Some aspects of the lattice structure of $C_0(K, X)$ and $c_0(\Gamma)$

Michael Alexánder Rincón Villamizar

Universidad Industrial de Santander (UIS)

supporting by programa de movilidad UIS, request no. 2958

Michael Alexánder Rincón Villamizar (UniversSome aspects of the lattice structure of $C_0(K)$

< □ > < ---->

Let K be a locally compact Hausdorff space and X a Banach space. The Banach space of all continuous functions from K to X which vanishes at infinite is denoted by $C_0(K, X)$. The norm is the sup-norm. When K is compact, we denote it by C(K, X). Finally if $X = \mathbb{R}$ we write $C_0(K)$ and C(K) instead of $C_0(K, X)$ and C(K, X), respectively.

Let K be a locally compact Hausdorff space and X a Banach space. The Banach space of all continuous functions from K to X which vanishes at infinite is denoted by $C_0(K, X)$. The norm is the sup-norm. When K is compact, we denote it by C(K, X). Finally if $X = \mathbb{R}$ we write $C_0(K)$ and C(K) instead of $C_0(K, X)$ and C(K, X), respectively.

Remark

If X is a Banach lattice, $C_0(K, X)$ is a Banach lattice with the usual order.

Let K be a locally compact Hausdorff space and X a Banach space. The Banach space of all continuous functions from K to X which vanishes at infinite is denoted by $C_0(K, X)$. The norm is the sup-norm. When K is compact, we denote it by C(K, X). Finally if $X = \mathbb{R}$ we write $C_0(K)$ and C(K) instead of $C_0(K, X)$ and C(K, X), respectively.

Remark

If X is a Banach lattice, $C_0(K, X)$ is a Banach lattice with the usual order.

By a Banach lattice isomorphism we mean a linear operator T such that T and T^{-1} are both positive operators.

So, we have the following question:

So, we have the following question:

Problem

If $C_0(K, X)$ and $C_0(S, X)$ are related as Banach lattices, what can we say about K and S?

So, we have the following question:

Problem

If $C_0(K, X)$ and $C_0(S, X)$ are related as Banach lattices, what can we say about K and S?

In first part of talk we show some results answering question above. In second one, we posed two questions about $c_0(\Gamma)$.

Recall that for a Banach space X, the Schäffer constant of X is defined by $\lambda(X) := \inf\{\max\{\|x + y\|, \|x - y\|\} : \|x\| = \|y\| = 1\}.$

The following result generalizes the classical Banach-stone theorem.

Recall that for a Banach space X, the Schäffer constant of X is defined by

 $\lambda(X) := \inf\{\max\{\|x+y\|, \|x-y\|\} : \|x\| = \|y\| = 1\}.$

The following result generalizes the classical Banach-stone theorem.

Theorem (Cidral, Galego, Rincón-Villamizar)

Let X be a Banach space with $\lambda(X) > 1$. If $T : C_0(K, X) \to C_0(S, X)$ is an isomorphism satisfying $||T|| ||T^{-1}|| < \lambda(X)$, then K and S are homeomorphic. Theorem above is optimal

э

Theorem above is optimal

Example

Let $K = \{1\}$ and $S = \{1, 2\}$. Let $T \colon \ell_p \to \ell_p \oplus_\infty \ell_p$ be given by

$$T((x_n)) = ((x_{2n}), (x_{2n-1})).$$

It is not difficult to show that T is an isomorphism with $||T|| ||T^{-1}|| = 2^{1/p}$ and $\lambda(\ell_p) = 2^{1/p}$ if $p \ge 2$. On the other hand, T induces an isomorphism from $C_0(K, \ell_p)$ onto $C_0(S, \ell_p)$.

Theorem above is optimal

Example

Let $K = \{1\}$ and $S = \{1, 2\}$. Let $T \colon \ell_p \to \ell_p \oplus_\infty \ell_p$ be given by

$$T((x_n)) = ((x_{2n}), (x_{2n-1})).$$

It is not difficult to show that T is an isomorphism with $||T|| ||T^{-1}|| = 2^{1/p}$ and $\lambda(\ell_p) = 2^{1/p}$ if $p \ge 2$. On the other hand, T induces an isomorphism from $C_0(K, \ell_p)$ onto $C_0(S, \ell_p)$.

What about Banach lattices?

Michael Alexánder Rincón Villamizar (UniversSome aspects of the lattice structure of $C_0(K)$

There is a lot of literature in this line.

There is a lot of literature in this line.

Definition

An $f \in C(K, X)$ is called non-vanishing if $0 \notin f(K)$. A linear operator $T: C(K, X) \to C(S, X)$ is called non-vanishing preserving if sends non-vanishing functions into non-vanishing functions.

There is a lot of literature in this line.

Definition

An $f \in C(K, X)$ is called non-vanishing if $0 \notin f(K)$. A linear operator $T: C(K, X) \to C(S, X)$ is called non-vanishing preserving if sends non-vanishing functions into non-vanishing functions.

Theorem (Jin Xi Chen, Z. L. Chen, N. C. Wong)

Suppose that $T: C(K, X) \to C(S, X)$ be a Banach lattice isomorphism such that T and T^{-1} are non-vanishing preserving. Then K and S are homeomorphic.

We introduce the analogue of Schäffer constant in Banach lattices.

We introduce the analogue of Schäffer constant in Banach lattices.

Definition If X is a Banach lattice, we define the positive Schäffer constant $\lambda^+(X)$ by $\lambda^+(X) := \inf\{\max\{\|x+y\|, \|x-y\|\} : \|x\| = \|y\| = 1, x, y > 0\}.$

Proposition

Let X be a Banach lattice. We have

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

Let X be a Banach lattice. We have

 $1 \lambda^+(X) \geq 1.$

Image: A mathematical states and a mathem

Proposition

Let X be a Banach lattice. We have

- $1 \lambda^+(X) \geq 1.$
- λ(X) ≤ λ⁺(X) but there are Banach lattices for which inequality is strict.

Proposition

Let X be a Banach lattice. We have

- $1 \lambda^+(X) \geq 1.$
- λ(X) ≤ λ⁺(X) but there are Banach lattices for which inequality is strict.
- $\lambda^+(X) = 1$ if X contains a copy of c_0 .

Proposition

Let X be a Banach lattice. We have

- $1 \lambda^+(X) \geq 1.$
- ∂ λ(X) ≤ λ⁺(X) but there are Banach lattices for which inequality is strict.
- $\lambda^+(X) = 1$ if X contains a copy of c_0 .
- If X is a L_p -space then $\lambda^+(X) = 2^{1/p}$.

Proposition

Let X be a Banach lattice. We have

- $1 \lambda^+(X) \geq 1.$
- ≥ λ(X) ≤ λ⁺(X) but there are Banach lattices for which inequality is strict.
- $\lambda^+(X) = 1$ if X contains a copy of c_0 .
- If X is a L_p -space then $\lambda^+(X) = 2^{1/p}$.

Recall that a Banach lattice X is called L_p -space if $||x + y||^p = ||x||^p + ||y||^p$ whenever $x, y \in X$ are disjoint.

Proposition

Let X be a Banach lattice. We have

- $1 \lambda^+(X) \geq 1.$
- ≥ λ(X) ≤ λ⁺(X) but there are Banach lattices for which inequality is strict.
- $\lambda^+(X) = 1$ if X contains a copy of c_0 .
- If X is a L_p -space then $\lambda^+(X) = 2^{1/p}$.

Recall that a Banach lattice X is called L_p -space if $||x + y||^p = ||x||^p + ||y||^p$ whenever $x, y \in X$ are disjoint.

If
$$X = (\mathbb{R}^2, \|\cdot\|_{\infty})$$
 then $\lambda^+(X) = 1$. So, converse of 3) does not hold.

Next result gives an answer to our problem.

Next result gives an answer to our problem.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice with $\lambda^+(X) > 1$. If $T : C_0(K, X) \to C_0(S, X)$ is a Banach lattice isomorphism satisfying $||T|| ||T^{-1}|| < \lambda^+(X)$, then K and S are homeomorphic. Next result gives an answer to our problem.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice with $\lambda^+(X) > 1$. If $T : C_0(K, X) \to C_0(S, X)$ is a Banach lattice isomorphism satisfying $||T|| ||T^{-1}|| < \lambda^+(X)$, then K and S are homeomorphic.

Remark

The above example shows that theorem is optimal since $\lambda^+(\ell_p) = 2^{1/p}$ for all $1 \le p \le \infty$.

Now if condition $||T|| ||T^{-1}|| < \lambda^+(X)$ is dropped, can we say something?

Michael Alexánder Rincón Villamizar (UniversSome aspects of the lattice structure of $C_0(K)$

Now if condition $||T|| ||T^{-1}|| < \lambda^+(X)$ is dropped, can we say something?

Example

Let K and S be two non-homeomorphic uncountable compact metric spaces such that the topological sums $K \oplus K$ and $S \oplus S$ are homeomorphic. We have the following Banach lattice isometries

$$C(K,X) \cong C(K \oplus K) \cong C(S \oplus S) \cong C(S,X),$$

where X is the Banach lattice ℓ_{∞}^2 .

Now if condition $||T|| ||T^{-1}|| < \lambda^+(X)$ is dropped, can we say something?

Example

Let K and S be two non-homeomorphic uncountable compact metric spaces such that the topological sums $K \oplus K$ and $S \oplus S$ are homeomorphic. We have the following Banach lattice isometries

$$C(K,X) \cong C(K \oplus K) \cong C(S \oplus S) \cong C(S,X),$$

where X is the Banach lattice ℓ_{∞}^2 .

The above Phenomenon does not occur for countable compact metric spaces as we see below.

If α is an ordinal, $[0,\alpha]$ denotes the set of all ordinals less or equal than $\alpha,$ endowed with the order topology.

If α is an ordinal, $[0,\alpha]$ denotes the set of all ordinals less or equal than $\alpha,$ endowed with the order topology.

Remark

If $C([0, \alpha], \ell_{\infty}^2)$ is Banach lattice isomorphic to $C([0, \beta], \ell_{\infty}^2)$, then $[0, \alpha]$ and $[0, \beta]$ are homeomorphic. Indeed, since ℓ_{∞}^2 is Banach lattice isometric to $C(\{1, 2\})$, we have the following Banach lattice isometries

$$C([0,\alpha],\ell_{\infty}^{2}) \cong C([0,\alpha] \oplus [0,\alpha]) \text{ and}$$
$$C([0,\beta],\ell_{\infty}^{2}) \cong C([0,\beta] \oplus [0,\beta])$$

By Kaplansky's theorem we conclude that $[0,\alpha]$ and $[0,\beta]$ are homeomorphic.

< □ > < ---->

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice containing no copy of c_0 and suppose that for each $n \in \mathbb{N}$, there is no a Banach lattice isomorphism from X^{n+1} into X^n . For each infinite ordinals α and β the following statements are equivalent:

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice containing no copy of c_0 and suppose that for each $n \in \mathbb{N}$, there is no a Banach lattice isomorphism from X^{n+1} into X^n . For each infinite ordinals α and β the following statements are equivalent: **1** $C([0, \alpha], X)$ and $C([0, \alpha], X)$ are Banach lattice isomorphic.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice containing no copy of c_0 and suppose that for each $n \in \mathbb{N}$, there is no a Banach lattice isomorphism from X^{n+1} into X^n . For each infinite ordinals α and β the following statements are equivalent:

- $C([0, \alpha], X)$ and $C([0, \alpha], X)$ are Banach lattice isomorphic.
- **2** $[0, \alpha]$ and $[0, \beta]$ are homeomorphic.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice containing no copy of c_0 and suppose that for each $n \in \mathbb{N}$, there is no a Banach lattice isomorphism from X^{n+1} into X^n . For each infinite ordinals α and β the following statements are equivalent:

- $C([0, \alpha], X)$ and $C([0, \alpha], X)$ are Banach lattice isomorphic.
- **2** $[0, \alpha]$ and $[0, \beta]$ are homeomorphic.

Remark

There are many Banach lattices X satisfying hypothesis of the above theorem.

In general if $C_0(K, X)$ and $C_0(S, X)$ are related as Banach lattices, we cannot conclude that K and S are homeomorphic but even so they share topological properties.

In general if $C_0(K, X)$ and $C_0(S, X)$ are related as Banach lattices, we cannot conclude that K and S are homeomorphic but even so they share topological properties.

Theorem (E. M. Galego, M. A. Rincón-Villamizar)

Let X be a Banach lattice with $\lambda^+(X) > 1$. Suppose that C(K, X) and C(S, X) are Banach lattice isomorphic. Then K is sequential (Fréchet, sequentially compact) if and only if S so is;

If $K = \Gamma$ where Γ is a set with discrete topology we denote $C_0(K)$ by $c_0(\Gamma)$. Also $\ell_{\infty}(\Gamma)$ denotes the Banach space of all bounded families indexed by Γ , endowed with the sup-norm.

If $K = \Gamma$ where Γ is a set with discrete topology we denote $C_0(K)$ by $c_0(\Gamma)$. Also $\ell_{\infty}(\Gamma)$ denotes the Banach space of all bounded families indexed by Γ , endowed with the sup-norm.

Definition

We say that Y contains almost isometric copies of X if for each $\varepsilon > 0$ there is an into isomorphism $T_{\varepsilon} \colon X \to Y$ such that $||T_{\varepsilon}|| ||T_{\varepsilon}^{-1}|| \le 1 + \varepsilon$. If $K = \Gamma$ where Γ is a set with discrete topology we denote $C_0(K)$ by $c_0(\Gamma)$. Also $\ell_{\infty}(\Gamma)$ denotes the Banach space of all bounded families indexed by Γ , endowed with the sup-norm.

Definition

We say that Y contains almost isometric copies of X if for each $\varepsilon > 0$ there is an into isomorphism $T_{\varepsilon} \colon X \to Y$ such that $||T_{\varepsilon}|| ||T_{\varepsilon}^{-1}|| \le 1 + \varepsilon$.

A result due to Rosenthal establishes that X^* contains almost isometric copies of $c_0(\Gamma)$ if and only if X^* contains isometric copies of $\ell_{\infty}(\Gamma)$.

Image: Image:

Question 1

Under what conditions the following statements are equivalent:

Question 1

Under what conditions the following statements are equivalent:

• B(X, Y) contains almost isometric copies of $c_0(\Gamma)$;

Question 1

Under what conditions the following statements are equivalent:

- **9** B(X, Y) contains almost isometric copies of $c_0(\Gamma)$;
- **2** B(X, Y) contains isometric copies of $\ell_{\infty}(\Gamma)$?

Question 1

Under what conditions the following statements are equivalent:

- **9** B(X, Y) contains almost isometric copies of $c_0(\Gamma)$;
- **2** B(X, Y) contains isometric copies of $\ell_{\infty}(\Gamma)$?

A theorem due to Lozanovskii says that a Banach lattice X contains a copy of c_0 if and only if X contains a lattice copy of c_0 .

Question 1

Under what conditions the following statements are equivalent:

- **9** B(X, Y) contains almost isometric copies of $c_0(\Gamma)$;
- **2** B(X, Y) contains isometric copies of $\ell_{\infty}(\Gamma)$?

A theorem due to Lozanovskii says that a Banach lattice X contains a copy of c_0 if and only if X contains a lattice copy of c_0 .

Question 2

Is Lozanovskii's theorem valid for $c_0(\Gamma)$?

- F. C. Cidral, E. M. Galego, M. A. Rincón-Villamizar, Optimal extensions of the Banach-Stone theorem. J. Math. Anal. Appl. 430 (2015), 1, 193–204.
- E. M. Galego, M. A. Rincón-Villamizar, On positive embeddings of C(K) spaces into C(S, X) lattices. J. Math. Anal. Appl. 467 (2018), 2, 1287-1296.
- E. M. Galego, M. A. Rincón-Villamizar, When do the Banach lattices C([0, α], X) determine the ordinal intervals [0, α]? J. Math. Anal. Appl. 443 (2016), 2, 1362–1369.

Thank you!

2

A B > 4
 B > 4
 B