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Interpolation functors, Fredholm operators

Interpolation functors, Fredholm operator)

Definition

A mapping F : ~B → B from the category ~B of all couples of Banach spaces into
the category B of all Banach spaces is said to be an interpolation functor (or
method) if, for any couple ~X := (X0,X1), the Banach space F (X0,X1) is
intermediate with respect to ~X (i.e., X0 ∩ X1 ⊂ F (X0,X1) ⊂ X0 + X1), and

T : F (X0,X1)→ F (Y0,Y1) for all T : (X0,X1)→ (Y0,Y1),

where T : (X0,X1)→ (Y0,Y1) means that T : X0 + X1 → Y0 + Y1 is a linear
operator such that the restrictions T |X0 : X0 → Y0, T |X1 : X1 → Y1 are bounded
operators.

Remark. The space of all operators T : ~X → ~Y is a Banach space equipped with
the norm

‖T‖~X→~Y := max
{
‖T |X0‖X0→Y0 , ‖T |X1‖X1→Y1

}
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Interpolation functors, Fredholm operators

• The real method. For θ ∈ (0, 1) and p ∈ [1,∞], (X0,X1)θ,p is defined as the
Banach space of all x ∈ X0 + X1 equipped with the norm

‖x‖θ,p =
(∫ ∞

0

[
t−θK (t, x ; ~X )

]p dt
t

)1/p
,

where

K (t, x ; ~X ) := inf{‖x0‖X0 + t‖x1‖X1 ; x = x0 + x1}, t > 0.
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Interpolation functors, Fredholm operators

• The complex method. Let S := {z ∈ C; 0 < Rez < 1} be an open strip on
the plane. For a given θ ∈ (0, 1) and any couple ~X = (X0,X1) we denote by
F(~X ) the Banach space of all bounded continuous functions f : S̄ → X0 + X1
on the closure S̄ that are analytic on S, and

R 3 t 7→ f (j + it) ∈ Xj , j = 0, 1

is a bounded continuous function, and equipped with the norm

‖f ‖F(~X) = max
{

sup
t∈R
‖f (it)‖X0 , sup

t∈R
‖f (1 + it)‖X1

}
.

The (lower) complex interpolation space [~X ]θ := {f (θ); f ∈ F(~X )} and is
equipped with the norm:

‖x‖θ := inf
{
‖f ‖F(~X); f (θ) = x

}
.
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Interpolation functors, Fredholm operators

• Variants of the complex method. Let B be the class of all Banach spaces over
the complex field. A mapping X : B→ B is called a pseudolattice lattice (on
Z), if it satisfy the following conditions:
(i) for every B ∈ B the space X (B) consists of B valued sequences
{bn} = {bn}n∈Z modelled on Z;
(ii) whenever A is a closed subspace of B it follows that X (A) is a closed
subspace of X (B);
(iii) there exists a positive constant C such that, for all A, B ∈ B and all
bounded linear operators T : A→ B and every sequence {an} ∈ X (A), the
sequence {Tan} ∈ X (B) and satisfies the estimate

‖{Tan}‖X (B) ¬ C‖T‖A→B‖{an}‖X (A);

(iv) ‖bm‖B ¬ ‖{bn}‖X (B) for each m ∈ Z, all {bn} ∈ X (B) and all Banach
spaces B.
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Interpolation functors, Fredholm operators

• For every Banach couple ~B = (B0,B1) and every couple of pseudolattices
~X = (X0,X1) : ~B→ ~B, let J ( ~X , ~B) be the Banach space of all B0 ∩ B1

valued sequences {bn}n∈Z such that {ejnbn}n∈Z ∈ Xj(Bj) (j = 0, 1), equipped
with the norm.

‖{bn}‖J ( ~X ,~B) = max
{
‖{bn}‖X0(B0), ‖{enbn}‖X1(B1)

}
.

• Following Cwikel–Kalton–Milman–Rochberg (2002), for every s in the
annulus A := {z ∈ C; 1 < |z | < e}, we define the Banach space ~B ~X ,s to
consist of all elements of the form b =

∑
n∈Z snbn (convergence in B0 + B1

with {bn} ∈ J ( ~X , ~B), equipped with the norm

‖b‖~B ~X ,s
= inf

{
‖{bn}‖J ( ~X ,~B); b =

∑
n∈Z

snbn

}
.

The map ~B 7→ ~B ~X ,s is an interpolation method (on ~B).
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Interpolation functors, Fredholm operators

• A couple ~X = (X0,X1) of Banach pseudolattices, is said to be translation
invariant if for any Banach space B,∥∥{Sk({bn}n∈Z

}∥∥
Xj (B) =

∥∥{bn}n∈Z
∥∥
Xj (B), j ∈ {0, 1}

for all {bn}n∈Z ∈ Xj(B), each k ∈ Z, where S is the left-shift operator
defined by S{bn} = {bn+1}.

• ~X = (X0,X1) is said to be a rotation invariant Banach couple of
pseudolattices whenever the rotation map

{bn}n∈Z 7→ {e inτbn}n∈Z

is an isometry of Xj(B) onto itself for every real τ and every Banach space B.
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Interpolation functors, Fredholm operators

Definition
A bounded linear operator T : X → Y between Banach spaces is said to be
semi-Fredholm if T (X ) is closed in Y and at least one of the spaces ker T ,
Y /T (X ) is finite-dimensional. Then the index of T is given by

ind(T ) := dim(ker T )− dim(Y /T (X )).

If ind(T ) is finite, T is called a Fredholm operator.

Properties: (1) If T : X → Y is a Fredholm operator, then the dual operator
T ∗ : Y ∗ → X∗ is also Fredholm and

ind(T ∗) = −ind(T ).

(2) If T : X → Y and S : Y → Z are Fredholm operators, then ST : X → Z is
also a Fredholm operator with

ind(ST ) = ind(T ) + ind(S).
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Interpolation functors, Fredholm operators

(3) A strictly singular perturbation of a Fredholm operator remains Fredholm and
has the same index, i.e., if T : X → Y is a Fredholm operator and S : X → Y is
a strictly singular operator, then T + S is a Fredholm operator and

ind(T + S) = ind(T ).

(4) If X is a Banach space and S : X → X is a strictly singular (in particular
a compact) operator, then IX − λS is a Fredholm operator for every λ with

ind(IX − λS) = 0.

(5) Every Fredholm operator T : X → Y between Banach spaces has
a pseudoinverse which is also Fredholm operator, i.e., such an operator
S : Y → X satisfying:

TST = T .

In particular this yields that the equation Tx = y has a solution if and only
if Sy is a solution of this equation.
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Interpolation functors, Fredholm operators

Theorem
(Atkinson) For an operator T : X → Y between Banach spaces the following
statements are equivalent:
(i) T is Fredholm operator.
(ii) There exist compact (finite rank) operators K1 : X → X and K2 : Y → Y

and an operator S : Y → X such that

ST = IX − K1 and TS = IY − K2.

Theorem
(Kato) If T : X → Y is a Fredholm operator between Banach spaces, then for any
operator S : X → Y such that

‖T‖ < γ(S) := inf{‖Sx‖Y ; dist(x , ker S) > 0}.

Then T + S is Fredholm with

dim(ker (T + S)) ¬ dim(ker T ), ind(T + S) = ind(T ).
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Interpolation functors, Fredholm operators

Theorem
(I. Ya. Shneiberg, 1974) Let T : (X0,X1)→ (Y0,Y1) be an operator between
Banach couples. Then the following statements are true:
(i) If T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is invertible for some θ∗ ∈ (0, 1), then there

exists ε > 0 such that

T : [X0,X1]θ∗ → [Y0,Y1]θ∗

is invertible for all θ ∈ (θ∗ − ε, θ∗ + ε).
(ii) If T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is Fredholm for some θ∗ ∈ (0, 1), then there

exists ε > 0 such that

T : [X0,X1]θ → [Y0,Y1]θ

is Fredholm and the index is constant for all θ ∈ (θ∗ − ε, θ∗ + ε).
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Interpolation functors, Fredholm operators

Let Ω ⊂ Rn (n  2) be a domain above the graph of real-valued Lipschitz
function defined in Rn−1 (i.e., Ω = {(x , φ(x) + t); x ∈ Rn−1, t > 0}, where
φ : Rn−1 → R is a Lipschitz function

)
.

Question: For which 1 < p <∞ the Dirichlet problem for the Laplacian:

∆u = 0 in Ω (∗)

under the conditions M(u) ∈ Lp(∂Ω) and u|∂Ω = f ∈ Lp(∂Ω) has a solution?
Here, M stands for the nontangential maximal operator given by

M(u)(x) := sup{|u(y)|; y ∈ Ω, |x − y | < 2 dist(y , ∂Ω)}, x ∈ ∂Ω

and u|∂Ω is defined (in the sense of nontangential convergence to the boundary) by

u|∂Ω(x) := lim
Ω3y→x

|x−y|<2 dist(y,∂Ω)

u(y), x ∈ ∂Ω.

M. Mastyło (UAM) Fredholm operators on interpolation spaces 14 / 39



Interpolation functors, Fredholm operators

• R. Coifman, A. McIntosh and Y. Meyer (1982); G. Verechota (1984).

‖M(Df )‖Lp(∂Ω) ¬ C‖f ‖Lp(∂Ω), Df |∂Ω =
(1

2 I +K
)

f ,

for every f ∈ Lp(∂Ω), 1 < p <∞. The solution of the Dirichlet problem (∗)
is given by

u(x) = D
((1

2 I +K
)−1

f
)

(x), x ∈ Ω

whenever the inverse
( 1

2 I +K
)−1 exists in Lp(∂Ω). Here D is the harmonic

double layer potential operator defined by

Df (x) := 1
ωn

∫
∂Ω

〈~ν, y − x〉
|x − y |n f (y) dσ(y), x ∈ Ω,
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Interpolation functors, Fredholm operators

and K its principial-value boundary version given by

Kf (x) := lim
ε→0+

1
ωn

∫
y∈∂Ω, |x−y |>ε

〈~ν(y), y − x〉
|x − y |n f (y) dσ(y), x ∈ ∂Ω,

where ωn is the area of the unit sphere in Rn, and ~ν(y) is the outward unit normal
defined at almost every boundary point y ∈ ∂Ω.

• Verchota proved that 1
2 I +K is invertible on L2(∂Ω). From Shnieberg’s result

it follows that there exists ε > 0 such that for all p ∈ (2− ε, 2 + ε)

1
2 I +K : Lp(∂Ω)→ Lp(∂Ω)

is invertible.
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The domination property for interpolation functors

The domination property for interpolation functors
(Asekritova, Kruglyak, M.)

Let F and G be interpolation functors.

Definition
• G is said to be dominated by F for invertibility whenever, for any Banach

couples (X0,X1) and (Y0,Y1) and any operator T : (X0,X1)→ (Y0,Y1),
invertibility of T : F (X0,X1)→ F (Y0,Y1) implies invertibility of

T : G(X0,X1)→ G(Y0,Y1).

• G is said to be dominated by F for the Fredholmness property if for any
Banach couples (X0,X1), (Y0,Y1) and any bounded linear operator
T : (X0,X1)→ (Y0,Y1) the Fredholmness of T : F (X0,X1)→ F (Y0,Y1)
implies the Fredholmness of

T : G(X0,X1)→ G(Y0,Y1).

M. Mastyło (UAM) Fredholm operators on interpolation spaces 18 / 39



The domination property for interpolation functors

Theorem
Suppose that the functor G is dominated by the regular functor F for invertibility.
Then, for any regular Banach couples (X0,X1), (Y0,Y1) and any operator
T : (X0,X1)→ (Y0,Y1), the Fredholmness of

T |F (X0,X1) : F (X0,X1)→ F (Y0,Y1)

implies the Fredholmness of T |G(X0,X1) : G(X0,X1)→ G(Y0,Y1) with

ind(T |G(X0,X1)) = ind(T |F (X0,X1)).

Theorem

Let T : (X0,X1)→ (Y0,Y1) be an operator between couples of complex Banach
spaces. If T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is invertible for some θ∗ ∈ (0, 1), then

T : (X0,X1)θ∗,q → (Y0,Y1)θ∗,q

is invertible for all q ∈ [1,∞].
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The domination property for interpolation functors

Theorem
If T : (X0,X1)→ (Y0,Y1) is such that T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is Fredholm
then for all 1 ¬ q ¬ ∞ the operator

T : (X0,X1)θ∗,q → (Y0,Y1)θ∗,q

is Fredholm and we have

ind(T |(X0,X1)θ∗ ,q) = ind(T |[X0,X1]θ∗
).

Corollary
The real interpolation functors

Kθ,q( · ) := ( · )θ,q

are dominated by the functor Cθ( · ) := [ · ]θ for the Fredholmness property.
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The domination property for interpolation functors

Theorem

Let ~X = (X0,X1) be a couple of translation and rotation invariant pseudolattices
and let T : ~X → ~Y . Assume that Tθ∗ : ~X ~X ,eθ∗ → ~Y ~X ,eθ∗ is invertible for some
θ∗ ∈ (0, 1). Then Tθ : ~X ~X ,eθ → ~Y ~X ,eθ is invertible for all θ in an open
neighbourhood I = {θ ∈ (0, 1); |θ − θ∗| < ε} of θ∗ with

ε =
[
2eη(θ∗)

(
1 + ‖T‖~X→~Y ‖T

−1‖~Y ~X ,eθ∗→~X ~X ,eθ∗

)]−1
,

where η(θ∗) = max
{

(eθ∗ − 1)−1, (e − eθ∗)−1}. Moreover T−1
θ agrees with T−1

θ∗

on Y0 ∩ Y1 and∥∥T−1
θ

∥∥
~Y ~X ,eθ→~X ~X ,eθ

¬ 2
∥∥T−1

θ∗

∥∥
~Y ~X ,eθ∗→~X ~X ,eθ∗

, θ ∈ I.
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The domination property for interpolation functors

Theorem

Let ~X = (X0,X1) be a couple of rotation and translation invariant pseudolattices
and let {Fθ}θ∈(0,1) be a family of interpolation functors given by
Fθ(X0,X1) := (X0,X1) ~X ,eθ for any Banach couple (X0,X1). Suppose that Fθ is
regular functor and Fθ(X0,X1) = Fθ(X◦0 ,X◦1 ) for any Banach couple (X0,X1). If
T : (X0,X1)→ (Y0,Y1) is such that the operator

T |Fθ∗ (X0,X1) : Fθ∗(X0,X1)→ Fθ∗(Y0,Y1) is Fredholm.

Then there exists ε = ε(θ∗, ~X ) > 0 such that for any θ ∈ (θ∗ − ε, θ∗ + ε) the
operator

T |Fθ(X0,X1) : Fθ(X0,X1)→ Fθ(Y0,Y1)

is also Fredholm and ind(T |Fθ(X0,X1)) = ind(T |Fθ∗ (X0,X1)).
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The uniqueness of inverses on intersection of a Banach couple

The uniqueness of inverses of interpolated operators

Lemma
Let (A0,A1) and (B0,B1) be Banach couples and let T : (A0,A1)→ (B0,B1)
be such that T |A0 and T |A1 are invertible operators. Then, the following
conditions are equivalent:
(i) (T |A0 )−1b = (T |A1 )−1b, b ∈ B0 ∩ B1 ;
(ii) T : A0 + A1 → B0 + B1 is invertible ;
(iii) For any interpolation functor F ,

T |F (A0,A1) : F (A0,A1)→ F (B0,B1) is invertible.
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The uniqueness of inverses on intersection of a Banach couple

• Remark. Let ~X = (X0,X1) be a Banach couple and T : (X0,X1)→ (X0,X1)
be an operator. If 0 ¬ α < β ¬ 1 and Tα := T |[~X ]α and Tβ := T |[~X ]β are
invertible, then the inverses T−1

α and T−1
β do not coincide on X0 ∩ X1 in

general.

• Example. The dilatation operator Da (a > 0, a 6= 1) given by Daf (t) = f (at),
t > 0 is bounded on Lp = Lp(R+) for every 1 < p <∞ and

σ(Da, Lp) =
{
λ ∈ C; |λ| = a−1/p}.

If |λ| = a−1/p, p0 < p < p1, then the operator T = λI − Da is invertible on

Lp0 = [L1, L∞]α, Lp1 = [L1, L∞]β

with α = 1− 1/p0 and β = 1− 1/p1 but T is not invertible on Lp.
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The uniqueness of inverses on intersection of a Banach couple

• M. Zafran (1980) An operator T : (X0,X1)→ (X0,X1) is said to have the
uniqueness-of-resolvent property if

(Tα − λI)−1|X0∩X1 = (Tβ − λI)−1|X0∩X1

for all α, β ∈ [0, 1] and λ /∈ σ(Tα) ∪ σ(Tβ).

• T. Ransford (1986) An operator T : (X0,X1)→ (X0,X1) satisfies the local
uniqueness-of-resolvent condition, if for all α ∈ (0, 1) and λ /∈ σ(Tα), there
exists a neighbourhood U ⊂ (0, 1) of α such that (Tθ − λI)−1 exists and

(Tθ − λI)−1 = (Tα − λI)−1|X0∩X1 , θ ∈ U.
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The uniqueness of inverses on intersection of a Banach couple

Theorem
(E. Albrecht and V. Müller) If (X0,X1) is a complex Banach couple and an
operator T : (X0,X1)→ (X0,X1) is such that

Tα : [X0,X1]α → [X0,X1]α

is invertible for some α ∈ (0, 1), then there exists a neighbourhood U ⊂ (0, 1) of
α such that Tθ is invertible and T−1

θ agrees with T−1
α on X0 ∩ X1 for any θ ∈ U.
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The uniqueness of inverses on intersection of interpolated Banach spaces

The uniqueness of inverses on intersection of
interpolated Banach spaces

Definition
A family {Fθ}θ∈(0,1) of interpolation functors is said to be stable if for any Banach
couples ~A = (A0,A1) and ~B = (B0,B1) and for every operator S : ~A→ ~B such
that the restriction Sθ∗ of S to Fθ∗(~A) is invertible for some θ∗ ∈ (0, 1), there
exists ε > 0 such that, for any θ ∈ I(θ∗) = (θ∗ − ε, θ∗ + ε), we have
(i) Sθ : Fθ(~A)→ Fθ(~B) is invertible operator;
(ii) S−1

θ : Fθ(~B)→ Fθ(~A) agrees with S−1
θ∗

: Fθ∗(~B)→ Fθ∗(~A) on B0 ∩ B1, i.e.,
S−1
θ y = S−1

θ∗
y for all y ∈ B0 ∩ B1;

(iii) supθ∈I(θ∗) ||S−1
θ ||Fθ(~B)→Fθ(~A) ¬ C ||S−1

θ∗
||Fθ∗ (~B)→Fθ∗ (~A) for some C = C(θ∗).
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The uniqueness of inverses on intersection of interpolated Banach spaces

Theorem

If ~X = (X0,X1) is a Banach couple of translation and rotation invariant
pseudolattices, then the family of interpolation functors {Fθ}θ∈(0,1) is stable,
where Fθ(A0,A1) ∼= (A0,A1)~χ,eθ for any Banach couple (A0,A1).

Remark. Let {Fθ}θ∈(0,1) be a stable family of interpolation functors and let
T : (X0,X1)→ (Y0,Y1). Then the set of all θ ∈ (0, 1) for which

T : Fθ(X0,X1)→ Fθ(Y0,Y1)

is invertible, is open, so it is a union of open disjoint intervals. These intervals we
will call intervals of invertibility of T with respect to the family {Fθ}θ∈(0,1).

Question. Let I ⊂ (0, 1) be any interval of invertibility of T . Is it true that for any
θ, θ′ ∈ I the inverses T−1

θ and T−1
θ′ agree on

Fθ(Y0,Y1) ∩ Fθ′(Y0,Y1) ?
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The uniqueness of inverses on intersection of interpolated Banach spaces

Theorem
Let 1 ¬ q ¬ ∞ and let T : (X0,X1)→ (Y0,Y1) and let I ⊂ (0, 1) be an interval
of invertibility of T with respect to the family {(·)θ,q}θ∈(0,1) of real interpolation
functors. Then for any θ0, θ1 ∈ I,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ (Y0,Y1)θ0,q ∩ (Y0,Y1)θ1,q.

Theorem
Let T : (X0,X1)→ (Y0,Y1) be an operator between couples of complex Banach
spaces and let I ⊂ (0, 1) be an interval of invertibility of T with respect to the
family {[ · ]θ}θ∈(0,1). Then for any θ0, θ1 ∈ I,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ [Y0,Y1]θ0 ∩ [Y0,Y1]θ1 .
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The uniqueness of inverses on intersection of interpolated Banach spaces

Definition
A family of interpolation functors {Fθ}θ∈(0,1) satisfies the (∆)-condition if for any
Banach couple ~A = (A0,A1) and for any θ0, θ1 with 0 < θ0 < θ1 < 1, we have
continuous inclusions

Fθ0 (~A) ∩ Fθ1 (~A) ↪→
⋂

θ0<θ<θ1

Fθ(~A) ↪→ (Fθ0 (~A))c ∩ (Fθ1 (~A))c ,

where the norm in
⋂

θ0<θ<θ1

Fθ(~A) is given by

‖a‖ ⋂
θ0<θ<θ1

Fθ(~A) = sup
θ0<θ<θ1

‖a‖Fθ(~A).

and the Gagliardo completion (Fθi (~A))c , j ∈ {0, 1} is taken with respect to the
sum Fθ0 (~A) + Fθ1 (~A).
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The uniqueness of inverses on intersection of interpolated Banach spaces

Definition
. A family of interpolation functors {Fθ}θ∈(0,1) satisfies the reiteration condition if
for any Banach couple ~A = (A0,A1) and for any θ0, θ1, λ ∈ (0, 1),
we have

Fλ(Fθ0 (~A),Fθ1 (~A)) = F(1−λ)θ0+λθ1 (~A).

Theorem
Let T : (X0,X1)→ (Y0,Y1) and let I ⊂ (0, 1) be an interval of invertibility of
T with respect to the stable family of interpolation functors {Fθ}θ∈(0,1). Assume
that {Fθ}θ∈(0,1) satisfy both the (∆) and the reiteration condition. Then for any
θ0, θ1 ∈ I, the inverse operators T−1

θ0
and T−1

θ1
agree on Fθ0 (~Y ) ∩ Fθ1 (~Y ), i.e.,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ Fθ0 (~Y ) ∩ Fθ1 (~Y ).
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Appendix

The surjection modulus of operators on complex
spaces

• Let T : E → F be a linear operator between Banach spaces. The surjection
modulus of T is given by

q(T ) := sup{τ > 0; T (BE ) ⊃ τBF}.

An operator T is called a surjection if q(T ) > 0, which is equivalent to
T (E ) = F . If ‖T‖ = q(T ) = 1, then T is said to be a metric surjection (i.e.,
T maps the open unit ball of E onto the open unit ball of F ).
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Appendix

Definition

Let G(~X ) the Banach space of all continuous functions g : S̄ → X0 + X1 that are
analytic on the strip S and grow no faster than C(1 + |z |) for some C > 0. We
endow G(~X ) with the norm

‖g‖G := max
j=0,1

{
sup
s 6=t

‖g(j + is)− g(j + it)‖Xj

|s − t|

}
.

The upper complex interpolation space is defined by

[~X ]θ := {g ′(θ); g ∈ G}

and equipped with the quotient norm.
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Appendix

Theorem

Let ~X = (X0,X1) and ~Y = (Y0,Y1) be complex Banach couples, and let
T : ~X → ~Y be an operator with M ′ = ‖T ′‖~Y ′→~X ′ . Then for all θ0, θ ∈ (0, 1),

qθ(T )  M ′max
{

qθ0 (T )− q(θ, θ0)M ′
M ′ − q(θ, θ0)qθ0 (T ) , 0

}
,

where qθ(T ) = q
(
T : [~X ]θ → [~Y ]θ

)
,

q(λ, z) =
∣∣∣∣ d(λ)− d(z)
1− d(z)d(λ)

∣∣∣∣, λ, z ∈ D

and d is a conformal map of the open strip S onto the open disc D of the complex
plane C.
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• Example. The map z 7→ tg z is a conformal map of the open strip
{z ∈ C; −π4 < Rez < π

4 } onto the disc D. Thus ϕ defined by

ϕ(z) = tg
(

z − 1
2

)π
2 , z ∈ S

is a conformal map of S onto D and so q is given by

q(λ, z) =
∣∣∣∣ tg(λ− 1

2 )π2 − tg(z − 1
2 )π2

1− tg(λ− 1
2 )π2 tg(z̄ − 1

2 )π2

∣∣∣∣, λ, z ∈ D.
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Appendix

Let (X0,X1) be a Banach couple of complex Banach funtion lattices on a σ-finite
measure space (Ω,Σ, µ). The Calderón product X 1−θ

0 X θ
1 (0 < θ < 1) is defined to

be the space of all f ∈ L0(µ) such that

|f | ¬ λ |f0|1−θ|f1|θ, µ− a.e.

for some λ > 0 and fj ∈ Xj with ‖fj‖Xj ¬ 1, j = 0, 1. The Calderón product is
a Banach function lattice on (Ω,Σ, µ) equipped with the norm

‖f ‖ = inf
{
λ > 0 : |f | ¬ λ |f0|1−θ|f1|θ, f0 ∈ BX0 , f1 ∈ BX1

}
.

Theorem

Let (X0,X1), ~Y = (Y0,Y1) be couples of Banach lattices with the Fatou property.
Assume that T : (X0,X1)→ (Y0,Y1) is such that T : X 1−θ∗

0 X θ∗
1 → Y 1−θ∗

0 Y θ∗
1 is

an invertible operator for some θ∗ ∈ (0, 1). Then there exists δ > 0 such that

T : X 1−θ
0 X θ

1 → Y 1−θ
0 Y θ

1

is an invertible operator whenever |θ − θ∗| < δ.
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