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R-boundedness

Definition

Let X be a Banach space and Γ ⊆ L(X ). Then we say that Γ is R-bounded if for
any finite sequences (Tk)nk=1 in Γ and (xk)nk=1 in X(

E
∥∥∥ n∑
k=1

εkTkxk

∥∥∥2

X

)1/2

≤ C
(
E
∥∥∥ n∑
k=1

εkxk

∥∥∥2

X

)1/2

,

where (εk)nk=1 is a sequence of independent Rademacher variables.

• R-boundedness is a strengthening of uniform boundedness.
• Equivalent to uniform boundedness on Hilbert spaces.

• R-boundedness plays a (key) role in e.g.
• Schauder multipliers
• Operator-valued Fourier multiplier theory
• Functional calculus
• Maximal regularity of PDE’s
• Stochastic integration in Banach spaces

•
(
E
∥∥∑n

k=1 εkxk
∥∥2)1/2

is a norm on X n.
• A Euclidean structure is such a norm with a left and right ideal property.
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Euclidean structures

Definition

Let X be a Banach space. A Euclidean structure α is a family of norms ‖·‖α on X n

for all n ∈ N such that

‖(x)‖α = ‖x‖X , x ∈ X ,

‖Ax‖α ≤ ‖A‖‖x‖α, x ∈ X n, A ∈ Mm,n(C),

‖(Tx1, · · · ,Txn)‖α ≤ C ‖T‖‖x‖α, x ∈ X n, T ∈ L(X ),

A Euclidean structure induces a norm on the finite rank operators from `2 to X .
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A Euclidean structure induces a norm on the finite rank operators from `2 to X .

Non-example:

• On a Banach space X :

‖x‖R :=
(
E
∥∥ n∑
k=1

εkxk
∥∥2

X

) 1
2
, x ∈ X n,

is not a Euclidean structure. It fails the right-ideal property.
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Factorization through a Hilbert space

Theorem (Kwapień ’72 and Maurey ’74)

Let X and Y be a Banach spaces and T ∈ L(X ,Y ). If X has type 2 and Y cotype
2, then there is a Hilbert space H and operators S ∈ L(X ,H) and U ∈ L(H,Y ) s.t.

T = US .

Corollary (Kwapień ’72)

Let X be a Banach space. X has type 2 and cotype 2 if and only if X is isomorphic
to a Hilbert space.
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Let X be a Banach space. X has type 2 and cotype 2 if and only if X is isomorphic
to a Hilbert space.

Theorem (Kalton–L.–Weis ’19)

Let X and Y be a Banach spaces, Γ1 ⊆ L(X ,Y ) . If X has type 2, Y
cotype 2 and Γ1 is γ-bounded, then there is a Hilbert space H, a
T̃ ∈ L(X ,H) for every T ∈ Γ1 and U ∈ L(H,Y ) s.t.
the following diagram commutes:

X Y

H

T̃

T

U
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Factorization through weighted L2

For a measure space (S ,Σ, µ) and a weight w : S → R+ let L2(S ,w) be the space of
all measurable f : S → C such that

‖f ‖L2(S,w) :=
(∫

S

|f |2w dµ
)1/2

<∞

Theorem (Kalton–L.–Weis ’19)

Let X be an order-continuous Banach function space over (S , µ) and let Γ ⊆ L(X ).
Γ is `2-bounded if and only if for any g0, g1 ∈ X there is a weight w : S → R+ s.t.

‖Tf ‖L2(S,w) ≤ C ‖f ‖L2(S,w), f ∈ X ∩ L2(S ,w), T ∈ Γ

‖g0‖L2(S,w) ≤ C ‖g0‖X ,

‖g1‖X ≤ C ‖g1‖L2(S,w).

The if statement is trivial. Indeed for f1, · · · , fn ∈ X and T1, · · · ,Tn ∈ Γ set

g0 :=
( n∑
k=1

|fk |2
) 1

2 , g1 :=
( n∑
k=1

|Tk fk |2
) 1

2

Then we have

‖Tf ‖2
`2 = ‖g1‖2

X ≤ C 2
n∑

k=1

∫
S

|Tk fk |2w dµ ≤ C 4
n∑

k=1

∫
S

|fk |2w dµ ≤ C 6‖g0‖2
X = ‖f ‖2

`2
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Application: Harmonic analysis

Let p ∈ [1,∞). For f ∈ Lp(R) define the Hilbert transform

Hf (x) := p. v.
1

π

∫
R

1

x − y
f (y) dy , x ∈ R,

= F−1(ξ 7→ −i sgn(ξ)F f (ξ)
)
(x).

For f ∈ Lp(Rd) define the Hardy–Littlewood maximal operator

Mf (x) := sup
r>0

1

|B(x , r)|

∫
Rd

|f (y)| dy , x ∈ Rd .

• Very important operators in harmonic analysis.

• Both H and M are bounded on Lp for p ∈ (1,∞).

• We are interested in the tensor extensions of H and M on
the Bochner space Lp(Rd ;X ).

• These have numerous applications in both harmonic analysis and PDE.
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Application: Harmonic analysis

Let p ∈ [1,∞) and let X be a Banach space. For f ∈ Lp(R;X ) define the
vector-valued Hilbert transform

H̃f (x) := p. v.

∫
R

1

x − y
f (y) dy , x ∈ R

where the integral is interpreted in the Bochner sense.

Let X be a Banach function space. For f ∈ Lp(Rd ;X ) define the lattice
Hardy–Littlewood maximal operator

M̃f (x) := sup
r>0

1

|B(x , r)|

∫
Rd

|f (y)| dy , x ∈ Rd ,

where the supremum is taken in the lattice sense.

• Boundedness of H̃ is independent of p ∈ (1,∞)
(Calderón–Benedek–Panzone ’62).

• Boundedness of M̃ is independent of p ∈ (1,∞) and d ∈ N
(Garćıa-Cuerva–Macias–Torrea ’93).

• Boundedness of H̃ and M̃ depends on the geometry of X .
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Theorem (Burkholder ’83 and Bourgain ’83)

Let X be a Banach space and p ∈ (1,∞). The following are equivalent:

(i) X has the UMD property.

(ii) H̃ is bounded on Lp(R;X ).

• X has the UMD property if any finite martingale (fk)nk=0 in Lp(Ω;X ) has
Unconditional Martingale Differences (dfk)nk=1.

Theorem (Bourgain ’84 and Rubio de Francia ’86)

Let X be a Banach function space and p ∈ (1,∞). The following is equivalent to (i)
and (ii)

(iii) M̃ is bounded on Lp(Rd ;X ) and on Lp(Rd ;X ∗).

• (iii)⇒(ii) is “easy” and quantitative.

• (ii)⇒(iii) is very involved and technical.
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Application: Harmonic analysis

Theorem (Kalton–L.–Weis ’19)

Let X be a Banach function space on (S , µ) and p ∈ (1,∞). If H̃ is bounded on

Lp(R;X ), then M̃ is bounded on Lp(R;X ) with

‖M̃‖Lp(R;X )→Lp(R;X ) ≤ C ‖H̃‖2
Lp(R;X )→Lp(R;X )

• Apply factorization theorem with Γ = {H̃} and g1 = M̃g0 to transfer the
question from Lp(R;X ) to L2(R× S ,w):
For any g0 ∈ Lp(R;X ) there is a weight w : R× S → R+ such that

‖H̃f ‖L2(R×S,w) ≤ C ‖f ‖L2(R×S,w), f ∈ Lp(R;X ) ∩ L2(R× S ,w)

‖g0‖L2(R×S,w) ≤ C ‖g0‖Lp(R;X ),

‖M̃g0‖Lp(R;X ) ≤ C ‖M̃g0‖L2(R×S,w).

• By Fubini it suffices to show the boundedness of M on L2(R,w(·, s)) for s ∈ S .

• For a weight v : R→ R+, M is bounded on L2(R, v) if and only if H is bounded
on L2(R, v) (Muckenhoupt ’72,...).

• As H is bounded on L2(R,w(·, s)) for s ∈ S , M is as well.

• Thus ‖M̃g0‖Lp(R;X ) . ‖g0‖Lp(R;X )
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Application: Banach space geometry
Let X be a Banach space and p ∈ (1,∞). Let (fk)nk=0 be a finite martingale in
Lp(Ω;X ) with difference sequence (dfk)nk=1. Then X has the UMD property if and
only if for all signs εk = ±1 we have∥∥∥ n∑

k=1

εkdfn
∥∥∥
Lp(Ω;X )

(1)

.
∥∥∥ n∑
k=1

dfn
∥∥∥
Lp(Ω;X )

,

if and only if∥∥∥ n∑
k=1

dfn
∥∥∥
Lp(Ω;X )

(2)

.
∥∥∥ n∑
k=1

εkdfn
∥∥∥
Lp(Ω×Ω′;X )

(3)

.
∥∥∥ n∑
k=1

dfn
∥∥∥
Lp(Ω;X )

,

where (ε)nk=1 is a Rademacher sequence on Ω′.

• (2) does not imply (1).

• It is an open question whether (3) implies (1)

Theorem (Kalton–L.–Weis ’19)

Let X be a Banach function space. Then (3) implies (1).

• Proof similar to previous slide.
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Outlook

• In the Euclidean structures manuscript:

• More factorization theorems.

• Representation of an α-bounded family of operators on a Hilbert space.

• Applications to interpolation, function spaces, functional calculus.

• More applications of factorization through weighted L2:

• Show the necessity of UMD for the R-boundedness of certain operators

• Potentially many more applications!

• To appear on arXiv before Christmas!
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Thank you for your attention!
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