

An f ∈ C (K ,X ) is called non-vanishing if 0 6∈ f (K ). A linear operator
T : C (K ,X )→ C (S ,X ) is called non-vanishing preserving if sends
non-vanishing functions into non-vanishing functions.

Theorem (Jin Xi Chen, Z. L. Chen, N. C. Wong)

Suppose that T : C (K ,X )→ C (S ,X ) be a Banach lattice isomorphism
such that T and T−1 are non-vanishing preserving. Then K and S are
homeomorphic.
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Schäffer constant in Banach lattices

We introduce the analogue of Schäffer constant in Banach lattices.

Definition

If X is a Banach lattice, we define the positive Schäffer constant λ+(X ) by

λ+(X ) := inf{max{‖x + y‖, ‖x − y‖} : ‖x‖ = ‖y‖ = 1, x , y > 0}.
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Properties of λ+(X )

Proposition

Let X be a Banach lattice. We have

1 λ+(X ) ≥ 1.

2 λ(X ) ≤ λ+(X ) but there are Banach lattices for which inequality is
strict.

3 λ+(X ) = 1 if X contains a copy of c0.

4 If X is a Lp-space then λ+(X ) = 21/p.

Recall that a Banach lattice X is called Lp-space if
‖x + y‖p = ‖x‖p + ‖y‖p whenever x , y ∈ X are disjoint.

If X = (R2, ‖ · ‖∞) then λ+(X ) = 1. So, converse of 3) does not hold.
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Next result gives an answer to our problem.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice with λ+(X ) > 1. If T : C0(K ,X )→ C0(S ,X ) is
a Banach lattice isomorphism satisfying ‖T‖‖T−1‖ < λ+(X ), then K and
S are homeomorphic.

Remark

The above example shows that theorem is optimal since λ+(`p) = 21/p for
all 1 ≤ p ≤ ∞.
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Now if condition ‖T‖‖T−1‖ < λ+(X ) is dropped, can we say something?

Example

Let K and S be two non-homeomorphic uncountable compact metric
spaces such that the topological sums K ⊕ K and S ⊕ S are
homeomorphic. We have the following Banach lattice isometries

C (K ,X ) ∼= C (K ⊕ K ) ∼= C (S ⊕ S) ∼= C (S ,X ),

where X is the Banach lattice `2
∞.

The above Phenomenon does not occur for countable compact metric
spaces as we see below.
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If α is an ordinal, [0, α] denotes the set of all ordinals less or equal than α,
endowed with the order topology.

Remark

If C ([0, α], `2
∞) is Banach lattice isomorphic to C ([0, β], `2

∞), then [0, α]
and [0, β] are homeomorphic. Indeed, since `2

∞ is Banach lattice isometric
to C ({1, 2}), we have the following Banach lattice isometries

C ([0, α], `2
∞) ∼= C ([0, α]⊕ [0, α]) and

C ([0, β], `2
∞) ∼= C ([0, β]⊕ [0, β])

By Kaplansky’s theorem we conclude that [0, α] and [0, β] are
homeomorphic.
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The above example illustrates next theorem

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice containing no copy of c0 and suppose that for
each n ∈ N, there is no a Banach lattice isomorphism from X n+1 into X n.
For each infinite ordinals α and β the following statements are equivalent:

1 C ([0, α],X ) and C ([0, α],X ) are Banach lattice isomorphic.

2 [0, α] and [0, β] are homeomorphic.

Remark

There are many Banach lattices X satisfying hypothesis of the above
theorem.
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In general if C0(K ,X ) and C0(S ,X ) are related as Banach lattices, we
cannot conclude that K and S are homeomorphic but even so they share
topological properties.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice with λ+(X ) > 1. Suppose that C (K ,X ) and
C (S ,X ) are Banach lattice isomorphic. Then K is sequential (Fréchet,
sequentially compact) if and only if S so is;
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Two questions about c0(Γ)

If K = Γ where Γ is a set with discrete topology we denote C0(K ) by
c0(Γ). Also `∞(Γ) denotes the Banach space of all bounded families
indexed by Γ, endowed with the sup-norm.

Definition

We say that Y contains almost isometric copies of X if for each ε > 0
there is an into isomorphism Tε : X → Y such that ‖Tε‖‖T−1

ε ‖ ≤ 1 + ε.

A result due to Rosenthal establishes that X ∗ contains almost isometric
copies of c0(Γ) if and only if X ∗ contains isometric copies of `∞(Γ).
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Questions

By B(X ,Y ) we mean the Banach space of all bounded linear operators
from X to Y .

Question 1

Under what conditions the following statements are equivalent:

1 B(X ,Y ) contains almost isometric copies of c0(Γ);

2 B(X ,Y ) contains isometric copies of `∞(Γ)?

A theorem due to Lozanovskii says that a Banach lattice X contains a
copy of c0 if and only if X contains a lattice copy of c0.

Question 2

Is Lozanovskii’s theorem valid for c0(Γ)?
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Thank you!

Michael Alexánder Rincón Villamizar (Universidad Industrial de Santander (UIS))Some aspects of the lattice structure of C0(K , X ) and c0(Γ)September, 2019 17 / 17


