Products of compact lines

Gonzalo Martínez Cervantes

University of Murcia, Spain joint work with Grzegorz Plebanek (University of Wrocław)

Workshop on Banach spaces and Banach lattices

September 12th, 2019

Research supported by project MTM2017-86182-P (Government of Spain, AEI/FEDER, EU) and project 20797/PI/18 by Fundación Séneca, ACyT Región de Murcia.

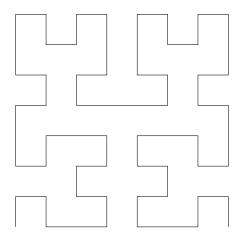
Yes

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ▶ ◆ □ ▶

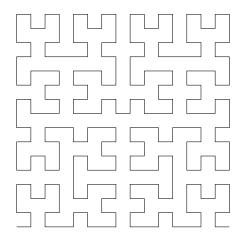
Yes. It's true.

There are curves which fill the plane.

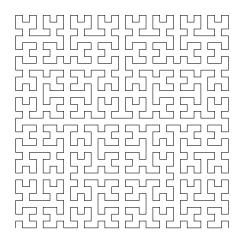
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ▶ ◆ □ ▶



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

멼곬 읽 222 읽 5 沾 圮 5 ÿ 23 ස් 323 ය նվեղ 132 Ъ R ╏ 5 2 35 ς 읽 않않않었 큀 ස් 3 22 3265 L. 19999 g 52 5 <u>i</u>gh 2.63 54542 2 ī 5 ς 2 Lr n.r ГЛ 5 ς G 뛾 222 김연연 양양연 圮 圮 2 L. 넍 꿆 R ς л 행년화 L. ГЛ 5-

• • • • • • • • • • • • •

The first curve filling the plane was discovered in 1890 by Giuseppe Peano.

The first curve filling the plane was discovered in 1890 by Giuseppe Peano. Peano's construction implies that the unit interval can be mapped onto its square

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $f:[0,1] \to [0,1]^2.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$f:[0,1] \to [0,1]^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Moreover, the unit interval can be mapped onto the cube $[0, 1]^3$

$$f:[0,1] \to [0,1]^2.$$

Moreover, the unit interval can be mapped onto the cube $[0,1]^3, \ \, \mbox{onto}$ the tesseract $[0,1]^4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

$$f:[0,1] \to [0,1]^2.$$

Moreover, the unit interval can be mapped onto the cube $[0,1]^3$, onto the tesseract $[0,1]^4$, and even onto the

Hilbert Cube $[0,1]^{\mathbb{N}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hans Hahn in Vienna and Stefan Mazurkiewicz in Warsaw (independently) characterized continuous images of the unit interval as **metric** connected locally connected compact spaces.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Hans Hahn in Vienna and Stefan Mazurkiewicz in Warsaw (independently) characterized continuous images of the unit interval as **metric** connected locally connected compact spaces.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In 2001 Mary Ellen Rudin characterized continous images of **compact lines** as compact monotonically normal spaces.

What is a compact line?

What is a compact line?

A **compact** topological space whose topology is induced by a **linear order**.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

What is a compact line?

A **compact** topological space whose topology is induced by a **linear order**.

For example, the unit interval [0, 1], the long interval $[0, \omega_1]$ and the split interval.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In 1964 Treybig proved that if a product of two infinite compact spaces is a continuous image of a compact line then such a product is necessarily metrizable

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

In 1964 Treybig proved that if a product of two infinite compact spaces is a continuous image of a compact line then such a product is necessarily metrizable i.e. if a compact line L maps onto a product $K_1 \times K_2$, **then** K_1 and K_2 are both metrizable.

In 1964 Treybig proved that if a product of two infinite compact spaces is a continuous image of a compact line then such a product is necessarily metrizable i.e. if a compact line L maps onto a product $K_1 \times K_2$, **then** K_1 and K_2 are both metrizable .

In particular, a nonmetrizable compact line L cannot be mapped onto its square L^2 .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces. Moreover, suppose that there is a continuous surjection $f : L_1 \times \ldots \times L_d \to K_1 \times \ldots \times K_{d+1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces. Moreover, suppose that there is a continuous surjection $f : L_1 \times \ldots \times L_d \rightarrow K_1 \times \ldots \times K_{d+1}$. In 1970 Mardesic proved that, **if all** K_i **are separable**, there must be K_i and K_i metrizable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces. Moreover, suppose that there is a continuous surjection $f : L_1 \times \ldots \times L_d \rightarrow K_1 \times \ldots \times K_{d+1}$. In 1970 Mardesic proved that, **if all** K_i **are separable**, there must be K_i

and K_j metrizable.

Moreover, he **conjectured** that indeed there are always K_i and K_j metrizable (with no separability assumption).

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces. Moreover, suppose that there is a continuous surjection $f: L_1 \times \ldots \times L_d \to K_1 \times \ldots \times K_{d+1}$.

- In 1970 Mardesic proved that, **if all** K_i **are separable**, there must be K_i and K_j metrizable.
- Moreover, he **conjectured** that indeed there are always K_i and K_j metrizable (with no separability assumption).

In 2009 Avilés proved that there are always K_i and K_j separable.

Suppose that L_1, \ldots, L_d are compact lines and that $K_1, K_2, \ldots, K_{d+1}$ are infinite compact spaces. Moreover, suppose that there is a continuous surjection $f : L_1 \times \ldots \times L_d \to K_1 \times \ldots \times K_{d+1}$.

- In 1970 Mardesic proved that, **if all** K_i **are separable**, there must be K_i and K_i metrizable.
- Moreover, he **conjectured** that indeed there are always K_i and K_j metrizable (with no separability assumption).

In 2009 Avilés proved that there are always K_i and K_j separable.

Last year Plebanek and I proved the conjecture!

(日)((1))

▲□▶▲御▶★臣▶★臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that • free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.

Given a compact space K, we define $\text{free-dim}(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- free-dim $(K_1) \leq$ free-dim (K_2) if K_1 is a continuous image of K_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- ② free-dim(K_1) ≤ free-dim(K_2) if K_1 is a continuous image of K_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

• free-dim(K) ≤ 1 if K is a metric compact space.

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- ② free-dim(K_1) ≤ free-dim(K_2) if K_1 is a continuous image of K_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- free-dim(K) ≤ 1 if K is a metric compact space.
- free-dim $(L) \leq 1$ if L is a compact line.

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- ② free-dim(K_1) ≤ free-dim(K_2) if K_1 is a continuous image of K_2 .
- free-dim(K) ≤ 1 if K is a metric compact space.
- free-dim(L) ≤ 1 if L is a compact line.
- $o free-dim(K_1 \times \ldots \times K_d) \leq free-dim(K_1) + \ldots + free-dim(K_d).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- ② free-dim(K_1) ≤ free-dim(K_2) if K_1 is a continuous image of K_2 .
- free-dim(K) ≤ 1 if K is a metric compact space.
- free-dim $(L) \leq 1$ if L is a compact line.
- free-dim $(K_1 \times \ldots \times K_d) \leq$ free-dim $(K_1) + \ldots +$ free-dim (K_d) .

Thus, the conjecture follows from the previous points and the following fact:

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

・ロト ・回 ト ・ヨト ・ヨー うへぐ

Free dimension of a compact space

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$ so that

- free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$.
- ② free-dim(K_1) ≤ free-dim(K_2) if K_1 is a continuous image of K_2 .
- free-dim(K) ≤ 1 if K is a metric compact space.
- free-dim $(L) \leq 1$ if L is a compact line.
- free-dim $(K_1 \times \ldots \times K_d) \leq$ free-dim $(K_1) + \ldots +$ free-dim (K_d) .

Thus, the conjecture follows from the previous points and the following fact:

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Notice that free-dim $(L_1 \times \ldots \times L_d) \leq d$ whenever L_1, \ldots, L_d are compact lines.

What differences L_1 and $L_1 \times L_2$ when L_1 and L_2 are compact lines?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What differences L_1 and $L_1 \times L_2$ when L_1 and L_2 are compact lines?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A basis for the topology of L_1 is given by **intervals**.

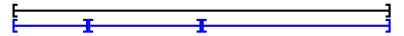
What differences L_1 and $L_1 \times L_2$ when L_1 and L_2 are compact lines?

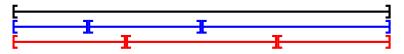
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A basis for the topology of L_1 is given by **intervals**. A basis for the topology of $L_1 \times L_2$ is given by **rectangles**.

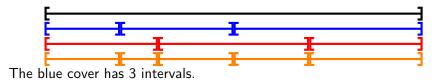
▲□▶▲御▶★臣▶★臣▶ 臣 の�?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

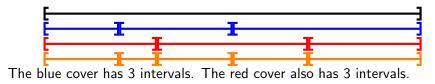


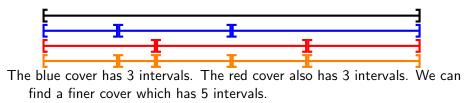


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



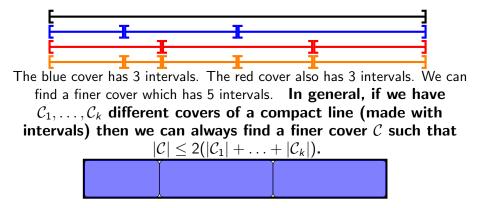


(日) (四) (日) (日) (日)

The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have C_1, \ldots, C_k different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|C| \le 2(|C_1| + \ldots + |C_k|)$.

The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have $\mathcal{C}_1, \ldots, \mathcal{C}_k$ different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|\mathcal{C}| \leq 2(|\mathcal{C}_1| + \ldots + |\mathcal{C}_k|).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have $\mathcal{C}_1, \ldots, \mathcal{C}_k$ different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|\mathcal{C}| \leq 2(|\mathcal{C}_1| + \ldots + |\mathcal{C}_k|).$

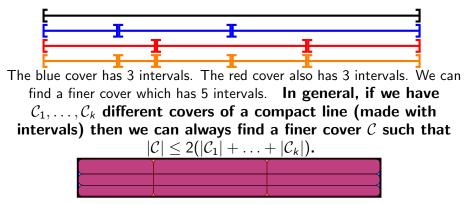
◆□ > ◆□ > ◆三 > ◆三 > ● のへの

The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have $\mathcal{C}_1, \ldots, \mathcal{C}_k$ different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|\mathcal{C}| \leq 2(|\mathcal{C}_1| + \ldots + |\mathcal{C}_k|).$

◆□ > ◆□ > ◆三 > ◆三 > ● のへの

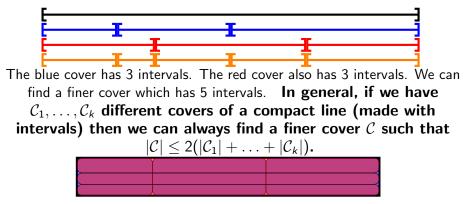
The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have $\mathcal{C}_1, \ldots, \mathcal{C}_k$ different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|\mathcal{C}| \leq 2(|\mathcal{C}_1| + \ldots + |\mathcal{C}_k|).$

◆□ > ◆□ > ◆三 > ◆三 > ● のへの



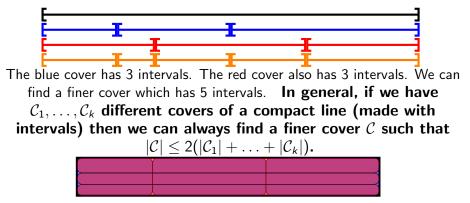
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The blue cover has 3 rectangles.



The blue cover has 3 rectangles. The red cover also has 3 rectangles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



The blue cover has 3 rectangles. The red cover also has 3 rectangles. We can find a finer cover which has 9 rectangles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The blue cover has 3 intervals. The red cover also has 3 intervals. We can find a finer cover which has 5 intervals. In general, if we have $\mathcal{C}_1, \ldots, \mathcal{C}_k$ different covers of a compact line (made with intervals) then we can always find a finer cover C such that $|\mathcal{C}| \leq 2(|\mathcal{C}_1| + \ldots + |\mathcal{C}_k|).$

The blue cover has 3 rectangles. The red cover also has 3 rectangles. We can find a finer cover which has 9 rectangles. In general, if you have C_1, \ldots, C_k different covers (made with rectangles) then we can always find a finer cover C such that $|C| \le (2(|C_1| + \ldots + |C_k|))^2$.

(日) (同) (目) (日) (日) (0) (0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Definition (G.M.C. and G. Plebanek, 2018)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$.

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$)

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$ and every $C_1, \ldots, C_k \in \mathfrak{C}$ there is a finer cover C such that

 $|\mathcal{C}| \leq M \left(\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k) \right)^d$.

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$ and every $C_1, \ldots, C_k \in \mathfrak{C}$ there is a finer cover C such that

 $|\mathcal{C}| \leq M \left(\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k) \right)^d$.

With this definition it is easy to check that $\text{free-dim}(L) \leq 1$ if L is a compact line,

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$ and every $C_1, \ldots, C_k \in \mathfrak{C}$ there is a finer cover C such that

 $|\mathcal{C}| \leq M \left(\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k) \right)^d$.

With this definition it is easy to check that free-dim $(L) \leq 1$ if L is a compact line, that free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$ or if K_1 is a continuous image of K_2 ,

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$ and every $C_1, \ldots, C_k \in \mathfrak{C}$ there is a finer cover C such that

$$|\mathcal{C}| \leq M \left(\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k) \right)^d$$
.

With this definition it is easy to check that free-dim $(L) \leq 1$ if L is a compact line, that free-dim $(K_1) \leq$ free-dim (K_2) if $K_1 \subseteq K_2$ or if K_1 is a continuous image of K_2 , that free-dim $(K) \leq 1$ if K is a metric compact space

Definition (G.M.C. and G. Plebanek, 2018)

Let $d \in \mathbb{N} \cup \{0\}$. We say that a compact space K has free dimension $\leq d$ (free-dim(K) $\leq d$) if there are a topologically cofinal family \mathfrak{C} of finite closed covers, a constant M > 0 and a function $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$ and every $C_1, \ldots, C_k \in \mathfrak{C}$ there is a finer cover C such that

 $|\mathcal{C}| \leq M \left(\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k) \right)^d$.

With this definition it is easy to check that $\operatorname{free-dim}(L) \leq 1$ if L is a compact line, that $\operatorname{free-dim}(K_1) \leq \operatorname{free-dim}(K_2)$ if $K_1 \subseteq K_2$ or if K_1 is a continuous image of K_2 , that $\operatorname{free-dim}(K) \leq 1$ if K is a metric compact space and that

 $\operatorname{free-dim}(K_1 \times \ldots \times K_d) \leq \operatorname{free-dim}(K_1) + \ldots + \operatorname{free-dim}(K_d).$

Theorem (G.M.C. and G. Plebanek, 2018)

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Theorem (G.M.C. and G. Plebanek, 2018)

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma (Key Lemma)

If K is a nonmetrizable compact space

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0, 1]$

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Main ingredients.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Main ingredients. Since K is not metrizable, no countable family of functions separates points.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Main ingredients. Since K is not metrizable, no countable family of functions separates points. Using this fact we can construct a family $\mathcal{F} = \{f_{\alpha} : \alpha < \omega_1\}$ of continuous functions and points $x_{\alpha}^0, x_{\alpha}^1 \in K$ such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Main ingredients. Since K is not metrizable, no countable family of functions separates points. Using this fact we can construct a family $\mathcal{F} = \{f_{\alpha} : \alpha < \omega_1\}$ of continuous functions and points $x_{\alpha}^0, x_{\alpha}^1 \in K$ such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$f_{\alpha}(x_{\alpha}^{0}) = 0$$
 and $f_{\alpha}(x_{\alpha}^{1}) = 1$ for every $\alpha < \omega_{1}$;

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Main ingredients. Since K is not metrizable, no countable family of functions separates points. Using this fact we can construct a family $\mathcal{F} = \{f_{\alpha} : \alpha < \omega_1\}$ of continuous functions and points $x_{\alpha}^0, x_{\alpha}^1 \in K$ such that

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a **nonmetrizable** compact space, then there is an **uncountable** family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Main ingredients. Since K is not metrizable, no countable family of functions separates points. Using this fact we can construct a family $\mathcal{F} = \{f_{\alpha} : \alpha < \omega_1\}$ of continuous functions and points $x_{\alpha}^0, x_{\alpha}^1 \in K$ such that

9
$$f_{lpha}(x^0_{lpha})=0$$
 and $f_{lpha}(x^1_{lpha})=1$ for every $lpha<\omega_1$;

2
$$f_{\beta}(x_{\alpha}^{0}) = f_{\beta}(x_{\alpha}^{1})$$
 for every $\beta < \alpha < \omega_{1}$.

To prove the property stated in the Lemma use Ramsey.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Sketch of the proof. Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim $(K) \leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Sketch of the proof. Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim $(K) \leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, \mathcal{C}) \leq \frac{1}{3}$ for every $\mathcal{C} \in \mathcal{C}_f$.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Sketch of the proof. Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim $(K) \leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{3}$ for every $C \in \mathcal{C}_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Sketch of the proof. Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim $(K) \leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, \mathcal{C}) \leq \frac{1}{3}$ for every $\mathcal{C} \in \mathcal{C}_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0, 1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$.

Sketch of the proof. Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim $(K) \leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, \mathcal{C}) \leq \frac{1}{3}$ for every $\mathcal{C} \in \mathcal{C}_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq (\sum_{i=1}^{n} \chi(\mathcal{C}_f) + \sum_{i=1}^{n} \chi(\mathcal{C}_f))^d \leq (|\mathcal{C}|_i m + \sum_{i=1}^{n} \chi(\mathcal{C}_f))^d$ with

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is k < n such that $|f_k(x_i) - f_k(x_{i'})| > \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(K) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{2}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with C finer than every C_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{i'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(K) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{2}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with C finer than every C_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is $k \leq n$ such that $|f_k(x_i) - f_k(x_{i'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(K) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{2}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with C finer than every C_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f : K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_j \neq x_{j'}$ there is $k \leq n$ such that $|f_k(x_j) - f_k(x_{j'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(\mathcal{K}) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in C(K)$ there is a cover $C_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{3}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with C finer than every C_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subset \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is $k \leq n$ such that $|f_k(x_i) - f_k(x_{i'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(\mathcal{K}) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in C(K)$ there is a cover $C_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{3}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with \mathcal{C} finer than every \mathcal{C}_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d+1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is $k \leq n$ such that $|f_k(x_i) - f_k(x_{i'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(K) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{3}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with \mathcal{C} finer than every \mathcal{C}_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction.

If K_1, \ldots, K_d are nonmetrizable compact spaces and K_{d+1} is an infinite compact space, then free-dim $(K_1 \times \ldots \times K_{d+1}) \ge d + 1$.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable family \mathcal{F} of continuous functions $f: K \to [0,1]$ such that for every infinite family $\mathcal{F}' \subseteq \mathcal{F}$ and for every $n \in \mathbb{N}$ there are functions $f_1, \ldots, f_n \in \mathcal{F}'$ and points $x_1, \ldots, x_{n+1} \in K$ such that for every $x_i \neq x_{i'}$ there is $k \leq n$ such that $|f_k(x_i) - f_k(x_{i'})| \geq \frac{1}{2}$. **Sketch of the proof.** Set $K = K_1 \times \ldots \times K_{d+1}$. Suppose free-dim(\mathcal{K}) $\leq d$. Set \mathfrak{C} a topologically cofinal family of finite closed covers and $\chi : \mathfrak{C} \to \mathbb{N}$ such that for every $\mathcal{C}_1, \ldots, \mathcal{C}_k \in \mathfrak{C}$ there is a finer cover \mathcal{C} with $|\mathcal{C}| \leq (\chi(\mathcal{C}_1) + \ldots + \chi(\mathcal{C}_k))^d$. Notice that for every continuous function $f \in \mathcal{C}(K)$ there is a cover $\mathcal{C}_f \in \mathfrak{C}$ such that $Osc(f, C) \leq \frac{1}{2}$ for every $C \in C_f$. Take families $\mathcal{F}_i \subset \mathcal{C}(K_i)$ as in the Lemma for every $i \leq d$. WLOG, there is $m \in \mathbb{N}$ such that $\chi(\mathcal{C}_f) \leq m$ for every $f \in \mathcal{F}_1 \cup \ldots \mathcal{F}_d$. Now notice that for any finite families $\mathcal{G} \subset \mathcal{F}_1 \cup \ldots \mathcal{F}_d$ and $\mathcal{H} \subset \mathcal{C}(K_{d+1})$ there is a finite closed cover \mathcal{C} such that $|\mathcal{C}| \leq \left(\sum_{f \in \mathcal{G}} \chi(\mathcal{C}_f) + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d \leq \left(|\mathcal{G}|m + \sum_{f \in \mathcal{H}} \chi(\mathcal{C}_f)\right)^d$, with C finer than every C_f with $f \in \mathcal{G} \cup \mathcal{H}$. This yields to a contradiction. ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 三 ● ○ ○ ○

Looking for the free dimension of a Banach Space

• free-dim $(Y) \leq$ free-dim(X) whenever Y is a subspace of X

If ree-dim(Y) ≤ free-dim(X) whenever Y is a subspace of X or Y is a quotient of X;

- If ree-dim(Y) ≤ free-dim(X) whenever Y is a subspace of X or Y is a quotient of X;
- 2 free-dim $(\mathcal{C}(L_1 \times \ldots \times L_d)) \leq d$ for every compact lines L_1, \ldots, L_d ;

- If ree-dim(Y) ≤ free-dim(X) whenever Y is a subspace of X or Y is a quotient of X;
- ② free-dim($C(L_1 × ... × L_d)$) ≤ d for every compact lines $L_1, ..., L_d$;

• free-dim($C(K_1 \times \ldots \times K_d)$) $\geq d$ whenever K_1, \ldots, K_d are nonmetrizable compact spaces.

A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).

A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d). Can the separability assumption be dropped?

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d). Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d). Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.

• It is known that the spaces $\mathcal{A}(D)$ and $\mathcal{A}(D^d)$ are nonisomorphic whenever $d \geq 2$.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.

• It is known that the spaces $\mathcal{A}(D)$ and $\mathcal{A}(D^d)$ are nonisomorphic whenever $d \geq 2$.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.
 - It is known that the spaces $\mathcal{A}(D)$ and $\mathcal{A}(D^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $\mathcal{A}(D^2)$ and $\mathcal{A}(D^d)$ are isomorphic for some d > 2.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.
 - It is known that the spaces $\mathcal{A}(D)$ and $\mathcal{A}(D^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $\mathcal{A}(\mathcal{D}^2)$ and $\mathcal{A}(D^d)$ are isomorphic for some d > 2.

• It is known that the spaces $\mathcal{F}(\mathbb{R})$ and $\mathcal{F}(\mathbb{R}^d)$ are nonisomorphic whenever $d \geq 2$.

- A. Michalak in 2018 proved that if L₁,..., L_d and K₁,..., K_{d+1} are nonmetrizable separable compact lines then C(K₁ × ..., K_{d+1}) is not isomorphic to a subspace neither a quotient of C(L₁ × ... × L_d).
 Can the separability assumption be dropped?
- S. Banach suggested that "natural" spaces of functions of different numbers of variables should be nonisomorphic.
 - It is known that the spaces $C^1([0,1])$ and $C^1([0,1]^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $C^1([0,1]^2)$ and $C^1([0,1]^d)$ are isomorphic for some d > 2.
 - It is known that the spaces $\mathcal{A}(D)$ and $\mathcal{A}(D^d)$ are nonisomorphic whenever $d \ge 2$. Nevertheless, it is an open problem if $\mathcal{A}(\mathcal{D}^2)$ and $\mathcal{A}(D^d)$ are isomorphic for some d > 2.
 - It is known that the spaces $\mathcal{F}(\mathbb{R})$ and $\mathcal{F}(\mathbb{R}^d)$ are nonisomorphic whenever $d \geq 2$. Nevertheless, it is an open problem if $\mathcal{F}(\mathbb{R}^2)$ and $\mathcal{F}(\mathbb{R}^d)$ are isomorphic for some d > 2.

G.M.C., G. Plebanek,

The Mardešić Conjecture and Free Products of Boolean Algebras. *Proc. Amer. Math. Soc.* 147 (4) (2019), 1763–1772.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � � � �