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There are curves which fill
the plane.











The first curve filling the plane was discovered in 1890 by Giuseppe Peano.

Peano’s construction implies that the unit interval can be mapped onto its
square, i.e. there exists a continuous surjection

f : [0, 1]→ [0, 1]2.

Moreover, the unit interval can be mapped onto the cube [0, 1]3, onto
the tesseract [0, 1]4, and even onto the

Hilbert Cube [0, 1]N
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Hans Hahn in Vienna and Stefan Mazurkiewicz in Warsaw (independently)
characterized continuous images of the unit interval as metric connected
locally connected compact spaces.

In 2001 Mary Ellen Rudin characterized continous images of compact
lines as compact monotonically normal spaces.
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What is a compact line?

A compact topological space whose
topology is induced by a linear order.

For example, the unit interval [0, 1], the long interval [0, ω1] and the split
interval.
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In 1964 Treybig proved that if a product of two infinite compact spaces is
a continuous image of a compact line then such a product is necessarily
metrizable

i.e. if a compact line L maps onto a product K1 × K2, then
K1 and K2 are both metrizable .

In particular, a nonmetrizable compact line L cannot be mapped onto its
square L2.
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Continuous images of products of compact lines

Suppose that L1, . . . , Ld are compact lines and that K1,K2, . . . ,Kd+1 are
infinite compact spaces. Moreover, suppose that there is a continuous

surjection f : L1 × . . .× Ld → K1 × . . .× Kd+1.
In 1970 Mardesic proved that, if all Ki are separable, there must be Ki

and Kj metrizable.
Moreover, he conjectured that indeed there are always Ki and Kj

metrizable (with no separability assumption).
In 2009 Avilés proved that there are always Ki and Kj separable.

Last year Plebanek and I proved the conjecture!
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Free dimension of a compact space

Given a compact space K , we define free-dim(K ) ∈ N ∪ {∞} so that

1 free-dim(K1) ≤ free-dim(K2) if K1 ⊆ K2.

2 free-dim(K1) ≤ free-dim(K2) if K1 is a continuous image of K2.

3 free-dim(K ) ≤ 1 if K is a metric compact space.

4 free-dim(L) ≤ 1 if L is a compact line.

5 free-dim(K1 × . . .× Kd) ≤ free-dim(K1) + . . .+ free-dim(Kd).

Thus, the conjecture follows from the previous points and the following
fact:

If K1, . . . ,Kd are nonmetrizable compact spaces and Kd+1 is an
infinite compact space, then free-dim(K1 × . . .× Kd+1) ≥ d + 1.

Notice that free-dim(L1 × . . .× Ld) ≤ d whenever L1, . . . , Ld are compact
lines.
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What differences L1 and L1 × L2 when L1
and L2 are compact lines?

A basis for the topology of L1 is given by intervals.
A basis for the topology of L1 × L2 is given by rectangles.
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How do intervals and rectangles differ?

The blue cover has 3 intervals. The red cover also has 3 intervals. We can
find a finer cover which has 5 intervals. In general, if we have
C1, . . . , Ck different covers of a compact line (made with

intervals) then we can always find a finer cover C such that
|C| ≤ 2(|C1|+ . . . + |Ck |).

The blue cover has 3 rectangles. The red cover also has 3 rectangles. We
can find a finer cover which has 9 rectangles. In general, if you have
C1, . . . , Ck different covers (made with rectangles) then we can
always find a finer cover C such that |C| ≤ (2(|C1|+ . . . + |Ck |))2.
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Theorem (G.M.C. and G. Plebanek,2018)

If K1, . . . ,Kd are nonmetrizable compact spaces and Kd+1 is an infinite
compact space, then free-dim(K1 × . . .× Kd+1) ≥ d + 1.

Lemma (Key Lemma)

If K is a nonmetrizable compact space, then there is an uncountable
family F of continuous functions f : K → [0, 1] such that for every infinite
family F ′ ⊆ Fand for every n ∈ N there are functions f1, . . . , fn ∈ F ′ and
points x1, . . . , xn+1 ∈ K such that for every xj 6= xj ′ there is k ≤ n such
that |fk(xj)− fk(xj ′)| ≥ 1

2 .

Main ingredients. Since K is not metrizable, no countable family of
functions separates points. Using this fact we can construct a family
F = {fα : α < ω1} of continuous functions and points x0

α, x
1
α ∈ K such

that

1 fα(x0
α) = 0 and fα(x1

α) = 1 for every α < ω1;

2 fβ(x0
α) = fβ(x1

α) for every β < α < ω1.

To prove the property stated in the Lemma use Ramsey.
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Is it possible to define the
free dimension of a Banach

space in such a way that

1 free-dim(Y ) ≤ free-dim(X ) whenever Y is a subspace of X

or Y
is a quotient of X ;

2 free-dim(C(L1 × . . .× Ld)) ≤ d for every compact lines L1, . . . , Ld ;

3 free-dim(C(K1 × . . .× Kd)) ≥ d whenever K1, . . . ,Kd are
nonmetrizable compact spaces.
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