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R-boundedness

Definition
Let X be a Banach space and ' C £(X). Then we say that I is R-bounded if for
any finite sequences (Tx)4—1 in I and (xk)j—; in X

1/2

(S amnll) < (]S emel)

where ()i is a sequence of independent Rademacher variables.
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R-boundedness

Definition

Let X be a Banach space and ' C £(X). Then we say that I is R-bounded if for
any finite sequences (Tx)4—1 in I and (xk)j—; in X

n 2\1/2 n 2\1/2
(B[ emon,) ™ < € (B eoxd )™
k=1 k=1

where ()i is a sequence of independent Rademacher variables.

e R-boundedness is a strengthening of uniform boundedness.
e Equivalent to uniform boundedness on Hilbert spaces.

e R-boundedness plays a (key) role in e.g.
e Schauder multipliers
Operator-valued Fourier multiplier theory
Functional calculus
Maximal regularity of PDE's
Stochastic integration in Banach spaces
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any finite sequences (Tx)4—1 in I and (xk)j—; in X

n 2\1/2 n 2\1/2
(B[ emon,) ™ < € (B eoxd )™
k=1 k=1

where ()i is a sequence of independent Rademacher variables.

e R-boundedness is a strengthening of uniform boundedness.
e Equivalent to uniform boundedness on Hilbert spaces.

e R-boundedness plays a (key) role in e.g.
Schauder multipliers

Operator-valued Fourier multiplier theory
Functional calculus

Maximal regularity of PDE's

Stochastic integration in Banach spaces

201/2 .
o (E||> s enxl) /*is a norm on X".
o A Euclidean structure is such a norm with a left and right ideal property.
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Euclidean structures

Definition
Let X be a Banach space. A Euclidean structure « is a family of norms |-|| , on X"
for all n € N such that

1Ca = lIxllxs x€X,
[[Ax]o, < [LAl[Ix[]; x€X", A€ Mny(C),
1(Txt, -+, D)l < CHT G xe X", T eL(X),

A Euclidean structure induces a norm on the finite rank operators from 2 to X.
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Euclidean structures

Definition
Let X be a Banach space. A Euclidean structure « is a family of norms |-|| , on X"
for all n € N such that

1Ca = lIxllxs x€X,
[[Ax]o, < [LAl[Ix[]; x€X", A€ Mny(C),
1(Txt, -+, D)l < CHT G xe X", T eL(X),

A Euclidean structure induces a norm on the finite rank operators from 2 to X.

Non-example:

e On a Banach space X:

n 1
il = (B> =wxll)’s  xex”,
k=1

is not a Euclidean structure. It fails the right-ideal property.
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Euclidean structures

Definition
Let X be a Banach space. A Euclidean structure « is a family of norms |-|| , on X"
for all n € N such that

1Ca = lIxllxs x€X,
[[Ax]o, < [LAl[Ix[]; x€X", A€ Mny(C),
1(Txt, -+, D)l < CHT G xe X", T eL(X),

A Euclidean structure induces a norm on the finite rank operators from 2 to X.

Examples:
e On any Banach space X: The Gaussian structure

x|, (E||Zm|\) xe X",

where (yk)i—1 is a sequence of independent normalized Gaussians.
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Euclidean structures

Definition
Let X be a Banach space. A Euclidean structure « is a family of norms |-|| , on X"
for all n € N such that

1Ca = lIxllxs x€X,
[[Ax]o, < [LAl[Ix[]; x€X", A€ Mny(C),
1(Txt, -+, D)l < CHT G xe X", T eL(X),

A Euclidean structure induces a norm on the finite rank operators from 2 to X.

Examples:
e On any Banach space X: The Gaussian structure

x|, (EHZMH) xe X",

where (yk)i—1 is a sequence of independent normalized Gaussians.
e On a Banach lattice X: The (>-structure

1 2
Ixl 2 = H |x| /H . oxe X"
1 X
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a-boundedness
Definition

Let X be a Banach space, a an Euclidean structure and I' C £(X). Then we say that
I is a-bounded if for any T = diag(T1, -+, Tp) with T1,--- , T, €T

ITxll, < Clixll,.  xe€X".

e a-boundedness implies uniform boundedness
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a-boundedness
Definition

Let X be a Banach space, a an Euclidean structure and I' C £(X). Then we say that
I is a-bounded if for any T = diag(T1,- -, Tn) with Tq,--- , T, €T

ITxlly < Clixll,, — x€ X"

e a-boundedness implies uniform boundedness

e On a Banach space X with finite cotype

n ) 1 n ) 1
2 2
Iell, = (B wonelly) ™ = (BIY S ewnelly)” = lixll,
k=1 k=1

so y-boundedness is equivalent to R-boundedness

5 )
TUDelft AL



a-boundedness
Definition
Let X be a Banach space, a an Euclidean structure and ' C £(X). Then we say that
I is a-bounded if for any T = diag(T1,- -, Tn) with Tq,--- , T, €T

[Txll, < Clixlla, — x€ X"

e a-boundedness implies uniform boundedness

e On a Banach space X with finite cotype

n 1 n 1
Iell, = (BN wosdly) * = (B ewxl}) = lxlle,
k=1 k=1

so y-boundedness is equivalent to R-boundedness

e On a Banach lattice X with finite cotype

n n l
Il = [l 2l = (B[ wxlly) * = Ixlims
k=1 k=1

so 2-boundedness is equivalent to R-boundedness.
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Factorization through a Hilbert space

Theorem (Kwapien '72 and Maurey '74)

Let X and Y be a Banach spaces and T € L(X, Y). If X has type 2 and Y cotype
2, then there is a Hilbert space H and operators S € £(X,H) and U € L(H, Y) s.t.

T = US.
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Factorization through a Hilbert space

Theorem (Kwapien '72 and Maurey '74)

Let X and Y be a Banach spaces and T € L(X, Y). If X has type 2 and Y cotype
2, then there is a Hilbert space H and operators S € £(X,H) and U € L(H,Y) s.t.

T =US.

Let X be a Banach space. X has type 2 and cotype 2 if and only if X is isomorphic
to a Hilbert space.

Theorem (Kalton-L.-Weis '19)

Let X and Y be a Banach spaces, I'1 C £L(X,Y) . If X has type 2, Y
cotype 2 and ; is v-bounded, then there is a Hilbert space H, a
T € L(X,H) for every T €Ty and U € L(H,Y) s.t.

the following diagram commutes:
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Factorization through a Hilbert space

Theorem (Kwapien '72 and Maurey '74)

Let X and Y be a Banach spaces and T € L(X, Y). If X has type 2 and Y cotype

2, then there is a Hilbert space H and operators S € £(X,H) and U € L(H,Y) s.t.
T = US.

Let X be a Banach space. X has type 2 and cotype 2 if and only if X is isomorphic
to a Hilbert space.

Theorem (Kalton-L.-Weis '19)

Let X and Y be a Banach spaces, 1 C £(X,Y) and I'> € L(Y). If X has type 2, Y
cotype 2 and ' and I, are 7-boun~ded, then there is a Hilbert space H, a

T € L(X,H) forevery T €l1,a S € L(H) forevery S €T, and U € L(H,Y) s.t.
the following diagram commutes:

x- T,y S,y

N o
2
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Factorization through weighted 12

For a measure space (S, X, 1) and a weight w: S — R, let L?(S, w) be the space of
all measurable f : § — C such that

1/2
IFlls.m = ( f1FPw ) < oc
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Factorization through weighted L2

For a measure space (S, X, 1) and a weight w: S — R, let L?(S, w) be the space of
all measurable f : § — C such that

1/2
1l = ([ I1FPwan) < o0
e = (. )

Theorem (Kalton-L.—Weis '19)

Let X be an order-continuous Banach function space over (S, 1) and let ' C £(X).
I is ¢*>-bounded if and only if for any go, g1 € X there is a weight w: S — R, s.t.

[Tl 25wy < Cliflliaswy: fEXNLY(S,w), TET
||g0||L2(s,w) < Cllgollx-
lellx < Cllgullias,m)-
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Factorization through weighted L2

For a measure space (S, X, 1) and a weight w: S — R, let L*(S, w) be the space of
all measurable f : § — C such that

1/2
1l = ([ I1FPwan) < o0
e = (. )

Theorem (Kalton-L.—Weis '19)

Let X be an order-continuous Banach function space over (S, 1) and let ' C £(X).
I is ¢*>-bounded if and only if for any go, g1 € X there is a weight w: S — R, s.t.

[Tl 25wy < Cliflliaswy: fEXNLY(S,w), TET
||g0||L2(s,w) < Cllgollx-
lellx < Cllgullias,m)-

The if statement is trivial. Indeed for fi,--- ,f, € X and Ty, ---, T, €T set

o= KD a= OITAR)?
k=1 k=1
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Factorization through weighted L2

For a measure space (S, X, 1) and a weight w: S — R, let L*(S, w) be the space of
all measurable f : § — C such that

1/2
1l = ([ I1FPwan) < o0
e = (. )

Theorem (Kalton-L.—Weis '19)

Let X be an order-continuous Banach function space over (S, 1) and let ' C £(X).
I is ¢*>-bounded if and only if for any go, g1 € X there is a weight w: S — R, s.t.

[Tl 25wy < Cliflliaswy: fEXNLY(S,w), TET
||g0||L2(s,w) < Cllgollx-
lellx < Cllgullias,m)-

The if statement is trivial. Indeed for fi,--- ,f, € X and Ty, ---, T, €T set

o= KD a= OITAR)?
k=1 k=1

Then we have

ITFAR = el < S0 /S TefPwdp < €4S /5 fPw dus < Cllgoll = [IF]1%
k=1 k=1
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Application: Harmonic analysis
Let p € [1,00). For f € LP(IR) define the Hilbert transform

Hf (x) := p.v.l/if(y)dy, x € R,
TR XY

=7 (& —isgn(€) FF(€))(x).
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Application: Harmonic analysis
Let p € [1,00). For f € LP(IR) define the Hilbert transform
1 1
Hf (x) == p.v.ffif(y)dy, x € R,
TJrRXTY
=7 (& —isgn(€) FF(€))(x).

For f € LP(RY) define the Hardy-Littlewood maximal operator

1 d
Mf(x) :=sup = f dy, x € R
(9= sp e [ IFlay
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Application: Harmonic analysis
Let p € [1,00). For f € LP(IR) define the Hilbert transform
1 1
Hf (x) == p.v.f/if(y)dy, x € R,
TJrRXTY
=7 (& —isgn(€) FF(€))(x).

For f € LP(RY) define the Hardy-Littlewood maximal operator

1 d
Mf(x) :=sup = f dy, x € R
(9= sp e [ IFlay

e Very important operators in harmonic analysis.
e Both H and M are bounded on L for p € (1, 0).
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Application: Harmonic analysis

Let p € [1,00). For f € LP(IR) define the Hilbert transform

Hf (x) == p.v.%/R%f(y)dy, x € R,
= F (& —isgn(§)FF(€))(x).

For f € LP(RY) define the Hardy-Littlewood maximal operator

1 d
Mf(x) :=sup = f dy, x € R
(9= sp e [ IFlay

e Very important operators in harmonic analysis.
e Both H and M are bounded on L for p € (1, 0).

o We are interested in the tensor extensions of H and M on
the Bochner space LP(R?; X).

e These have numerous applications in both harmonic analysis and PDE.
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Application: Harmonic analysis

Let p € [1,00) and let X be a Banach space. For f € LP(R; X) define the
vector-valued Hilbert transform

~ 1
Hf(x) := .v./if dy, xeR
(x)=p Rx_y(y) y

where the integral is interpreted in the Bochner sense.
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Application: Harmonic analysis

Let p € [1,00) and let X be a Banach space. For f € LP(R; X) define the
vector-valued Hilbert transform

~ 1
Hf(x) := p.v./if(y)dy, xeR
RX Y
where the integral is interpreted in the Bochner sense.

Let X be a Banach function space. For f € LP(RY; X) define the /attice
Hardy-Littlewood maximal operator

_ 1 J
Mf(x) :=su 7/ f dy, x € R,
(9= sp e [ 1F)lay

where the supremum is taken in the lattice sense.
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Application: Harmonic analysis

Let p € [1,00) and let X be a Banach space. For f € LP(R; X) define the
vector-valued Hilbert transform

~ 1
Hf(x) := p.v./if(y)dy, xeR
RX Y
where the integral is interpreted in the Bochner sense.

Let X be a Banach function space. For f € LP(RY; X) define the /attice
Hardy-Littlewood maximal operator

_ 1 J
Mf(x) :=su 7/ f dy, x € R,
(9= sp e [ 1F)lay

where the supremum is taken in the lattice sense.

 Boundedness of H is independent of p € (1, 00)
(Calderén—Benedek—Panzone '62).

o Boundedness of M is independent of p € (1,00) and d € N
(Garcia-Cuerva—Macias—Torrea '93).

o Boundedness of H and M depends on the geometry of X.

T
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Theorem (Burkholder '83 and Bourgain '83)

Let X be a Banach space and p € (1,0). The following are equivalent:
(i) X has the UMD property.
(i) H is bounded on LP(R; X).
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Theorem (Burkholder '83 and Bourgain '83)

Let X be a Banach space and p € (1,0). The following are equivalent:
(i) X has the UMD property.
(i) H is bounded on LP(R; X).

e X has the UMD property if any finite martingale (fi)j—o in LP(€2; X) has
Unconditional Martingale Differences (dfi)i_;.

e That is, if for some p € (1,00) and all signs ex = £1 we have

35 4 = 254

r@:x)’
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Theorem (Burkholder '83 and Bourgain '83)

Let X be a Banach space and p € (1,0). The following are equivalent:
(i) X has the UMD property.

(i) H is bounded on LP(R; X).

e X has the UMD property if any finite martingale (fi)j—o in LP(€2; X) has
Unconditional Martingale Differences (dfi)i_;.

o Reflexive Lebesgue, Lorentz, (Musielak)-Orlicz, Sobolev, Besov spaces and
Schatten classes have the UMD property.
e L' and L® do not have the UMD property.

e Linear constant dependence is an open problem

T
TUDelft 0/



Theorem (Burkholder '83 and Bourgain '83)

Let X be a Banach space and p € (1,0). The following are equivalent:
(i) X has the UMD property.

(i) H is bounded on LP(R; X).

e X has the UMD property if any finite martingale (fi)j—o in LP(€2; X) has
Unconditional Martingale Differences (dfi)i_;.

o Reflexive Lebesgue, Lorentz, (Musielak)-Orlicz, Sobolev, Besov spaces and
Schatten classes have the UMD property.

e L' and L® do not have the UMD property.

e Linear constant dependence is an open problem
Theorem (Bourgain '84 and Rubio de Francia '86)

Let X be a Banach function space and p € (1,00). The following is equivalent to (i)
and (ii)

(iii) M is bounded on LP(R%; X) and on LP(R?; X*).

e (iii)=(ii) is “easy” and quantitative.
e (ii)=(iii) is very involved and technical.

2
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

v 112
||M||LP(]R;X)—>LP(]R;X) <C ||H||LP(R;X)—>LP(R;X)

% )
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

||M||LP(R;X)—>LP(R;X) S C ”H”i/z(]R;x)HLp(]R;x)

o Apply factorization theorem with [ = {ﬁ} and g1 = I\7Igo to transfer the
question from LP(R; X) to L*(R x S, w):
For any go € LP(R; X) there is a weight w : R x S — Ry such that

~ 2
IHfl2@xsmy) < ClFle@eswy, f€LRX)NL(R XS, w)
||g0||L2(1Rxs,w) <C ||g0||LP(lR;X)7

”MgOHLP(R;X) <C ||Mg0||L2(R><S,w)'
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

||M||LP(R;X)—>LP(]R;X) S C ”H”i/z(m;x)ql_/z(m;x)

o Apply factorization theorem with [ = {ﬁ} and g1 = I\7Igo to transfer the
question from LP(R; X) to L*(R x S, w):
For any go € LP(R; X) there is a weight w : R x S — Ry such that

IHF | 2@ sw) < Clfllp@uswy f€LPRX)NLA(R XS, w)
||g0||L2(1Rxs,w) <C ||g0HLP(]R;X)7
”MgO”Lp(R;x) <C ”MgOHLZ(Rxs,w)'
o By Fubini it suffices to show the boundedness of M on L*(R, w(-,s)) for s € S.
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

||M||LP(]R;X)—>LP(R;X) S C ”H”i/z(m;x)ql_/z(m;x)

o Apply factorization theorem with [ = {ﬁ} and g1 = I\7Ig0 to transfer the
question from LP(R; X) to L*(R x S, w):
For any go € LP(R; X) there is a weight w : R x S — Ry such that

IHF | 2@ sw) < Clfllp@uswy f€LPRX)NLA(R XS, w)
||g0||L2(1R><s,W) <C ||g0H1_p(1R;x):
”MgO”Lp(R;x) <C ”MgO”LZ(RxS,w)'
e By Fubini it suffices to show the boundedness of M on L*(R, w(-,s)) for s € S.

e For a weight v: R — Ry, M is bounded on L*(R, v) if and only if H is bounded
on L?(R, v) (Muckenhoupt '72,...).
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

||M||LP(R;X)—>LP(R;X) S C ”H”ip(]R;x)HLp(]R;x)

o Apply factorization theorem with [ = {ﬁ} and g1 = I\7Ig0 to transfer the
question from LP(R; X) to L*(R x S, w):
For any go € LP(R; X) there is a weight w : R x S — Ry such that

IHF | 2@ sw) < Clfllp@uswy f€LPRX)NLA(R XS, w)
||g0||L2(1R><s,W) <C ||g0H1_p(1R;x):
”MgO”Lp(R;x) <C ”MgO”LZ(RxS,w)'
e By Fubini it suffices to show the boundedness of M on L*(R, w(-,s)) for s € S.

e For a weight v: R — Ry, M is bounded on L*(R, v) if and only if H is bounded
on L?(R, v) (Muckenhoupt '72,...).

e As H is bounded on L*(R, w(-,s)) for s € S, M is as well.
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Application: Harmonic analysis
Theorem (Kalton—-L.-Weis '19)

Let X be a Banach function space on (S, ) and p € (1,00). If H is bounded on
LP(R; X), then M is bounded on L”(RR; X) with

||M||LP(R;X)—>LP(R;X) S C ”H”ip(]R;x)HLp(]R;x)

o Apply factorization theorem with [ = {ﬁ} and g1 = I\7Ig0 to transfer the
question from LP(R; X) to L*(R x S, w):
For any go € LP(R; X) there is a weight w : R x S — Ry such that

IHF | 2@ sw) < Clfllp@uswy f€LPRX)NLA(R XS, w)
”gO”LZ(]Rxs,W) <C ”gOHLp(]R;x):
”MgO”Lp(R;x) <C ”MgO”LZ(RxS,w)'
o By Fubini it suffices to show the boundedness of M on L*(R, w(-,s)) for s € S.

e For a weight v: R — Ry, M is bounded on L*(R, v) if and only if H is bounded
on L?(R, v) (Muckenhoupt '72,...).

e As H is bounded on L*(R, w(-,s)) for s € S, M is as well.

e Thus HMgOHLP(R;X) S ”gO”LP(R;X) -
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Application: Banach space geometry

Let X be a Banach space and p € (1,0). Let (fk)i—o be a finite martingale in
LP(€2; X) with difference sequence (dfi)s—;. Then X has the UMD property if and
only if for all signs ex = £1 we have

HZ exdf,
k=1

1 1<
< df, ,
r(ax) ™~ sz:; " o)

if and only if

defn
k=1

where (£)7_; is a Rademacher sequence on €'.

2 1 (3) 1"
<> edf, < H df,
r(x) ™ H; K& r@xa;x) ™ ; "

LP(:X)’
o (2) does not imply (1).
e It is an open question whether (3) implies (1)

Theorem (Kalton—-L.-Weis '19)
Let X be a Banach function space. Then (3) implies (1).

e Proof similar to previous slide.

T
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Outlook

o In the Euclidean structures manuscript:

* More factorization theorems.
o Representation of an a-bounded family of operators on a Hilbert space.

o Applications to interpolation, function spaces, functional calculus.
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Outlook

o In the Euclidean structures manuscript:

e More factorization theorems.
o Representation of an a-bounded family of operators on a Hilbert space.
o Applications to interpolation, function spaces, functional calculus.

e More applications of factorization through weighted [*:

e Show the necessity of UMD for the R-boundedness of certain operators

o Potentially many more applications!

5 )
TUDelft AL



Outlook

o In the Euclidean structures manuscript:

e More factorization theorems.
o Representation of an a-bounded family of operators on a Hilbert space.
o Applications to interpolation, function spaces, functional calculus.

e More applications of factorization through weighted [*:

e Show the necessity of UMD for the R-boundedness of certain operators

o Potentially many more applications!

o To appear on arXiv before Christmas!
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Thank you for your attention!
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