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Czech Technical University, Prague

Workshop on Banach spaces and Banach lattices
Madrid, September 2019
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Let (M, d) and (N, %) be metric spaces. A map f : M −→ N is called Lipschitz
if there exists a constant C > 0 such that

%(f (p), f (q)) ≤ C d(p, q) ∀p, q ∈ M.

The Lipschitz constant of f is defined as

Lip(f ) := sup

{
%(f (p), f (q))

d(p, q)
: p, q ∈ M, p 6= q

}
.

Theorem (McShane, ’34)

Let S ⊆ M. Then every Lipschitz function f : S −→ R can be extended to a
Lipschitz function f̃ : M −→ R so that Lip(f̃ ) = Lip(f ).

f̃ (p) := sup {f (q)− Lip(f )d(p, q) : q ∈ S}
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Let (M, d) be a complete metric space with a base point 0 ∈ M (called a
pointed metric space). The Lipschitz-free space over M, denoted F(M), is
the Banach space satisfying the following universal property:

There exists an isometric embedding δ : M −→ F (M) such that
span δ(M) = F (M) and δ(0) = 0.

For any Banach space X and any Lipschitz map L : M −→ X with
L(0) = 0 there exists a unique linear operator L̄ : F (M) −→ X such that
‖L̄‖ = Lip(L) and L̄δ = L, i.e. the following diagram commutes:

M X
L

F (M)

δ L̄
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M N
L

F(N)F (M)

δN

L̂

δM
∀ M, N metric spaces, ∀ L Lipschitz with L(0) = 0
∃! L̂ linear operator s.t. ‖L̂‖ = Lip(L) and L̂δM = δNL.

M N
L F (N)

δN

F (M)

δM
δNL

Indeed, by universal property define

L̂ := δNL.

If M and N are bi-Lipschitz homeomorphic, then F (M) and F (N) are
linearly isomorphic.

If M and N are isometric, then F (M) and F (N) are linearly isometric.
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F (c0) is linearly isomorphic to F (C ([0, 1])). (Dutrieux, Ferenczi, ’05)

F (BRn) is linearly isomorphic to F (Rn). (Kaufmann, ’15)

There exist (Kα)α<ω1 homeomorphic to the Cantor space such that F (Kα)
is not linearly isomorphic to F (Kβ). (Hájek, Lancien, P, ’16)
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Theorem (Godefroy, Kalton, ’03)

A construction of examples of non-separable Banach spaces which are
bi-Lipschitz homeomorphic but not linearly isomorphic.

Theorem (Godefroy, Kalton, ’03)

If a separable Banach space X is isometric to a subset of a Banach space Y ,
then X is already linearly isometric to a subspace of Y .

Theorem (Godefroy, Kalton, ’03)

Let X be a Banach space with the bounded approximation property. If a
Banach space Y is bi-Lipschitz homeomorphic to X , then Y also has the
bounded approximation property.
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Let (M, d) be a complete pointed metric space with the base point 0 ∈ M.

Space of Lipschitz functions

Then
Lip0(M) = {f : M −→ R : f Lipschitz, f (0) = 0}

with the norm ‖f ‖ = Lip(f ) is a Banach space.

For p ∈ M consider the evaluation functional δ(p) ∈ Lip0(M)∗ defined by

〈f , δ(p)〉 = f (p) ∀f ∈ Lip0(M).

Then the Dirac map δ : M → Lip0(M)∗ is an isometric embedding.

Lipschitz-free space

The space
F(M) = span‖·‖ δ(M) ⊆ Lip0(M)∗

with the norm inherited from Lip0(M)∗ is the Lipschitz-free space over M.
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F (M)∗ ≡ Lip0(M) and for (fγ) and f in BLip0(M) we have

fγ
w∗

−−→ f ⇐⇒ (fγ(p) −→ f (p) ∀ p ∈ M) .

Theorem (Weaver, ’17)

If M has a finite diameter or it is complete and convex (e.g. Banach space)
then F (M) is the unique predual of Lip0(M).

Theorem (Kadets, ’85)

If K is a subset of M containing the base point, then F (K ) is isometric to
a subspace of F (M). Precisely,

F (K ) ≡ FM (K ) := span δ(K ) ⊆ F (M) .

If K is a Lipschitz retract of M, then FM (K ) is complemented in F (M).

For a closed subset K ⊆ M, define the kernel of K as

IM (K ) = {f ∈ Lip0(M) : f (p) = 0 ∀p ∈ K}.

Then FM (K )⊥ = IM (K ) and IM (K )⊥ = FM (K ).
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An elementary molecule in F (M) is

δ(p)− δ(q)

d(p, q)
∈ SF(M) where p, q ∈ M, p 6= q.

For every µ ∈ F (M) and every ε > 0 there exists a representation

µ =
∞∑
n=1

an
δ(pn)− δ(qn)

d(pn, qn)
such that

∞∑
n=1

|an| ≤ ‖µ‖+ ε.

Terminology: Arens-Eells spaces, Transportation cost spaces
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Definition

Let β : F (X ) −→ X be the linear extension of the identity on X (the barycentre
map). A Banach space X has the isometric Lipschitz lifting property if there
exists a linear operator T : X −→ F (X ) such that ‖T‖ = 1 and βT = IdX .

Then X is a complemented subspace of F (X ).

Theorem (Godefroy, Kalton, ’03)

Every separable Banach space has the isometric Lipschitz lifting property.
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Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 10 / 41



Lipschitz-free spaces
Supports

Approximation properties

Universal property
Construction
Linear structure

1 F (R) ≡ L1, F (N) ≡ `1.

2 F
(
R2
)
��
'
↪−→L1. (Naor, Schechtman, ’07; Kislyakov, ’75)

3 F
(
Rd
)
≡ L1(Rd ,Rd)/{g ∈ L1(Rd ,Rd) :

∑d
i=1 ∂igi = 0 as distributions}.

(Cúth, Kalenda, Kaplický, ’17; Flores, ’17; Godefroy, Lerner, ’17)

Question

Is F
(
R2
)
' F

(
R3
)
?

4 F
(
Rd
)

is complemented in F
(
Rd
)∗∗

. (Cúth, Kalenda, Kaplický, ’18)

Question (Godefroy, Lancien, Zizler, ’14)

Is F(`1) complemented in F (`1)∗∗?
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6 F (M)
≡
↪−→ L1 ⇐⇒ M

=
↪−→ R-tree. (Godard, ’10)

7 F (M) ≡ `1 ⇐⇒ M is a subset of an R-tree with zero length measure and
containing the branching points. (Dalet, Kaufmann, Procházka, ’16)

8 `1(dens(M))
'
↪−→
c
F (M). (Hájek, Novotný, ’17)

9 If M is bounded uniformly discrete, then F (M) ' `1.
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9 c0 ��
'
↪−→ F

(
[0, 1]d

)
. (Cúth, Doucha, Wojtaszczyk, ’16).

10 If M is a compact subset of a superreflexive Banach space, then

c0 ��
'
↪−→ F (M). (Kochanek, P., ’18)

Question (Cúth, Doucha Wojtaszczyk, ’16)

Is it true that c0
'
↪−→ F (`2)?

Question (Dutrieux, Ferenczi, ’05)

If X is a Banach space, does F (c0)
'
↪−→ F (X ) imply c0

bi−Lip
↪−−−−→ X ?

11 F (c0)�'C ([0, 1]), F (c0)�' Gurarĭı space. (CDW, ’16)

Question (Cúth, Doucha Wojtaszczyk, ’16)

Is F (c0) isomorphic to Holmes space or Pe lczyński space?
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Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Joint work with R. J. Aliaga (Valencia), C. Petitjean (Paris) and
A. Procházka (Besançon).
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Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Problem

Describe the extreme points of BF(M).

An elementary molecule in F (M) is

upq =
δ(p)− δ(q)

d(p, q)
∈ SF(M) where p, q ∈ M, p 6= q.

The metric segment between points p and q in M is

[p, q] = {r ∈ M : d(p, r) + d(q, r) = d(p, q)} .

Theorem (Aliaga, P., ’18)

Let M be a complete pointed metric space and let µ ∈ span(δ(M)) ⊆ F (M).
TFAE:

1 µ is an extreme point of BF(M),

2 µ = upq for some p, q ∈ M, p 6= q such that d(p, q) < d(p, r) + d(r , q) for
all r ∈ M \ {p, q}, i.e. [p, q] = {p, q}.
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Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 15 / 41



Lipschitz-free spaces
Supports

Approximation properties

Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Problem

Describe the extreme points of BF(M).

An elementary molecule in F (M) is

upq =
δ(p)− δ(q)

d(p, q)
∈ SF(M) where p, q ∈ M, p 6= q.

The metric segment between points p and q in M is

[p, q] = {r ∈ M : d(p, r) + d(q, r) = d(p, q)} .

Theorem (Aliaga, P., ’18/ Petitjean, Procházka, ’18)
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TFAE:

1 µ is an extreme/ exposed point of BF(M),
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Question

Is every extreme point of BF(M) an elementary molecule?

Equivalently: Does every extreme point of BF(M) belong to span(δ(M))?

Also equivalent: Is every extreme point µ of the form µ = ν + λ, where ν is
positive (i.e. 〈ν, f 〉 ≥ 0 for every f ≥ 0) and λ ∈ span(δ(M))? (Aliaga,
Petitjean, Procházka, ’19)

The answer is YES if:

M is compact and F (M) ≡ lip0(M)∗ (Weaver, ’99). That is for instance if
M is countable compact or compact ultrametric (Dalet, ’15), compact
Hölder space or the Cantor set (Weaver, ’99).
F (M) has a natural predual. (Garćıa-Lirola, Petitjean, Procházka, Rueda
Zoca, ’17)
M is a subset of an R−tree. (Aliaga, Petitjean, Procházka, ’19)
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Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 16 / 41



Lipschitz-free spaces
Supports

Approximation properties

Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Question

Is every extreme point of BF(M) an elementary molecule?

Equivalently: Does every extreme point of BF(M) belong to span(δ(M))?

Also equivalent: Is every extreme point µ of the form µ = ν + λ, where ν is
positive (i.e. 〈ν, f 〉 ≥ 0 for every f ≥ 0) and λ ∈ span(δ(M))? (Aliaga,
Petitjean, Procházka, ’19)

The answer is YES if:

M is compact and F (M) ≡ lip0(M)∗ (Weaver, ’99). That is for instance if
M is countable compact or compact ultrametric (Dalet, ’15), compact
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Theorem (Aliaga, P., ’18/ Petitjean, Procházka, ’18)

Let M be a complete pointed m. sp. and let µ ∈ span(δ(M)) ⊆ F (M). TFAE:

1 µ is an extreme/ exposed point of BF(M),

2 µ = upq for some p, q ∈ M, p 6= q such that d(p, q) < d(p, r) + d(r , q) for
all r ∈ M \ {p, q}, i.e. [p, q] = {p, q}.

Recall, if K ⊆ M closed and FM (K ) := span δ(K ∪ {0}) ⊆ F (M), then
F (K ∪ {0}) ≡ FM (K ).

Key Lemma

Let (p, q) ∈ M, p 6= q, and suppose that upq = λµ1 + (1− λ)µ2 for some
µ1, µ2 ∈ SF(M) and 0 < λ < 1. Then

µ1, µ2 ∈ FM ([p, q]ε) ∀ε > 0,

where [p, q]ε = {r ∈ M : d(p, r) + d(r , q)− d(p, q) ≤ ε}.

?=⇒ µ1, µ2 ∈ FM ([p, q])
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For K ⊆ M closed, define FM (K ) := span δ(K ∪ {0}) ⊆ F (M).

Theorem (Aliaga, P., ’18)

Let M be a complete pointed metric space and let {Ki : i ∈ I} be a family of
closed subsets of M. Then⋂

i∈I

FM (Ki ) = FM

(⋂
i∈I

Ki

)
.

Definition

Let M be a complete pointed metric space. For a µ ∈ F (M), we define
the support of µ as

supp(µ) :=
⋂
{K ⊆ M closed : µ ∈ FM (K )} .

Corollary

The support of µ is the smallest closed set K ⊆ M such that µ ∈ FM (K ), i.e.
µ ∈ FM (supp(µ)) and supp(µ) ⊆ K whenever µ ∈ FM (K ).
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Proposition

Let K ⊆ M closed and let µ ∈ F (M). TFAE:

1 supp(µ) ⊆ K ,

2 µ ∈ FM (K ),

3 〈µ, f 〉 = 〈µ, g〉 for any f , g ∈ Lip0(M) such that f |K = g |K .

Proposition

Let µ ∈ F (M) and p ∈ M. TFAE:

1 p ∈ supp(µ),

2 For every neighbourhood U of p there exists f ∈ Lip0(M) such that
supp(f ) ⊆ U and 〈µ, f 〉 > 0.
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Let m be a Radon measure on M. Then

δ : M −→ F (M) is Bochner integrable ⇐⇒ d(·, 0) ∈ L1(|m|).

In such case

µ :=

∫
M

δ(p) dm(p) ∈ F (M)

satisfies

〈µ, f 〉 =

∫
M

f (p) dm(p) ∀f ∈ Lip0(M).

We say that µ is induced by measure m.

Proposition

If µ ∈ F (M) is induced by a Radon measure m on M, then the support of µ
agrees with the support of m, possibly up to the base point.
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Let (M, d) be a complete pointed metric space with the base point 0 ∈ M and
let Lip0(M) = {f : M −→ R : f Lipschitz, f (0) = 0} be equipped with the
norm ‖f ‖ = Lip(f ).

Consider the isometry δ : M −→ Lip0(M)∗, given by 〈f , δ(p)〉 = f (p). The
Lipschitz-free space over M is the space

F(M) = span‖·‖ {δ(p) : p ∈ M} ⊆ Lip0(M)∗.

M X
L

F (M)

δ L̄
M metric sp., X Banach sp., L Lipschitz, L(0) = 0
⇒ ∃! L̄ linear, ‖L̄‖ = Lip(L), L̄δ = L

M N
L

F(N)F (M)

δN

L̂

δM
M, N metric sp., L Lipschitz, L(0) = 0
⇒ ∃! L̂ := δNL linear, ‖L̂‖ = Lip(L), L̂δM = δNL

F(M)∗ ≡ Lip0(M) and fi
w∗

−−→ f ⇐⇒ fi
p.w .−−→ f in BLip0(M).

Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 21 / 41



Lipschitz-free spaces
Supports

Approximation properties

Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Let (M, d) be a complete pointed metric space with the base point 0 ∈ M and
let Lip0(M) = {f : M −→ R : f Lipschitz, f (0) = 0} be equipped with the
norm ‖f ‖ = Lip(f ).

Consider the isometry δ : M −→ Lip0(M)∗, given by 〈f , δ(p)〉 = f (p). The
Lipschitz-free space over M is the space

F(M) = span‖·‖ {δ(p) : p ∈ M} ⊆ Lip0(M)∗.

M X
L

F (M)

δ L̄
M metric sp., X Banach sp., L Lipschitz, L(0) = 0
⇒ ∃! L̄ linear, ‖L̄‖ = Lip(L), L̄δ = L

M N
L

F(N)F (M)

δN

L̂

δM
M, N metric sp., L Lipschitz, L(0) = 0
⇒ ∃! L̂ := δNL linear, ‖L̂‖ = Lip(L), L̂δM = δNL

F(M)∗ ≡ Lip0(M) and fi
w∗

−−→ f ⇐⇒ fi
p.w .−−→ f in BLip0(M).
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For K ⊆ M closed, define FM (K ) := span δ(K ∪ {0}) ⊆ F (M).

Theorem (Aliaga, P., ’18)

Let M be a complete pointed metric space and let {Ki : i ∈ I} be a family of
closed subsets of M. Then⋂

i∈I

FM (Ki ) = FM

(⋂
i∈I

Ki

)
.

Definition

Let M be a complete pointed metric space. For a µ ∈ F (M), we define
the support of µ as

supp(µ) :=
⋂
{K ⊆ M closed : µ ∈ FM (K )} .

Corollary

The support of µ is the smallest closed set K ⊆ M such that µ ∈ FM (K ), i.e.
µ ∈ FM (supp(µ)) and supp(µ) ⊆ K whenever µ ∈ FM (K ).
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The space Lip0(M) has

linear structure

order structure:
Say f ≤ g if f (p) ≤ g(p) for every p ∈ M.
Define ∧

fλ := inf fλ,
∨

fλ := sup fλ.

Then
Lip
(∧

fλ
)
, Lip

(∨
fλ
)
≤ sup Lip(fλ).

and, if M is bounded, algebraic structure:

Lip(f · g) ≤ Lip(f ) ‖g‖∞ + ‖f ‖∞ Lip(g) ≤ 2 diam(M) Lip(f ) Lip(g).
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Recall, for a closed subset K ⊆ M,

IM (K ) = {f ∈ Lip0(M) : f (p) = 0 ∀p ∈ K}

and FM (K )⊥ = IM (K ), IM (K )⊥ = FM (K ).

Lemma

If M is a complete pointed metric space and {Ki : i ∈ I} are closed subsets of
M, then

spanw∗ ⋃
i∈I

IM (Ki ) = IM

(⋂
i∈I

Ki

)
.

Proof of Theorem:⋂
i∈I

FM (Ki ) =
⋂
i∈I

(IM (Ki )⊥) =

(⋃
i∈I

IM (Ki )

)
⊥

=(
spanw∗ ⋃

i∈I

IM (Ki )

)
⊥

= IM

(⋂
i∈I

Ki

)
⊥

= FM

(⋂
i∈I

Ki

)
.
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Lemma

spanw∗ ⋃
i∈I

IM (Ki ) = IM
(⋂

i∈I

Ki

)
.

Sketch of proof for bounded M:

If µ ∈ F (M), g ∈ Lip0(M) and we define (µ ◦ g)(f ) = 〈µ, f .g〉 for
f ∈ Lip0(M), then µ ◦ g ∈ F (M).

If Y is an ideal of Lip0(M), then Y
w∗

is also an ideal of Lip0(M).

For K ⊆ M closed, the kernel IM (K ) is a w∗-closed ideal of Lip0(M).

Theorem (Weaver, ’95)

If A is a w∗-closed ideal of Lip0(M), then A = IM (H(A)), where

H(A) = {p ∈ M : f (p) = 0 ∀f ∈ A}.

Finally,

spanw∗ ⋃
i∈I

IM (Ki ) = IM

(
H

(
spanw∗ ⋃

i∈I

IM (Ki )

))
= IM

(⋂
i∈I

Ki

)
.
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Proposition

Let A ⊆ M be a bounded set containing the base point and let g : M −→ R be
a Lipschitz function with supp(g) ⊆ A. For every f ∈ Lip0(A) define

Tg (f )(p) =

{
g(p).f (p) if p ∈ A

0 if p /∈ A
.

Then Tg (f ) ∈ Lip0(M) and

Tg : Lip0(A) −→ Lip0(M)

is a bounded w∗-w∗-continuous operator.

Hence, there exists a bounded
operator

(Tg )∗ : F (M) −→ F (A)

such that
((Tg )∗)

∗ = Tg .

In particular, if M is bounded and A = M, then (Tg )∗(m) = m ◦ g .

Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 26 / 41



Lipschitz-free spaces
Supports

Approximation properties

Motivation - Extreme points
Definition and basic properties
Proof of Intersection theorem

Proposition

Let A ⊆ M be a bounded set containing the base point and let g : M −→ R be
a Lipschitz function with supp(g) ⊆ A. For every f ∈ Lip0(A) define

Tg (f )(p) =

{
g(p).f (p) if p ∈ A

0 if p /∈ A
.

Then Tg (f ) ∈ Lip0(M) and

Tg : Lip0(A) −→ Lip0(M)

is a bounded w∗-w∗-continuous operator. Hence, there exists a bounded
operator

(Tg )∗ : F (M) −→ F (A)

such that
((Tg )∗)

∗ = Tg .

In particular, if M is bounded and A = M, then (Tg )∗(m) = m ◦ g .
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Lemma

spanw∗ ⋃
i∈I

IM (Ki ) = IM
(⋂

i∈I

Ki

)
.

Sketch of proof for unbounded M:

Let f ∈ IM
(⋂

i∈I Ki

)
and let U be a w∗-neighbourhood of f . We want to

show that U ∩ span∪i∈I IM (Ki ) 6= ∅.

Lipschitz functions with bounded supports are w∗-dense in Lip0(M) and in
IM (K ), so we may assume that f has a bounded support.

Use operators T”χsupp(f )” and (T”χsupp(f )”)∗ to pass to/from a bounded space
and apply the Lemma for the bounded case.
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Joint works with P. Hájek (Prague), G. Lancien (Besançon), R. Smith (Dublin).
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A Banach space X has

the approximation property (AP) if, given K ⊆ X compact and ε > 0,
there is a bounded finite-rank operator T : X −→ X such that
‖Tx − x‖ ≤ ε for all x ∈ K ,

the λ−bounded approximation property (λ−BAP), 1 ≤ λ <∞, if
moreover ‖T‖ ≤ λ
the metric approximation property (MAP) if it has 1−BAP.

If X is separable, then X has the BAP if and only if there exists a bounded
sequence of finite-rank operators Tn : X −→ X such that
limn→∞ ‖Tnx − x‖ = 0 for all x ∈ X .

In fact, it is enough to assume Tnx
w−→ x .

Problem

For which metric spaces M does F(M) have the BAP?
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Theorem (Godefroy, Kalton, ’03)

If X is a finite-dimensional Banach space, then F(X ) has the MAP.

The space F (U), where U is the Urysohn universal space, has the MAP.
(Fonf, Wojtaszczyk, ’08)

If M ⊆ `N2 , then F(M) has C
√

N-BAP. (Lancien, P., ’13)

If M is a countable proper metric space, then F(M) has the MAP. (Dalet,
’14)
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Definition

Let X be a Banach space and β : F (X ) −→ X be the linear extension of the
identity on X (the barycentre map). We say that X has the isometric
Lipschitz lifting property if there exists a linear operator T : X −→ F (X )
such that ‖T‖ = 1 and βT = IdX .

Then X is a complemented subspace of F (X ).

Theorem (Godefroy, Kalton, ’03)

Every separable Banach space has the isometric Lipschitz lifting property.

If X is a separable Banach space without the AP (Enflo, ’72), then F (X ) also
fails the AP.

Theorem (Godefroy, Kalton, ’03)

A Banach space X has the λ-BAP if and only if F(X ) has the λ-BAP.

Corollary (Godefroy, Kalton, ’03)

The BAP is stable under bi-Lipschitz homeomorphisms between Banach spaces.
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A refinement of the construction of the lifting leads to:

Theorem (Godefroy, Ozawa, ’14)

If X is a separable Banach space and K is a closed convex subset containing 0
such that span K = X , then X is isometric to a 1-complemented subspace of
F (K ).
In particular, there exists a compact set K such that F (K ) fails AP.

Theorem (Hájek, Lancien, P., ’16)

If X is a separable Banach space, then there exists a compact set K ⊂ X
homeomoprhic to the Cantor space such that X is isomorphic to a
complemented subspace of F (K ).
In particular, there exists a compact metric space K homeomoprhic to the
Cantor space such that F (K ) fails the AP.
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Proposition

Let M be a separable pointed metric space. Suppose there exist finite subsets
Mn of M containing the base point such that M1 ⊆ M2 ⊆ M3 ⊆ . . . and⋃∞

n=1 Mn = M, and linear operators En : Lip0(Mn) −→ Lip0(M) such that:

‖En‖ ≤ λ for some λ ≥ 1 (uniformly bounded),

|En(f )(p)− f (p)| ≤ αn Lip(f ) for all p ∈ Mn, f ∈ Lip0(Mn), where αn ↘ 0
(near-extension operators).

Then F (M) has the λ−BAP.

Proof: Define operators Ln : Lip0(M) −→ Lip0(M) by

Ln(f ) := En(f |Mn) for all f ∈ Lip0(M).

Then Ln are λ−bounded w∗ − w∗ continuous finite-rank operators such that
limn→∞ Ln(f )(p) = f (p) for all f ∈ Lip0(M) and all p ∈ M. Hence, their
preadjoint operators

(Ln)∗ : F (M) −→ F (M)

yield the λ−BAP for F (M).
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Doubling spaces

A metric space M is called doubling if there exists a constant D > 0 such that
any open ball in M with radius R can be covered with at most D many open
balls of radius R

2 .

Theorem (Lancien, P, ’13)

If M is a doubling metric space, then F (M) has the C (log(D))-BAP.

Proof:
Extension operators due to Lee and Naor, ’05/ Brudnyi and Brudnyi, ’06.
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Proposition

Let M be a separable pointed metric space. Suppose there exist finite subsets
Mn of M containing the base point such that M1 ⊆ M2 ⊆ M3 ⊆ . . . and⋃∞

n=1 Mn = M, and linear operators En : Lip0(Mn) −→ Lip0(M). Consider the
following conditions:

1 ‖En‖ ≤ λ for some λ ≥ 1 (uniformly bounded),

2 En(f )
∣∣
Mn

= f for all f ∈ Lip0(Mn) (extension),

3 En(Em(f |Mm)|Mn) = Em(En(f |Mn)|Mm) = Em(f |Mm) for all m ≤ n ∈ N and
all f ∈ Lip0(M) (commuting operators),

4 |Mn+1| = |Mn|+ 1 (with rank n).

If the conditions (1)–(3) are satisfied, then F (M) has a finite dimensional
Schauder decomposition.
If the conditions (1)–(4) are satisfied, then F (M) has a Schauder basis.

Proof: Commuting extension operators on Lip0(M) induce commuting
projections on F (M).
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`1

Theorem (Borel-Mathurin, ’12)

F(RN) has a finite dimensional decomposition, with the decomposition constant
depending on the dimension N.

Theorem (Lancien, P, ’13)

F(`1) and F(`N1 ) have a monotone finite dimensional decomposition.

Theorem (Hájek, P, ’14)

F(`1) and F(`N1 ) have a Schauder basis.

Proof: Extension operators based on convex interpolation on cubes of a
Lipschitz function defined at the vertices of the cube such that the resulting
function is affine in each coordinate.

Recall that for M ⊂ RN with nonempty interior, F (M) ' F
(
RN
)

(Kaufmann,
’15). In particular, F (M) has a basis.
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Theorem (Hájek, P, ’14)

F(`1) and F(`N1 ) have a Schauder basis.

Proof: Extension operators based on convex interpolation on cubes of a
Lipschitz function defined at the vertices of the cube such that the resulting
function is affine in each coordinate.

Recall that for M ⊂ RN with nonempty interior, F (M) ' F
(
RN
)

(Kaufmann,
’15). In particular, F (M) has a basis.
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Finite dimensional spaces

Theorem (P, Smith, ’14)

If K is a compact convex subset of a finite-dimensional Banach space, then
F(K ) has the MAP.

Proof: For any norm on RN , if f is a uniformly differentiable function, then the
coordinate-wise affine interpolation of f on cubes almost preserves the Lipschitz
constant. Therefore we first uniformly approximate a Lipschitz function by a
smooth function using convolution with a smooth mollifier.

Eva Pernecká Supports and approximation properties in Lipschitz-free spaces 37 / 41



Lipschitz-free spaces
Supports

Approximation properties

Finite dimensional spaces
Lifting property
Linear extension operators

Retractions

If there exist uniformly bounded (commuting) Lipschitz retractions

rn : M −→ Mn,

then operators En : Lip0(Mn) −→ Lip0(M) defined by

En(f ) := f ◦ rn for all f ∈ Lip0(Mn)

satisfy the hypothesis of the Proposition.

Theorem (Godefroy, Ozawa, ’14)

If K is a ”small” Cantor set, then F (K ) has the MAP.

Theorem (Cúth, Doucha, ’14)

If M is a separable ultrametric space, then F (M) has a monotone Schauder
basis.

Theorem (Hájek, Novotný, ’17)

F (N ) has a Schauder basis for a net N in C (K ) for K metrizable compact.
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Theorem (Godefroy, ’15; Ambrosio, Puglisi, ’16)

For a separable metric space M and a sequence of finite subsets
M1 ⊆ M2 ⊆ M3 ⊆ . . . ⊆ M such that

⋃∞
n=1 Mn = M, TFAE:

F (M) has the λ−BAP.

There exist λ−bounded linear near-extension operators for Lipschitz
functions from sets Mn to the whole space M.

There exist λ−bounded linear near-extension operators for Banach
space-valued Lipschitz functions from sets Mn to the whole space M.

There exist λ−Lipschitz uniform near-extensions for Banach space-valued
1-Lipschitz functions from sets Mn to the whole space M.
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Questions

A direct construction of a compact space K such that F (K ) fails the AP.
(Godefroy)

Does F (M) have the MAP for any M ⊂ RN? (Godefroy)

Does F (`2) have a Schauder basis or a finite dimensional decomposition?

Let M be a uniformly discrete metric space. Does F (M) have the BAP?
(Kalton)

Are some analogues of results due to Godefroy and Godefroy and Kalton
true for finite dimensional decompositions or bases? Can these properties
for free spaces be characterized by the existence of extension operators for
Lipschitz functions? Are they equivalent for a Banach space and its free
space?

. . .
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Thank you for your attention!
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