Fragmentation, amalgamation and twisted Hilbert spaces

Daniel Morales González

Departamento de Matemáticas Universidad de Extremadura

September 12, 2019

This work was supported by project MTM2016-76958-C2-1-P

1 Palais' problem and twisted Hilbert spaces

2 Complex interpolation and derivations

3 Fragmentation and amalgamation

1 Palais' problem and twisted Hilbert spaces

2 Complex interpolation and derivations

3 Fragmentation and amalgamation

Palais' problem

Let X be a Banach space, and let Y be a closed subspace of X.

Palais' problem

Let X be a Banach space, and let Y be a closed subspace of X.

Problem (Palais')

If Y and X/Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Palais' problem

Let X be a Banach space, and let Y be a closed subspace of X.

Problem (Palais')

If Y and X/Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

The theory of twisted Hilbert spaces grew from this problem.

Twisted Hilbert spaces

Definition

A twisted Hilbert space is a Banach space X with a subspace Y isomorphic to a Hilbert space such that the corresponding quotient X/Y is also isomorphic to a Hilbert space.

Twisted Hilbert spaces

Definition

A twisted Hilbert space is a Banach space X with a subspace Y isomorphic to a Hilbert space such that the corresponding quotient X/Y is also isomorphic to a Hilbert space.

In homological terms, it is the space in the middle of a short exact sequence

$$0 \longrightarrow H \longrightarrow X \longrightarrow H \longrightarrow 0.$$

Twisted Hilbert spaces

Definition

A twisted Hilbert space is a Banach space X with a subspace Y isomorphic to a Hilbert space such that the corresponding quotient X/Y is also isomorphic to a Hilbert space.

In homological terms, it is the space in the middle of a short exact sequence

$$0 \longrightarrow H \longrightarrow X \longrightarrow H \longrightarrow 0.$$

The first twisted Hilbert space that one can see is the proper Hilbert space

Twisted Hilbert spaces

We say that a twisted Hilbert is *trivial* when the exact sequence splits, or equivalently

Twisted Hilbert spaces

We say that a twisted Hilbert is *trivial* when the exact sequence splits, or equivalently

• the space in the middle is the direct sum of the subspace and the quotient,

Twisted Hilbert spaces

We say that a twisted Hilbert is *trivial* when the exact sequence splits, or equivalently

- the space in the middle is the direct sum of the subspace and the quotient,
- the subspace is complemented,

Twisted Hilbert spaces

We say that a twisted Hilbert is *trivial* when the exact sequence splits, or equivalently

- the space in the middle is the direct sum of the subspace and the quotient,
- the subspace is complemented,
- there exists a continuous proyection from the space to the subspace.

Twisted Hilbert spaces

We say that a twisted Hilbert is *trivial* when the exact sequence splits, or equivalently

- the space in the middle is the direct sum of the subspace and the quotient,
- the subspace is complemented,
- there exists a continuous proyection from the space to the subspace.

The first non-trivial twisted Hilbert was obtained by Enflo, Lindenstrauss and Pisier, giving a negative answer to Palais' problem.

ELP space

This twisted Hilbert of Enflo, Lindenstrauss and Pisier, (ELP) has the form $\ell_2(F_n)$, where F_n are finite-dimensional Banach spaces.

ELP space

This twisted Hilbert of Enflo, Lindenstrauss and Pisier, (ELP) has the form $\ell_2(F_n)$, where F_n are finite-dimensional Banach spaces.Precisely, they constructed these exact sequences

$$0 \longrightarrow \ell_2^{n^2} \xrightarrow{P_n} ELP^n \longrightarrow \ell_2^n \longrightarrow 0$$

in such a way that $\lim_{n\to\infty} ||P_n|| = \infty$.

ELP space

This twisted Hilbert of Enflo, Lindenstrauss and Pisier, (ELP) has the form $\ell_2(F_n)$, where F_n are finite-dimensional Banach spaces.Precisely, they constructed these exact sequences

$$0 \longrightarrow \ell_2^{n^2} \xrightarrow{P_n} ELP^n \longrightarrow \ell_2^n \longrightarrow 0$$

in such a way that $\lim_{n\to\infty} ||P_n|| = \infty$. So pasting all with the ℓ_2 norm it results

$$0 \longrightarrow \ell_2(\ell_2^{n^2}) \longrightarrow \ell_2(ELP^n) \longrightarrow \ell_2(\ell_2^n) \longrightarrow 0,$$

and cannot exists a continuous proyection to the subspace.

1 Palais' problem and twisted Hilbert spaces

2 Complex interpolation and derivations

3 Fragmentation and amalgamation

Complex interpolation

Other method to construct twisted Hilbert spaces is by complex interpolation.

Complex interpolation

Other method to construct twisted Hilbert spaces is by complex interpolation.

Let $\mathbb S$ be the open strip $\{z\in\mathbb C: 0< Re(z)<1\}$ and let $\bar{\mathbb S}$ its closure.

Complex interpolation

Other method to construct twisted Hilbert spaces is by complex interpolation.

Let $\mathbb S$ be the open strip $\{z\in\mathbb C: 0< Re(z)<1\}$ and let $\bar{\mathbb S}$ its closure.

Given an admissible pair (X_0, X_1) of complex Banach spaces, let $\Sigma = X_0 + X_1$ endowed with the norm

$$||x|| = \inf\{||x_0||_0 + ||x_1||_1 : x = x_0 + x_1\}.$$

Complex interpolation

We denote $\mathcal{F}(X_0, X_1)$ to the space of functions $f : \overline{\mathbb{S}} \to \Sigma$ satisfying these conditions:

Complex interpolation

We denote $\mathcal{F}(X_0, X_1)$ to the space of functions $f : \overline{\mathbb{S}} \to \Sigma$ satisfying these conditions:

• f is $\|\cdot\|_{\Sigma}$ -bounded and $\|\cdot\|_{\Sigma}$ -continuous on $\overline{\mathbb{S}}$,

Complex interpolation

We denote $\mathcal{F}(X_0, X_1)$ to the space of functions $f : \overline{\mathbb{S}} \to \Sigma$ satisfying these conditions:

- f is $\|\cdot\|_{\Sigma}$ -bounded and $\|\cdot\|_{\Sigma}$ -continuous on $\overline{\mathbb{S}}$,
- f is $\|\cdot\|_{\Sigma}$ -analytic on \mathbb{S} ,

Complex interpolation

We denote $\mathcal{F}(X_0, X_1)$ to the space of functions $f : \overline{\mathbb{S}} \to \Sigma$ satisfying these conditions:

- f is $\|\cdot\|_{\Sigma}$ -bounded and $\|\cdot\|_{\Sigma}$ -continuous on $\overline{\mathbb{S}}$,
- f is $\|\cdot\|_{\Sigma}$ -analytic on \mathbb{S} ,
- $f(it+j) \in X_j$, (j = 0, 1) and the map $t \in \mathbb{R} \mapsto f(it+j)$ is bounded and continuous.

Complex interpolation

We denote $\mathcal{F}(X_0, X_1)$ to the space of functions $f : \overline{\mathbb{S}} \to \Sigma$ satisfying these conditions:

- f is $\|\cdot\|_{\Sigma}$ -bounded and $\|\cdot\|_{\Sigma}$ -continuous on $\overline{\mathbb{S}}$,
- f is $\|\cdot\|_{\Sigma}$ -analytic on \mathbb{S} ,
- $f(it+j) \in X_j$, (j = 0, 1) and the map $t \in \mathbb{R} \mapsto f(it+j)$ is bounded and continuous.

This space ${\mathcal F}$ is a Banach space under the norm

$$||f||_{\mathcal{F}} = \sup\{||f(it+j)||_j : j = 0, 1; t \in \mathbb{R}\}.$$

Complex interpolation

Now, we can define the interpolated space at $0 \leq \theta \leq 1$

$$X_{\theta} = (X_0, X_1)_{\theta} = \{ x \in \Sigma : x = f(\theta) \text{ for some } f \in \mathcal{F} \}$$

with the norm

$$||x||_{\theta} = \inf\{||f||_{\mathcal{F}} : x = f(\theta)\}.$$

Complex interpolation

Now, we can define the interpolated space at $0 \leq \theta \leq 1$

$$X_{\theta} = (X_0, X_1)_{\theta} = \{ x \in \Sigma : x = f(\theta) \text{ for some } f \in \mathcal{F} \}$$

with the norm

$$||x||_{\theta} = \inf\{||f||_{\mathcal{F}} : x = f(\theta)\}.$$

Now, if $\delta_{\theta} : \mathcal{F} \to \Sigma$ is the evaluation map at θ , then X_{θ} is the quotient of \mathcal{F} by ker δ_{θ} ,

$$0 \longrightarrow \ker \delta_{\theta} \longrightarrow \mathcal{F} \longrightarrow X_{\theta} \longrightarrow 0.$$

Complex interpolation

The following lemma provides the connection between complex interpolation and twisted Hilbert spaces

Lemma

 δ'_{θ} : ker $\delta_{\theta} \to X_{\theta}$ is bounded and onto for $0 < \theta < 1$.

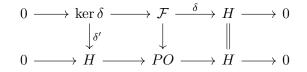
Complex interpolation

The following lemma provides the connection between complex interpolation and twisted Hilbert spaces

Lemma

 δ'_{θ} : ker $\delta_{\theta} \to X_{\theta}$ is bounded and onto for $0 < \theta < 1$.

If the interpolated space is a Hilbert space H we can complete the diagram doing a push-out



Derivations

Let $B: H \to \mathcal{F}$ be a bounded homogeneous selection for δ .

Derivations

Let $B: H \to \mathcal{F}$ be a bounded homogeneous selection for δ .

The map $\Omega = \delta' B$ is called the *associated derivation* to the twisted Hilbert space.

Derivations

Let $B: H \to \mathcal{F}$ be a bounded homogeneous selection for δ .

The map $\Omega = \delta' B$ is called the *associated derivation* to the twisted Hilbert space.

Example (Kalton-Peck derivation)

Fix the couple (ℓ_p, ℓ_q) , where $\frac{1}{p} + \frac{1}{q} = 1$. When we interpolate this scale at 1/2 appears the space ℓ_2 , and the map $B(x)(z) = x^{2\left(\frac{1}{p} - \frac{1}{q}\right)(1-z)}$ is a bounded homogeneous selection for $\delta_{1/2}$,

Derivations

Let $B: H \to \mathcal{F}$ be a bounded homogeneous selection for δ .

The map $\Omega = \delta' B$ is called the *associated derivation* to the twisted Hilbert space.

Example (Kalton-Peck derivation)

Fix the couple (ℓ_p, ℓ_q) , where $\frac{1}{p} + \frac{1}{q} = 1$. When we interpolate this scale at 1/2 appears the space ℓ_2 , and the map $B(x)(z) = x^{2\left(\frac{1}{p} - \frac{1}{q}\right)(1-z)}$ is a bounded homogeneous selection for $\delta_{1/2}$, so the derivation is

$$\mathcal{K}(x) = -2\left(\frac{1}{p} - \frac{1}{q}\right) x \log \frac{|x|}{\|x\|}.$$

Daniel Morales González

1 Palais' problem and twisted Hilbert spaces

2 Complex interpolation and derivations

3 Fragmentation and amalgamation

Fragmentation

Let us break a twisted Hilbert space and then repair it in the spirit of Enflo, Lindenstrauss and Pisier.

Fragmentation

Let us break a twisted Hilbert space and then repair it in the spirit of Enflo, Lindenstrauss and Pisier.

Let L be a Banach space such that there is a common unconditional basis for L and his dual L^* .

Fragmentation

Let us break a twisted Hilbert space and then repair it in the spirit of Enflo, Lindenstrauss and Pisier.

Let L be a Banach space such that there is a common unconditional basis for L and his dual L^* . Given a finite set $A \subset \mathbb{N}$, we define

$$L(A) = \{ x \in L : \operatorname{supp}(x) \subset A \},\$$

with the norm $||x||_{L(A)} = ||1_A x||_L$.

Fragmentation

Let us break a twisted Hilbert space and then repair it in the spirit of Enflo, Lindenstrauss and Pisier.

Let L be a Banach space such that there is a common unconditional basis for L and his dual L^* . Given a finite set $A \subset \mathbb{N}$, we define

$$L(A) = \{ x \in L : \operatorname{supp}(x) \subset A \},\$$

with the norm $||x||_{L(A)} = ||1_A x||_L$.

Lemma

$$(L(A), L^*(A))_{\theta} = (L, L^*)_{\theta}(A)$$
 with derivation
 $\Omega_A(x) = 1_A \Omega(1_A x).$

Amalgamation

Now, we are pasting the pieces $L(A_n)$ together using the "glue" of a Banach sequence space, or in a generalized form:

Amalgamation

Now, we are pasting the pieces $L(A_n)$ together using the "glue" of a Banach sequence space, or in a generalized form:

Let Λ be a Köthe space defined on a measure space M.

Amalgamation

Now, we are pasting the pieces $L(A_n)$ together using the "glue" of a Banach sequence space, or in a generalized form:

Let Λ be a Köthe space defined on a measure space M. Given a Banach space X one can define the vector valued Banach space $\Lambda(X)$ of measurable functions $f: M \to X$ such that the function $\hat{f}(\cdot) = \|f(\cdot)\|_X : M \to \mathbb{R}$ given by $t \mapsto \|f(t)\|_X$ is in Λ , endowed with the norm $\|\|f(\cdot)\|_X\|_{\Lambda}$.

Amalgamation

Theorem

Fix $0 < \theta < 1$. Let (λ_0, λ_1) an interpolation couple of Banach lattices on the same measure space for which $(\lambda_0, \lambda_1)_{\theta} = \lambda_0^{1-\theta} \lambda_1^{\theta}$ with associated derivation ω_{θ} . Let (X_0, X_1) be an interpolation couple of Banach spaces with associated derivation Ω_{θ} at θ . Assume that $\lambda_0(X_0)$ is reflexive. Then

$$(\lambda_0(X_0), \lambda_1(X_1))_{\theta} = \lambda_0^{1-\theta} \lambda_1^{\theta} \left((X_0, X_1)_{\theta} \right)$$

with associated derivation Φ_{θ} defined on the dense subspace of simple functions as follows: given $f = \sum_{n=1}^{N} a_n 1_{A_n}$ then

$$\Phi_{\theta}(f) = \omega_{\theta}\left(\widehat{f}(\cdot)\right) \sum_{n=1}^{N} \frac{a_n}{\|a_n\|} \mathbf{1}_{A_n} + \sum_{n=1}^{N} \Omega_{\theta}(a_n) \mathbf{1}_{A_n}.$$

Daniel Morales González

Amalgamation

Let us see some example, consider the couples (ℓ_p, ℓ_q) and (ℓ_q, ℓ_p) (in reversed order). The interpolated space is $\ell_2(\ell_2)$.

Amalgamation

Let us see some example, consider the couples (ℓ_p, ℓ_q) and (ℓ_q, ℓ_p) (in reversed order). The interpolated space is $\ell_2(\ell_2)$. The derivation at 1/2 respect to the first couple is $\mathcal{K}(x) = \left(\frac{2}{p} - \frac{2}{q}\right) \sum_k x_k \log \frac{|x_k|}{\|x\|} u_k \text{ where } (u_k) \text{ denotes the canonical basis of } \ell_2;$

Amalgamation

Let us see some example, consider the couples (ℓ_p, ℓ_q) and (ℓ_q, ℓ_p) (in reversed order). The interpolated space is $\ell_2(\ell_2)$. The derivation at 1/2 respect to the first couple is $\mathcal{K}(x) = \left(\frac{2}{p} - \frac{2}{q}\right) \sum_k x_k \log \frac{|x_k|}{\|x\|} u_k$ where (u_k) denotes the canonical basis of ℓ_2 ; respect the second couple, the derivation at 1/2 is $-\mathcal{K}(x) = \left(\frac{2}{p} - \frac{2}{q}\right) \sum_k x_k \log \frac{|x_k|}{\|x\|} e_k$.

Amalgamation

Let us see some example, consider the couples (ℓ_p, ℓ_q) and (ℓ_q, ℓ_p) (in reversed order). The interpolated space is $\ell_2(\ell_2)$. The derivation at 1/2 respect to the first couple is $\mathcal{K}(x) = \left(\frac{2}{p} - \frac{2}{q}\right) \sum_k x_k \log \frac{|x_k|}{\|x\|} u_k$ where (u_k) denotes the canonical basis of ℓ_2 ; respect the second couple, the derivation at 1/2 is $-\mathcal{K}(x) = \left(\frac{2}{p} - \frac{2}{q}\right) \sum_k x_k \log \frac{|x_k|}{\|x\|} e_k$. Thus, according to the Theorem the associated derivation at $a = \sum_{k=1}^N a_k u_k$ with $a_k \in \ell_2$ given by

$$\Phi(a) = \left(\frac{2}{p} - \frac{2}{p^*}\right) \sum_{k=1}^N \left(a_k \log \frac{\|a_k\|}{\|a\|} - \sum_n a_k(n) \log \frac{|a_k(n)|}{\|a_k\|} e_n\right) u_k.$$

Thank you for your attention