Fredholm operators on interpolation spaces

Mieczysław Mastyło

Adam Mickiewicz University, Poznań

Workshop on Banach spaces and Banach lattices ICMAT, September 9–13, 2019

Based on joint works with Irina Asekritova and Natan Kruglyak

M. Mastyło (UAM)

1 Interpolation functors, Fredholm operators

2 The domination property for interpolation functors

③ The uniqueness of inverses on intersection of a Banach couple

@ The uniqueness of inverses on intersection of interpolated Banach spaces

6 Appendix

Interpolation functors, Fredholm operator)

Definition

A mapping $F: \vec{B} \to \mathcal{B}$ from the category \vec{B} of all couples of Banach spaces into the category \mathcal{B} of all Banach spaces is said to be an interpolation functor (or method) if, for any couple $\vec{X} := (X_0, X_1)$, the Banach space $F(X_0, X_1)$ is intermediate with respect to \vec{X} (i.e., $X_0 \cap X_1 \subset F(X_0, X_1) \subset X_0 + X_1$), and

 $T: F(X_0, X_1) \rightarrow F(Y_0, Y_1)$ for all $T: (X_0, X_1) \rightarrow (Y_0, Y_1)$,

where $T: (X_0, X_1) \to (Y_0, Y_1)$ means that $T: X_0 + X_1 \to Y_0 + Y_1$ is a linear operator such that the restrictions $T|_{X_0}: X_0 \to Y_0, T|_{X_1}: X_1 \to Y_1$ are bounded operators.

Remark. The space of all operators $T: \vec{X} \to \vec{Y}$ is a Banach space equipped with the norm

$$\|T\|_{\vec{X}\to\vec{Y}} := \max\left\{\|T|_{X_0}\|_{X_0\to Y_0}, \, \|T|_{X_1}\|_{X_1\to Y_1}\right\}$$

• The real method. For $\theta \in (0, 1)$ and $p \in [1, \infty]$, $(X_0, X_1)_{\theta, p}$ is defined as the Banach space of all $x \in X_0 + X_1$ equipped with the norm

$$\|x\|_{\theta,p} = \left(\int_0^\infty \left[t^{-\theta} K(t,x;\vec{X})\right]^p \frac{dt}{t}\right)^{1/p}$$

where

$$\mathcal{K}(t,x;\vec{X}) := \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1}; x = x_0 + x_1\}, \quad t > 0.$$

• The complex method. Let $S := \{z \in \mathbb{C}; 0 < \text{Re}z < 1\}$ be an open strip on the plane. For a given $\theta \in (0, 1)$ and any couple $\vec{X} = (X_0, X_1)$ we denote by $\mathcal{F}(\vec{X})$ the Banach space of all bounded continuous functions $f : \bar{S} \to X_0 + X_1$ on the closure \bar{S} that are analytic on S, and

$$\mathbb{R} \ni t \mapsto f(j+it) \in X_i, \quad j=0,1$$

is a bounded continuous function, and equipped with the norm

$$\|f\|_{\mathcal{F}(\vec{X})} = \max\left\{\sup_{t\in\mathbb{R}}\|f(it)\|_{X_0}, \sup_{t\in\mathbb{R}}\|f(1+it)\|_{X_1}\right\}.$$

The (lower) complex interpolation space $[\vec{X}]_{\theta} := \{f(\theta); f \in \mathcal{F}(\vec{X})\}$ and is equipped with the norm:

$$\|x\|_{\theta} := \inf \left\{ \|f\|_{\mathcal{F}(\vec{X})}; f(\theta) = x \right\}.$$

 Variants of the complex method. Let B be the class of all Banach spaces over the complex field. A mapping X: B → B is called a pseudolattice lattice (on Z), if it satisfy the following conditions:

(i) for every $B \in \mathbf{B}$ the space $\mathcal{X}(B)$ consists of B valued sequences $\{b_n\} = \{b_n\}_{n \in \mathbb{Z}}$ modelled on \mathbb{Z} ;

(ii) whenever A is a closed subspace of B it follows that $\mathcal{X}(A)$ is a closed subspace of $\mathcal{X}(B)$;

(iii) there exists a positive constant *C* such that, for all *A*, $B \in \mathbf{B}$ and all bounded linear operators $T: A \to B$ and every sequence $\{a_n\} \in \mathcal{X}(A)$, the sequence $\{Ta_n\} \in \mathcal{X}(B)$ and satisfies the estimate

 $\|\{Ta_n\}\|_{\mathcal{X}(B)} \leq C \|T\|_{A \to B} \|\{a_n\}\|_{\mathcal{X}(A)};$

(iv) $\|b_m\|_B \leq \|\{b_n\}\|_{\mathcal{X}(B)}$ for each $m \in \mathbb{Z}$, all $\{b_n\} \in \mathcal{X}(B)$ and all Banach spaces B.

• For every Banach couple $\vec{B} = (B_0, B_1)$ and every couple of pseudolattices $\vec{\mathcal{X}} = (\mathcal{X}_0, \mathcal{X}_1) : \vec{B} \to \vec{B}$, let $\mathcal{J}(\vec{\mathcal{X}}, \vec{B})$ be the Banach space of all $B_0 \cap B_1$ valued sequences $\{b_n\}_{n \in \mathbb{Z}}$ such that $\{e^{jn}b_n\}_{n \in \mathbb{Z}} \in \mathcal{X}_j(B_j) \ (j = 0, 1)$, equipped with the norm.

 $\|\{b_n\}\|_{\mathcal{J}(\vec{\mathcal{X}},\vec{B})} = \max \{\|\{b_n\}\|_{\mathcal{X}_0(B_0)}, \|\{e^nb_n\}\|_{\mathcal{X}_1(B_1)}\}.$

Following Cwikel-Kalton-Milman-Rochberg (2002), for every *s* in the annulus A := {*z* ∈ C; 1 < |*z*| < *e*}, we define the Banach space B_{X,s} to consist of all elements of the form *b* = ∑_{n∈Z} sⁿb_n (convergence in B₀ + B₁ with {*b_n*} ∈ J(X, B), equipped with the norm

$$\|b\|_{\vec{B}_{\vec{\mathcal{X}},s}} = \inf \left\{ \|\{b_n\}\|_{\mathcal{J}(\vec{\mathcal{X}},\vec{B})}; \ b = \sum_{n \in \mathbb{Z}} s^n b_n \right\}.$$

The map $\vec{B} \mapsto \vec{B}_{\vec{X},s}$ is an interpolation method (on \vec{B}).

 A couple X
 ⁻ = (X₀, X₁) of Banach pseudolattices, is said to be translation invariant if for any Banach space B,

 $\|\{S^k(\{b_n\}_{n\in\mathbb{Z}}\}\|_{\mathcal{X}_j(B)} = \|\{b_n\}_{n\in\mathbb{Z}}\|_{\mathcal{X}_j(B)}, \quad j\in\{0,1\}$

for all $\{b_n\}_{n\in\mathbb{Z}} \in \mathcal{X}_j(B)$, each $k \in \mathbb{Z}$, where S is the left-shift operator defined by $S\{b_n\} = \{b_{n+1}\}$.

• $\vec{\mathcal{X}} = (\mathcal{X}_0, \mathcal{X}_1)$ is said to be a rotation invariant Banach couple of pseudolattices whenever the rotation map

 $\{b_n\}_{n\in\mathbb{Z}}\mapsto\{e^{in\tau}b_n\}_{n\in\mathbb{Z}}$

is an isometry of $\mathcal{X}_i(B)$ onto itself for every real τ and every Banach space B.

Definition

A bounded linear operator $T: X \to Y$ between Banach spaces is said to be semi-Fredholm if T(X) is closed in Y and at least one of the spaces ker T, Y/T(X) is finite-dimensional. Then the index of T is given by

```
\operatorname{ind}(T) := \operatorname{dim}(\ker T) - \operatorname{dim}(Y/T(X)).
```

If ind(T) is finite, T is called a Fredholm operator.

Properties: (1) If $T: X \to Y$ is a Fredholm operator, then the dual operator $T^*: Y^* \to X^*$ is also Fredholm and

 $\operatorname{ind}(T^*) = -\operatorname{ind}(T).$

(2) If $T: X \to Y$ and $S: Y \to Z$ are Fredholm operators, then $ST: X \to Z$ is also a Fredholm operator with

$$\operatorname{ind}(ST) = \operatorname{ind}(T) + \operatorname{ind}(S).$$

(3) A strictly singular perturbation of a Fredholm operator remains Fredholm and has the same index, i.e., if $T: X \to Y$ is a Fredholm operator and $S: X \to Y$ is a strictly singular operator, then T + S is a Fredholm operator and

 $\operatorname{ind}(T+S) = \operatorname{ind}(T).$

(4) If X is a Banach space and $S: X \to X$ is a strictly singular (in particular a compact) operator, then $I_X - \lambda S$ is a Fredholm operator for every λ with

 $\operatorname{ind}(I_X - \lambda S) = 0.$

(5) Every Fredholm operator $T: X \to Y$ between Banach spaces has a pseudoinverse which is also Fredholm operator, i.e., such an operator $S: Y \to X$ satisfying:

TST = T.

In particular this yields that the equation Tx = y has a solution if and only if Sy is a solution of this equation.

(Atkinson) For an operator $T: X \rightarrow Y$ between Banach spaces the following statements are equivalent:

- (i) T is Fredholm operator.
- (ii) There exist compact (finite rank) operators $K_1: X \to X$ and $K_2: Y \to Y$ and an operator $S: Y \to X$ such that

 $ST = I_X - K_1$ and $TS = I_Y - K_2$.

Theorem

(Kato) If $T: X \to Y$ is a Fredholm operator between Banach spaces, then for any operator $S: X \to Y$ such that

 $||T|| < \gamma(S) := \inf\{||Sx||_Y; \operatorname{dist}(x, \ker S) > 0\}.$

Then T + S is Fredholm with

 $\dim(\ker(T+S)) \leq \dim(\ker T), \quad \operatorname{ind}(T+S) = \operatorname{ind}(T).$

(I. Ya. Shneiberg, 1974) Let $T: (X_0, X_1) \rightarrow (Y_0, Y_1)$ be an operator between Banach couples. Then the following statements are true:

(i) If $T : [X_0, X_1]_{\theta_*} \to [Y_0, Y_1]_{\theta_*}$ is invertible for some $\theta_* \in (0, 1)$, then there exists $\varepsilon > 0$ such that

 $T \colon [X_0, X_1]_{\theta_*} \to [Y_0, Y_1]_{\theta_*}$

is invertible for all $\theta \in (\theta_* - \varepsilon, \theta_* + \varepsilon)$.

(ii) If $T: [X_0, X_1]_{\theta_*} \to [Y_0, Y_1]_{\theta_*}$ is Fredholm for some $\theta_* \in (0, 1)$, then there exists $\varepsilon > 0$ such that

 $T: [X_0, X_1]_{\theta} \to [Y_0, Y_1]_{\theta}$

is Fredholm and the index is constant for all $\theta \in (\theta_* - \varepsilon, \theta_* + \varepsilon)$.

Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a domain above the graph of real-valued Lipschitz function defined in \mathbb{R}^{n-1} (i.e., $\Omega = \{(x, \phi(x) + t); x \in \mathbb{R}^{n-1}, t > 0\}$, where $\phi \colon \mathbb{R}^{n-1} \to \mathbb{R}$ is a Lipschitz function).

Question: For which 1 the Dirichlet problem for the Laplacian:

$$\Delta u = 0 \quad \text{in} \quad \Omega \tag{(*)}$$

under the conditions $M(u) \in L^{p}(\partial\Omega)$ and $u|_{\partial\Omega} = f \in L^{p}(\partial\Omega)$ has a solution? Here, M stands for the nontangential maximal operator given by

 $M(u)(x) := \sup\{|u(y)|; y \in \Omega, |x-y| < 2\operatorname{dist}(y, \partial\Omega)\}, \quad x \in \partial\Omega$

and $u|_{\partial\Omega}$ is defined (in the sense of nontangential convergence to the boundary) by

$$u|_{\partial\Omega}(x) := \lim_{\substack{\Omega \ni y \to x \\ |x-y| < 2 \operatorname{dist}(y,\partial\Omega)}} u(y), \quad x \in \partial\Omega.$$

• R. Coifman, A. McIntosh and Y. Meyer (1982); G. Verechota (1984).

$$\|M(\mathcal{D}f)\|_{L^p(\partial\Omega)}\leqslant C\|f\|_{L^p(\partial\Omega)}, \quad \mathcal{D}f|_{\partial\Omega}=\Big(rac{1}{2}I+\mathcal{K}\Big)f,$$

for every $f \in L^p(\partial\Omega)$, 1 . The solution of the Dirichlet problem (*) is given by

$$u(x) = \mathcal{D}\left(\left(\frac{1}{2}I + \mathcal{K}\right)^{-1}f\right)(x), \quad x \in \Omega$$

whenever the inverse $(\frac{1}{2}I + \mathcal{K})^{-1}$ exists in $L^{p}(\partial\Omega)$. Here \mathcal{D} is the harmonic double layer potential operator defined by

$$\mathcal{D}f(x):=rac{1}{\omega_n}\int_{\partial\Omega}rac{\langleec{
u},y-x
angle}{|x-y|^n}f(y)\,d\sigma(y),\quad x\in\Omega,$$

and \mathcal{K} its principial-value boundary version given by

$$\mathcal{K}f(x) := \lim_{\varepsilon \to 0+} \frac{1}{\omega_n} \int_{y \in \partial\Omega, \, |x-y| > \varepsilon} \frac{\langle \vec{\nu}(y), y - x \rangle}{|x-y|^n} f(y) \, d\sigma(y), \quad x \in \partial\Omega,$$

where ω_n is the area of the unit sphere in \mathbb{R}^n , and $\vec{\nu}(y)$ is the outward unit normal defined at almost every boundary point $y \in \partial \Omega$.

Verchota proved that ¹/₂I + K is invertible on L²(∂Ω). From Shnieberg's result it follows that there exists ε > 0 such that for all p ∈ (2 - ε, 2 + ε)

$$\frac{1}{2}I + \mathcal{K} \colon L^p(\partial\Omega) \to L^p(\partial\Omega)$$

is invertible.

The domination property for interpolation functors (Asekritova, Kruglyak, M.)

Let F and G be interpolation functors.

Definition

G is said to be dominated by F for invertibility whenever, for any Banach couples (X₀, X₁) and (Y₀, Y₁) and any operator T: (X₀, X₁) → (Y₀, Y₁), invertibility of T: F(X₀, X₁) → F(Y₀, Y₁) implies invertibility of

 $T\colon G(X_0,X_1)\to G(Y_0,Y_1).$

• *G* is said to be dominated by *F* for the Fredholmness property if for any Banach couples (X_0, X_1) , (Y_0, Y_1) and any bounded linear operator $T: (X_0, X_1) \rightarrow (Y_0, Y_1)$ the Fredholmness of $T: F(X_0, X_1) \rightarrow F(Y_0, Y_1)$ implies the Fredholmness of

$$T: G(X_0, X_1) \rightarrow G(Y_0, Y_1).$$

Suppose that the functor G is dominated by the regular functor F for invertibility. Then, for any regular Banach couples (X_0, X_1) , (Y_0, Y_1) and any operator $T: (X_0, X_1) \rightarrow (Y_0, Y_1)$, the Fredholmness of

 $T|_{F(X_0,X_1)}\colon F(X_0,X_1)\to F(Y_0,Y_1)$

implies the Fredholmness of $T|_{G(X_0,X_1)}$: $G(X_0,X_1) \rightarrow G(Y_0,Y_1)$ with

 $\operatorname{ind}(T|_{G(X_0,X_1)}) = \operatorname{ind}(T|_{F(X_0,X_1)}).$

Theorem

Let $T: (X_0, X_1) \to (Y_0, Y_1)$ be an operator between couples of complex Banach spaces. If $T: [X_0, X_1]_{\theta_*} \to [Y_0, Y_1]_{\theta_*}$ is invertible for some $\theta_* \in (0, 1)$, then

 $T: (X_0, X_1)_{ heta_*, q}
ightarrow (Y_0, Y_1)_{ heta_*, q}$

is invertible for all $q \in [1, \infty]$.

If $T: (X_0, X_1) \to (Y_0, Y_1)$ is such that $T: [X_0, X_1]_{\theta_*} \to [Y_0, Y_1]_{\theta_*}$ is Fredholm then for all $1 \leq q \leq \infty$ the operator

 $T: (X_0, X_1)_{\theta_*, q} \to (Y_0, Y_1)_{\theta_*, q}$

is Fredholm and we have

$$\operatorname{ind}(T|_{(X_0,X_1)_{\theta_*},q}) = \operatorname{ind}(T|_{[X_0,X_1]_{\theta_*}}).$$

Corollary

The real interpolation functors

 $K_{\theta,q}(\,\cdot\,):=(\,\cdot\,)_{\theta,q}$

are dominated by the functor $C_{\theta}(\cdot) := [\cdot]_{\theta}$ for the Fredholmness property.

Let $\vec{\mathcal{X}} = (\mathcal{X}_0, \mathcal{X}_1)$ be a couple of translation and rotation invariant pseudolattices and let $T : \vec{\mathcal{X}} \to \vec{\mathcal{Y}}$. Assume that $T_{\theta_*} : \vec{\mathcal{X}}_{\vec{\mathcal{X}},e^{\theta_*}} \to \vec{\mathcal{Y}}_{\vec{\mathcal{X}},e^{\theta_*}}$ is invertible for some $\theta_* \in (0, 1)$. Then $T_{\theta} : \vec{\mathcal{X}}_{\vec{\mathcal{X}},e^{\theta}} \to \vec{\mathcal{Y}}_{\vec{\mathcal{X}},e^{\theta}}$ is invertible for all θ in an open neighbourhood $I = \{\theta \in (0, 1); |\theta - \theta_*| < \varepsilon\}$ of θ_* with

$$arepsilon = \left[2e\eta(heta_*)ig(1+\|T\|_{ec{X}
ightarrowec{Y}}\|T^{-1}\|_{ec{Y}_{ec{\mathcal{X}},e^{ heta_*}}
ightarrowec{X}_{ec{\mathcal{X}},e^{ heta_*}}}ig)
ight]^{-1}$$

where $\eta(\theta_*) = \max\left\{(e^{\theta_*} - 1)^{-1}, (e - e^{\theta_*})^{-1}\right\}$. Moreover T_{θ}^{-1} agrees with $T_{\theta_*}^{-1}$ on $Y_0 \cap Y_1$ and

$$\|T_{\theta}^{-1}\|_{\vec{Y}_{\vec{\mathcal{X}},e^{\theta}}\to\vec{\mathcal{X}}_{\vec{\mathcal{X}},e^{\theta}}} \leq 2\|T_{\theta^*}^{-1}\|_{\vec{Y}_{\vec{\mathcal{X}},e^{\theta}*}\to\vec{\mathcal{X}}_{\vec{\mathcal{X}},e^{\theta}*}}, \quad \theta \in I.$$

Let $\vec{X} = (X_0, X_1)$ be a couple of rotation and translation invariant pseudolattices and let $\{F_\theta\}_{\theta \in (0,1)}$ be a family of interpolation functors given by $F_\theta(X_0, X_1) := (X_0, X_1)_{\vec{X}, e^\theta}$ for any Banach couple (X_0, X_1) . Suppose that F_θ is regular functor and $F_\theta(X_0, X_1) = F_\theta(X_0^\circ, X_1^\circ)$ for any Banach couple (X_0, X_1) . If $T : (X_0, X_1) \to (Y_0, Y_1)$ is such that the operator

 $T|_{F_{\theta_*}(X_0,X_1)}$: $F_{\theta_*}(X_0,X_1) \to F_{\theta_*}(Y_0,Y_1)$ is Fredholm.

Then there exists $\varepsilon = \varepsilon(\theta_*, \vec{\mathcal{X}}) > 0$ such that for any $\theta \in (\theta_* - \varepsilon, \theta_* + \varepsilon)$ the operator

 $T|_{F_{\theta}(X_0,X_1)} \colon F_{\theta}(X_0,X_1) \to F_{\theta}(Y_0,Y_1)$

is also Fredholm and $\operatorname{ind}(T|_{F_{\theta}(X_0,X_1)}) = \operatorname{ind}(T|_{F_{\theta_*}(X_0,X_1)}).$

The uniqueness of inverses of interpolated operators

Lemma

Let (A_0, A_1) and (B_0, B_1) be Banach couples and let $T : (A_0, A_1) \rightarrow (B_0, B_1)$ be such that $T|_{A_0}$ and $T|_{A_1}$ are invertible operators. Then, the following conditions are equivalent:

- (i) $(T|_{A_0})^{-1}b = (T|_{A_1})^{-1}b, \qquad b \in B_0 \cap B_1;$
- (ii) $T: A_0 + A_1 \rightarrow B_0 + B_1$ is invertible;

(iii) For any interpolation functor F,

 $T|_{F(A_0,A_1)}$: $F(A_0,A_1) \rightarrow F(B_0,B_1)$ is invertible.

- Remark. Let $\vec{X} = (X_0, X_1)$ be a Banach couple and $T: (X_0, X_1) \to (X_0, X_1)$ be an operator. If $0 \leq \alpha < \beta \leq 1$ and $T_{\alpha} := T|_{[\vec{X}]_{\alpha}}$ and $T_{\beta} := T|_{[\vec{X}]_{\beta}}$ are invertible, then the inverses T_{α}^{-1} and T_{β}^{-1} do not coincide on $X_0 \cap X_1$ in general.
- Example. The dilatation operator D_a $(a > 0, a \neq 1)$ given by $D_a f(t) = f(at)$, t > 0 is bounded on $L^p = L^p(\mathbb{R}_+)$ for every 1 and

$$\sigma(D_{\mathsf{a}}, L^{\mathsf{p}}) = \big\{ \lambda \in \mathbb{C}; \ |\lambda| = \mathsf{a}^{-1/\mathsf{p}} \big\}.$$

If $|\lambda| = a^{-1/p}$, $p_0 , then the operator <math>T = \lambda I - D_a$ is invertible on

$$L^{p_0} = [L^1, L^{\infty}]_{\alpha}, \quad L^{p_1} = [L^1, L^{\infty}]_{\beta}$$

with $\alpha = 1 - 1/p_0$ and $\beta = 1 - 1/p_1$ but T is not invertible on L^p .

M. Zafran (1980) An operator T: (X₀, X₁) → (X₀, X₁) is said to have the uniqueness-of-resolvent property if

$$(T_{\alpha} - \lambda I)^{-1}|_{X_0 \cap X_1} = (T_{\beta} - \lambda I)^{-1}|_{X_0 \cap X_1}$$

for all α , $\beta \in [0,1]$ and $\lambda \notin \sigma(T_{\alpha}) \cup \sigma(T_{\beta})$.

T. Ransford (1986) An operator T: (X₀, X₁) → (X₀, X₁) satisfies the local uniqueness-of-resolvent condition, if for all α ∈ (0, 1) and λ ∉ σ(T_α), there exists a neighbourhood U ⊂ (0, 1) of α such that (T_θ − λI)⁻¹ exists and

$$(T_{\theta} - \lambda I)^{-1} = (T_{\alpha} - \lambda I)^{-1}|_{X_0 \cap X_1}, \quad \theta \in U.$$

(E. Albrecht and V. Müller) If (X_0, X_1) is a complex Banach couple and an operator $T: (X_0, X_1) \rightarrow (X_0, X_1)$ is such that

 $\mathcal{T}_{\alpha} \colon [X_0, X_1]_{lpha} o [X_0, X_1]_{lpha}$

is invertible for some $\alpha \in (0,1)$, then there exists a neighbourhood $U \subset (0,1)$ of α such that T_{θ} is invertible and T_{θ}^{-1} agrees with T_{α}^{-1} on $X_0 \cap X_1$ for any $\theta \in U$.

The uniqueness of inverses on intersection of interpolated Banach spaces

Definition

A family $\{F_{\theta}\}_{\theta \in (0,1)}$ of interpolation functors is said to be stable if for any Banach couples $\vec{A} = (A_0, A_1)$ and $\vec{B} = (B_0, B_1)$ and for every operator $S \colon \vec{A} \to \vec{B}$ such that the restriction S_{θ_*} of S to $F_{\theta_*}(\vec{A})$ is invertible for some $\theta_* \in (0, 1)$, there exists $\varepsilon > 0$ such that, for any $\theta \in I(\theta_*) = (\theta_* - \varepsilon, \theta_* + \varepsilon)$, we have

- (i) $S_{\theta} : F_{\theta}(\vec{A}) \to F_{\theta}(\vec{B})$ is invertible operator;
- (ii) $S_{\theta}^{-1} \colon F_{\theta}(\vec{B}) \to F_{\theta}(\vec{A})$ agrees with $S_{\theta_*}^{-1} \colon F_{\theta_*}(\vec{B}) \to F_{\theta_*}(\vec{A})$ on $B_0 \cap B_1$, i.e., $S_{\theta}^{-1}y = S_{\theta_*}^{-1}y$ for all $y \in B_0 \cap B_1$;

(iii) $\sup_{\theta \in I(\theta_*)} ||S_{\theta}^{-1}||_{F_{\theta}(\vec{B}) \to F_{\theta}(\vec{A})} \leqslant C ||S_{\theta_*}^{-1}||_{F_{\theta_*}(\vec{B}) \to F_{\theta_*}(\vec{A})}$ for some $C = C(\theta_*)$.

If $\vec{\mathcal{X}} = (\mathcal{X}_0, \mathcal{X}_1)$ is a Banach couple of translation and rotation invariant pseudolattices, then the family of interpolation functors $\{F_{\theta}\}_{\theta \in (0,1)}$ is stable, where $F_{\theta}(A_0, A_1) \cong (A_0, A_1)_{\vec{\mathcal{X}}, e^{\theta}}$ for any Banach couple (A_0, A_1) .

Remark. Let $\{F_{\theta}\}_{\theta \in (0,1)}$ be a stable family of interpolation functors and let $T: (X_0, X_1) \to (Y_0, Y_1)$. Then the set of all $\theta \in (0,1)$ for which

 $T \colon F_{\theta}(X_0, X_1) \to F_{\theta}(Y_0, Y_1)$

is invertible, is open, so it is a union of open disjoint intervals. These intervals we will call intervals of invertibility of T with respect to the family $\{F_{\theta}\}_{\theta \in (0,1)}$.

Question. Let $I \subset (0, 1)$ be any interval of invertibility of T. Is it true that for any $\theta, \theta' \in I$ the inverses T_{θ}^{-1} and $T_{\theta'}^{-1}$ agree on

 $F_{\theta}(Y_0, Y_1) \cap F_{\theta'}(Y_0, Y_1)$?

Let $1 \leq q \leq \infty$ and let $T: (X_0, X_1) \to (Y_0, Y_1)$ and let $I \subset (0, 1)$ be an interval of invertibility of T with respect to the family $\{(\cdot)_{\theta,q}\}_{\theta \in (0,1)}$ of real interpolation functors. Then for any $\theta_0, \theta_1 \in I$,

 $T_{ heta_0}^{-1}(y) = T_{ heta_1}^{-1}(y), \quad y \in (Y_0,Y_1)_{ heta_0,q} \cap (Y_0,Y_1)_{ heta_1,q}.$

Theorem

Let $T: (X_0, X_1) \to (Y_0, Y_1)$ be an operator between couples of complex Banach spaces and let $I \subset (0, 1)$ be an interval of invertibility of T with respect to the family $\{[\cdot]_{\theta}\}_{\theta \in (0,1)}$. Then for any $\theta_0, \theta_1 \in I$,

 $T_{ heta_0}^{-1}(y) = T_{ heta_1}^{-1}(y), \quad y \in [Y_0,Y_1]_{ heta_0} \cap [Y_0,Y_1]_{ heta_1}.$

Definition

A family of interpolation functors $\{F_{\theta}\}_{\theta \in (0,1)}$ satisfies the (Δ)-condition if for any Banach couple $\vec{A} = (A_0, A_1)$ and for any θ_0 , θ_1 with $0 < \theta_0 < \theta_1 < 1$, we have continuous inclusions

$$F_{ heta_0}(ec{A})\cap F_{ heta_1}(ec{A})\hookrightarrow igcap_{ heta_0< heta< heta_1}F_{ heta}(ec{A})\hookrightarrow (F_{ heta_0}(ec{A}))^c\cap (F_{ heta_1}(ec{A}))^c,$$

where the norm in $\bigcap_{\theta_0 < \theta < \theta_1} F_{\theta}(\vec{A})$ is given by

$$\|a\|_{\substack{\theta_0 < \theta < \theta_1}} \sum_{F_{\theta}(\vec{A})} = \sup_{\substack{\theta_0 < \theta < \theta_1}} \|a\|_{F_{\theta}(\vec{A})}$$

and the Gagliardo completion $(F_{\theta_i}(\vec{A}))^c$, $j \in \{0,1\}$ is taken with respect to the sum $F_{\theta_0}(\vec{A}) + F_{\theta_1}(\vec{A})$.

Definition

. A family of interpolation functors $\{F_{\theta}\}_{\theta \in (0,1)}$ satisfies the reiteration condition if for any Banach couple $\vec{A} = (A_0, A_1)$ and for any $\theta_0, \theta_1, \lambda \in (0, 1)$, we have

$$F_{\lambda}(F_{\theta_0}(\vec{A}),F_{\theta_1}(\vec{A}))=F_{(1-\lambda)\theta_0+\lambda\theta_1}(\vec{A}).$$

Theorem

Let $T: (X_0, X_1) \to (Y_0, Y_1)$ and let $I \subset (0, 1)$ be an interval of invertibility of T with respect to the stable family of interpolation functors $\{F_\theta\}_{\theta \in (0,1)}$. Assume that $\{F_\theta\}_{\theta \in (0,1)}$ satisfy both the (Δ) and the reiteration condition. Then for any $\theta_0, \theta_1 \in I$, the inverse operators $T_{\theta_0}^{-1}$ and $T_{\theta_1}^{-1}$ agree on $F_{\theta_0}(\vec{Y}) \cap F_{\theta_1}(\vec{Y})$, i.e.,

$$T^{-1}_{ heta_0}(y)=T^{-1}_{ heta_1}(y), \quad y\in F_{ heta_0}(ec{Y})\cap F_{ heta_1}(ec{Y}).$$

The surjection modulus of operators on complex spaces

 Let T: E → F be a linear operator between Banach spaces. The surjection modulus of T is given by

$$q(T) := \sup\{\tau > 0; \ T(B_E) \supset \tau B_F\}.$$

An operator T is called a surjection if q(T) > 0, which is equivalent to T(E) = F. If ||T|| = q(T) = 1, then T is said to be a metric surjection (i.e., T maps the open unit ball of E onto the open unit ball of F).

Definition

Let $\mathcal{G}(\vec{X})$ the Banach space of all continuous functions $g: \overline{S} \to X_0 + X_1$ that are analytic on the strip S and grow no faster than C(1 + |z|) for some C > 0. We endow $\mathcal{G}(\vec{X})$ with the norm

$$\|g\|_{\mathcal{G}} := \max_{j=0,1} \left\{ \sup_{s\neq t} \frac{\|g(j+is) - g(j+it)\|_{X_j}}{|s-t|} \right\}$$

The upper complex interpolation space is defined by

 $[ec{X}]^ heta:=\{g'(heta);\,g\in\mathcal{G}\}$

and equipped with the quotient norm.

Appendix

Theorem

Let $\vec{X} = (X_0, X_1)$ and $\vec{Y} = (Y_0, Y_1)$ be complex Banach couples, and let $T: \vec{X} \to \vec{Y}$ be an operator with $M' = ||T'||_{\vec{Y}' \to \vec{X}'}$. Then for all $\theta_0, \theta \in (0, 1)$,

$$q_{\theta}(T) \ge M' \max\left\{\frac{q_{\theta_0}(T) - q(\theta, \theta_0)M'}{M' - q(\theta, \theta_0)q_{\theta_0}(T)}, 0\right\},$$

where $q_{ heta}(extsf{T}) = qig(extsf{T} \colon [ec{X}]^{ heta} o [ec{Y}]^{ heta}ig)$,

$$q(\lambda,z) = igg| rac{d(\lambda)-d(z)}{1-\overline{d(z)}d(\lambda)} igg|, \quad \lambda,z \in \mathbb{D}$$

and d is a conformal map of the open strip S onto the open disc \mathbb{D} of the complex plane \mathbb{C} .

• Example. The map $z \mapsto \operatorname{tg} z$ is a conformal map of the open strip $\{z \in \mathbb{C}; -\frac{\pi}{4} < \operatorname{Re} z < \frac{\pi}{4}\}$ onto the disc \mathbb{D} . Thus φ defined by

$$arphi(z) = {
m tg}\left(z-rac{1}{2}
ight)rac{\pi}{2}, \quad z\in S$$

is a conformal map of S onto $\mathbb D$ and so q is given by

$$q(\lambda,z)=igg|rac{ ext{tg}(\lambda-rac{1}{2})rac{\pi}{2}- ext{tg}(z-rac{1}{2})rac{\pi}{2}}{1- ext{tg}(\lambda-rac{1}{2})rac{\pi}{2} ext{tg}(ar{z}-rac{1}{2})rac{\pi}{2}}igg|, \quad \lambda,z\in\mathbb{D}.$$

Appendix

Let (X_0, X_1) be a Banach couple of complex Banach function lattices on a σ -finite measure space (Ω, Σ, μ) . The Calderón product $X_0^{1-\theta}X_1^{\theta}$ $(0 < \theta < 1)$ is defined to be the space of all $f \in L^0(\mu)$ such that

 $|f| \leq \lambda |f_0|^{1-\theta} |f_1|^{\theta}, \quad \mu - a.e.$

for some $\lambda > 0$ and $f_j \in X_j$ with $||f_j||_{X_j} \leq 1$, j = 0, 1. The Calderón product is a Banach function lattice on (Ω, Σ, μ) equipped with the norm

 $||f|| = \inf \{\lambda > 0 : |f| \leq \lambda |f_0|^{1-\theta} |f_1|^{\theta}, f_0 \in B_{X_0}, f_1 \in B_{X_1} \}.$

Theorem

Let (X_0, X_1) , $\vec{Y} = (Y_0, Y_1)$ be couples of Banach lattices with the Fatou property. Assume that $T: (X_0, X_1) \to (Y_0, Y_1)$ is such that $T: X_0^{1-\theta_*} X_1^{\theta_*} \to Y_0^{1-\theta_*} Y_1^{\theta_*}$ is an invertible operator for some $\theta_* \in (0, 1)$. Then there exists $\delta > 0$ such that

$$T: X_0^{1-\theta} X_1^{\theta} \to Y_0^{1-\theta} Y_1^{\theta}$$

is an invertible operator whenever $|\theta - \theta_*| < \delta$.