Order and Topology

Denny H. Leung

National University of Singapore

Workshop on Banach spaces and Banach lattices ICMAT September 2019

Based on joint work with Niushan Gao, Cosimo Munari, Made Tantrawan and Foivos Xanthos

> うへで 1/34

In this talk, X is usually a Banach lattice.

In this talk, X is usually a Banach lattice.

Special case: Banach function space (BFS). $L^0(\mu) =$ space of all measurable functions on a measure space (Ω, Σ, μ) .

A BFS is a subspace X of $L^0(\mu)$ endowed with a complete norm $\|\cdot\|$ so that if $|f| \le |g|$ and $g \in X$, then $f \in X$ and $\|f\| \le \|g\|$.

In this talk, X is usually a Banach lattice.

Special case: Banach function space (BFS).

 $L^{0}(\mu) =$ space of all measurable functions on a measure space (Ω, Σ, μ) . A BFS is a subspace X of $L^{0}(\mu)$ endowed with a complete norm $\|\cdot\|$ so that if $|f| \leq |g|$ and $g \in X$, then $f \in X$ and $\|f\| \leq \|g\|$.

Examples: L^p , Orlicz space, Lorentz space, rearrangement invariant (r.i.) function space.

900

3/34

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

In a BFS, $f_{\alpha} \xrightarrow{o} f$ if and only if there exists $g \in X$ and α_0 so that $|f_{\alpha}| \leq g$ for all $\alpha \geq \alpha_0$ and that (f_{α}) converges to f a.e.

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

In a BFS, $f_{\alpha} \xrightarrow{o} f$ if and only if there exists $g \in X$ and α_0 so that $|f_{\alpha}| \leq g$ for all $\alpha \geq \alpha_0$ and that (f_{α}) converges to f a.e.

A functional f on X is order continuous if $x_{\alpha} \xrightarrow{o} x \implies f(x_{\alpha}) \xrightarrow{o} f(x)$.

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

In a BFS, $f_{\alpha} \xrightarrow{o} f$ if and only if there exists $g \in X$ and α_0 so that $|f_{\alpha}| \leq g$ for all $\alpha \geq \alpha_0$ and that (f_{α}) converges to f a.e.

A functional f on X is order continuous if $x_{\alpha} \stackrel{o}{\longrightarrow} x \implies f(x_{\alpha}) \stackrel{o}{\longrightarrow} f(x)$.

The space of all order continuous linear functionals on X is the order continuous dual and is denoted by X_n^{\sim} . It is a closed lattice ideal in X^* .

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

In a BFS, $f_{\alpha} \xrightarrow{o} f$ if and only if there exists $g \in X$ and α_0 so that $|f_{\alpha}| \leq g$ for all $\alpha \geq \alpha_0$ and that (f_{α}) converges to f a.e.

A functional f on X is order continuous if $x_{\alpha} \stackrel{o}{\longrightarrow} x \implies f(x_{\alpha}) \stackrel{o}{\longrightarrow} f(x)$.

The space of all order continuous linear functionals on X is the order continuous dual and is denoted by X_n^{\sim} . It is a closed lattice ideal in X^* . For a BFS X.

$$X_n^{\sim} = \{ g \in L^0(\mu) : fg \in L^1(\mu) \text{ for all } f \in X \}.$$

প ্ ে 3 / 34

 $x_{\alpha} \xrightarrow{o} x$ if there exists $(y_{\gamma}) \downarrow 0$ (in X) so that for all γ , there exists α_0 so that $|x_{\alpha} - x| \leq y_{\gamma}$ for all $\alpha \geq \alpha_0$.

In a BFS, $f_{\alpha} \xrightarrow{o} f$ if and only if there exists $g \in X$ and α_0 so that $|f_{\alpha}| \leq g$ for all $\alpha \geq \alpha_0$ and that (f_{α}) converges to f a.e.

A functional f on X is order continuous if $x_{\alpha} \stackrel{o}{\longrightarrow} x \implies f(x_{\alpha}) \stackrel{o}{\longrightarrow} f(x)$.

The space of all order continuous linear functionals on X is the order continuous dual and is denoted by X_n^{\sim} . It is a closed lattice ideal in X^* . For a BFS X.

$$X_n^{\sim} = \{g \in L^0(\mu) : fg \in L^1(\mu) \text{ for all } f \in X\}.$$

Examples: $(L^{\infty})_{n}^{\sim} = L^{1}$, $(L^{\varphi})_{n}^{\sim} = L^{\psi}$, where ψ is the conjugate Orlicz function to φ .

 $X_n^{\sim} = X^*$ if and only if X has order continuous norm.

Let $C \subseteq X$. Then $x \in \overline{C}^{\circ}$ if there exists (x_{α}) in C so that $x_{\alpha} \stackrel{o}{\longrightarrow} x$.

Let $C \subseteq X$. Then $x \in \overline{C}^{\circ}$ if there exists (x_{α}) in C so that $x_{\alpha} \stackrel{o}{\longrightarrow} x$. \overline{C}° is called the order closure of C. C is order closed if $\overline{C}^{\circ} = C$. Let $C \subseteq X$. Then $x \in \overline{C}^{\circ}$ if there exists (x_{α}) in C so that $x_{\alpha} \xrightarrow{\circ} x$. \overline{C}° is called the order closure of C. C is order closed if $\overline{C}^{\circ} = C$. We call the smallest order closed set containing C the order closed envelope of C, denoted by \widehat{C} . Let $C \subseteq X$. Then $x \in \overline{C}^o$ if there exists (x_α) in C so that $x_\alpha \xrightarrow{o} x$. \overline{C}^o is called the order closure of C. C is order closed if $\overline{C}^o = C$.

We call the smallest order closed set containing C the order closed envelope of C, denoted by \widehat{C} .

In a BFS X, $f \in \overline{C}^{\circ}$ if and only if there is a sequence (f_n) in C and $g \in X$ so that $|f_n| \leq g$ for all n and $f_n \to f$ a.e.

Let $C \subseteq X$. Then $x \in \overline{C}^{\circ}$ if there exists (x_{α}) in C so that $x_{\alpha} \stackrel{o}{\longrightarrow} x$.

 \overline{C}° is called the order closure of C. C is order closed if $\overline{C}^{\circ} = C$.

We call the smallest order closed set containing C the order closed envelope of C, denoted by \widehat{C} .

In a BFS X, $f \in \overline{C}^{\circ}$ if and only if there is a sequence (f_n) in C and $g \in X$ so that $|f_n| \leq g$ for all n and $f_n \to f$ a.e.

Main problem: Study order closure and order closedness of a convex set and relation to closure with respect to some topologies, particularly $\sigma(X, X_n^{\sim})$.

Let C be a set in a Banach lattice X.

 $\overline{C}^{o}, \widehat{C} \text{ and } \overline{C}^{\sigma(X,X_{n}^{\sim})}$

Let C be a set in a Banach lattice X. Clearly $\overline{C}^{\circ} \subseteq \widehat{C}$. Let C be a set in a Banach lattice X. Clearly $\overline{C}^{o} \subseteq \widehat{C}$.

By definition, if $x_{\alpha} \stackrel{o}{\longrightarrow} x$ and $f \in X_{n}^{\sim}$, then $f(x_{\alpha}) \rightarrow f(x)$.

Let C be a set in a Banach lattice X. Clearly $\overline{C}^{\circ} \subseteq \widehat{C}$.

By definition, if $x_{\alpha} \xrightarrow{o} x$ and $f \in X_{n}^{\sim}$, then $f(x_{\alpha}) \to f(x)$. So $\overline{C}^{\sigma(X,X_{n}^{\sim})}$ is an order closed set containing C. Let C be a set in a Banach lattice X. Clearly $\overline{C}^{o} \subseteq \widehat{C}$. By definition, if $x_{\alpha} \xrightarrow{o} x$ and $f \in X_{n}^{\sim}$, then $f(x_{\alpha}) \to f(x)$. So $\overline{C}^{\sigma(X,X_{n}^{\sim})}$ is an order closed set containing C.

Thus

$$\overline{C}^o \subseteq \widehat{C} \subseteq \overline{C}^{\sigma(X,X_n^{\sim})}.$$

Let *C* be a set in a Banach lattice *X*. Clearly $\overline{C}^{\circ} \subseteq \widehat{C}$.

By definition, if $x_{\alpha} \xrightarrow{o} x$ and $f \in X_{n}^{\sim}$, then $f(x_{\alpha}) \to f(x)$. So $\overline{C}^{\sigma(X,X_{n}^{\sim})}$ is an order closed set containing C.

Thus

$$\overline{C}^o \subseteq \widehat{C} \subseteq \overline{C}^{\sigma(X,X_n^{\sim})}.$$

We can ask specifically:

For which Banach lattice X is it true that two of these sets coincide for all convex sets $C \subseteq X$.

900

6/34

$$\overline{C}^{o}$$
 is order closed $\iff \overline{C}^{o} = \widehat{C}$.

୬ବ୍ଦ

6/34

$$\overline{C}^{o}$$
 is order closed $\iff \overline{C}^{o} = \widehat{C}$.

Example: A convex set C in ℓ^{∞} so that \overline{C}^{o} is not order closed.

 \overline{C}^{o} is order closed $\iff \overline{C}^{o} = \widehat{C}$.

Example: A convex set C in ℓ^{∞} so that \overline{C}° is not order closed. Fact: In ℓ^{∞} , \overline{C}° is the $\sigma(\ell^{\infty}, \ell^{1})$ -sequential closure of C.

$$\overline{C}^{o}$$
 is order closed $\iff \overline{C}^{o} = \widehat{C}$.

Example: A convex set C in ℓ^{∞} so that \overline{C}° is not order closed. Fact: In ℓ^{∞} , \overline{C}° is the $\sigma(\ell^{\infty}, \ell^{1})$ -sequential closure of C.

Let \mathcal{U} be a free ultrafilter on \mathbb{N} . Consider $X = \ell^{\infty}(\mathbb{N} \times \mathbb{N})$. Set

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

$$\overline{C}^{o}$$
 is order closed $\iff \overline{C}^{o} = \widehat{C}$.

Example: A convex set C in ℓ^{∞} so that \overline{C}° is not order closed. Fact: In ℓ^{∞} , \overline{C}° is the $\sigma(\ell^{\infty}, \ell^{1})$ -sequential closure of C.

Let \mathcal{U} be a free ultrafilter on \mathbb{N} . Consider $X = \ell^{\infty}(\mathbb{N} \times \mathbb{N})$. Set

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

Y is a sublattice of X.

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & \cdots \\ 1 & 0 & \cdots & 0 & 2 & \cdots \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & m & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \xrightarrow{o} \begin{pmatrix} 1 & 0 & \cdots \\ \vdots & \vdots & \vdots \\ 1 & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & \vdots & \vdots \end{pmatrix} := e_m \text{ as } n \to \infty$$

6/34

$$e_m \stackrel{o}{\longrightarrow} e = \begin{pmatrix} 1 & 0 & \cdots \\ \vdots & \vdots & \vdots \\ 1 & 0 & \cdots \\ 1 & 0 & \cdots \\ \vdots & \vdots & \vdots \end{pmatrix}.$$

Hence
$$e \in \overline{\overline{Y}^o}^o$$
.

୬ < ୯ 7 / 34

$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

 $\text{Suppose } y^k \in Y \text{ and } y^k \stackrel{o}{\longrightarrow} e \iff y^k \rightarrow e \; \sigma(\ell^\infty, \ell^1).$

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

Suppose $y^k \in Y$ and $y^k \xrightarrow{o} e \iff y^k \rightarrow e \sigma(\ell^{\infty}, \ell^1)$. For any *m*, there exists *k* so that $|y_{m1}^k - 1| < \frac{1}{2}$.

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

Suppose $y^k \in Y$ and $y^k \xrightarrow{o} e \iff y^k \rightarrow e \sigma(\ell^{\infty}, \ell^1)$. For any m, there exists k so that $|y_{m1}^k - 1| < \frac{1}{2}$. Then $\lim_{n \to \mathcal{U}} y_{mn}^k = my_{m1}^k > \frac{m}{2}$.

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

Suppose $y^k \in Y$ and $y^k \xrightarrow{o} e \iff y^k \rightarrow e \sigma(\ell^{\infty}, \ell^1)$. For any m, there exists k so that $|y_{m1}^k - 1| < \frac{1}{2}$. Then $\lim_{n \to \mathcal{U}} y_{mn}^k = my_{m1}^k > \frac{m}{2}$. Hence $||y^k|| > \frac{m}{2}$.

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

Suppose $y^k \in Y$ and $y^k \stackrel{o}{\longrightarrow} e \iff y^k \rightarrow e \ \sigma(\ell^{\infty}, \ell^1)$. For any m, there exists k so that $|y_{m1}^k - 1| < \frac{1}{2}$. Then $\lim_{n \rightarrow \mathcal{U}} y_{mn}^k = my_{m1}^k > \frac{m}{2}$. Hence $||y^k|| > \frac{m}{2}$. So (y^k) cannot be norm bounded and so not order bounded (in any Banach lattice containing Y).
Order closedness of \overline{C}°

$$Y = \{y = (y_{mn}) \in X : \lim_{n \to \mathcal{U}} y_{mn} = my_{m1} \text{ for all } m \in \mathbb{N}\}.$$

To show: $e \notin \overline{Y}^o$.

Suppose $y^k \in Y$ and $y^k \xrightarrow{o} e \iff y^k \rightarrow e \ \sigma(\ell^{\infty}, \ell^1)$. For any m, there exists k so that $|y_{m1}^k - 1| < \frac{1}{2}$. Then $\lim_{n \to \mathcal{U}} y_{mn}^k = my_{m1}^k > \frac{m}{2}$. Hence $||y^k|| > \frac{m}{2}$. So (y^k) cannot be norm bounded and so not order bounded (in any Banach lattice containing Y). Thus \overline{Y}^o is not order closed.

Order closedness of \overline{C}°

900

9/34

The example can be put inside any Banach lattice that contains a copy of $\ell^\infty.$

The example can be put inside any Banach lattice that contains a copy of $\ell^\infty.$

Corollary

Let X be a Banach lattice that contains a lattice isomorphic copy of ℓ^{∞} . There is a closed sublattice Y of X so that \overline{Y}^{o} is not order closed. In particular, if X is a countably order complete Banach lattice, then \overline{Y}^{o} is order closed for every closed sublattice Y of X if and only if X has order continuous norm.

∽ ९ (~ 10 / 34

Let X be a Banach lattice. $x_{\alpha} \xrightarrow{uo} x$ if for any $u \in X_+$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$. uo stands for unbounded order convergence.

Let X be a Banach lattice. $x_{\alpha} \xrightarrow{uo} x$ if for any $u \in X_+$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$. uo stands for unbounded order convergence. uo closure of a set is defined in the obvious way.

Let X be a Banach lattice. $x_{\alpha} \xrightarrow{uo} x$ if for any $u \in X_+$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$. uo stands for unbounded order convergence. uo closure of a set is defined in the obvious way.

In a BFS, $f_{\alpha} \xrightarrow{uo} f$ if and only if (f_{α}) converges to f a.e.

Let X be a Banach lattice. $x_{\alpha} \xrightarrow{uo} x$ if for any $u \in X_+$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$. uo stands for unbounded order convergence. uo closure of a set is defined in the obvious way.

In a BFS, $f_{\alpha} \xrightarrow{uo} f$ if and only if (f_{α}) converges to f a.e. uo closure of a set is the sequential closure with respect to a.e. convergence.

Let X be a Banach lattice. $x_{\alpha} \xrightarrow{uo} x$ if for any $u \in X_+$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$. uo stands for unbounded order convergence. uo closure of a set is defined in the obvious way.

In a BFS, $f_{\alpha} \xrightarrow{uo} f$ if and only if (f_{α}) converges to f a.e. uo closure of a set is the sequential closure with respect to a.e. convergence.

Proposition

Let Y be a sublattice of a Banach lattice X and let I be an ideal of X_n^{\sim} that separates points of X. Then

$$\overline{Y}^{o} \subseteq \overline{Y}^{uo} \subseteq \overline{\overline{Y}^{o}}^{o} \subseteq \overline{Y}^{\sigma(X,I)}$$

and $\overline{Y}^{\sigma(X,I)}$ is order closed. If X has the countable sup property, then $\overline{Y}^{uo} = \overline{Y}^{\sigma(X,I)}$ is the order closed envelope of Y.

∽ ९ (∾ 11 / 34

Theorem

Let X be a countably order complete Banach lattice. TFAE.

- X is order continuous.
- **2** $\overline{Y}^{o} = \overline{Y}^{\sigma(X,X_{n}^{\sim})}$ for any sublattice Y of X.
- **(a)** \overline{Y}^{o} is order closed for any sublattice Y of X.
- $\overline{Y}^o = \overline{Y}^{uo}$ for any sublattice Y of X.

Theorem

Let X be a countably order complete Banach lattice. TFAE.

Remark. Let $X = \ell^{\infty}$. Then $X_n^{\sim} = \ell^1$ and X has the countable sup property.

Theorem

Let X be a countably order complete Banach lattice. TFAE.

Remark. Let $X = \ell^{\infty}$. Then $X_n^{\sim} = \ell^1$ and X has the countable sup property.

If Y is a sublattice of X, then $\overline{Y}^o = \overline{Y}^{\mathsf{seq-}w^*}$.

Theorem

Let X be a countably order complete Banach lattice. TFAE.

Remark. Let $X = \ell^{\infty}$. Then $X_n^{\sim} = \ell^1$ and X has the countable sup property.

If Y is a sublattice of X, then $\overline{Y}^o = \overline{Y}^{\text{seq-}w^*}$. By Proposition, $\overline{Y}^{w^*} = \overline{\overline{Y}^o}^o = \overline{\overline{Y}^{\text{seq-}w^*}}^{\text{seq-}w^*}$ is the order closed envelope of Y.

> うへで 11/34

Theorem

Let X be a countably order complete Banach lattice. TFAE.

Remark. Let $X = \ell^{\infty}$. Then $X_n^{\sim} = \ell^1$ and X has the countable sup property.

If Y is a sublattice of X, then $\overline{Y}^o = \overline{Y}^{\text{seq-}w^*}$. By Proposition, $\overline{Y}^{w^*} = \overline{\overline{Y}^o}^o = \overline{\overline{Y}^{\text{seq-}w^*}}^{\text{seq-}w^*}$ is the order closed envelope of Y.

For any subspace Z of ℓ^{∞} , define $Z_1 = \overline{Z}^{\text{seq-}w^*}$, $Z_{\beta+1} = (Z_{\beta})_1$ and $Z_{\beta} = \bigcup_{\alpha < \beta} Z_{\alpha}$ if β is a limit ordinal. A result of Ostrovskij shows that for any countable ordinal α , there is a subspace Z of ℓ^{∞} so that $Z_{\beta}, \beta < \alpha$, are all distinct.

ク Q (や 12 / 34

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

P1 : $\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex set $C \subseteq X$.

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

P1 : $\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex set $C \subseteq X$. Question: Which spaces have P1?

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

P1 : $\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex set $C \subseteq X$. Question: Which spaces have P1?

This question is motivated by some considerations in the theory of risk measures in financial mathematics.

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

P1 : $\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex set $C \subseteq X$. Question: Which spaces have P1?

This question is motivated by some considerations in the theory of risk measures in financial mathematics.

Sufficient condition: $\overline{C}^o = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex *C*. This has been characterized above.

Order closedness equals $\sigma(X, X_n^{\sim})$ -closedness $\iff \widehat{C} = \overline{C}^{\sigma(X, X_n^{\sim})}$.

P1 : $\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$ for any convex set $C \subseteq X$. Question: Which spaces have P1?

This question is motivated by some considerations in the theory of risk measures in financial mathematics.

Sufficient condition: $\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for any convex *C*.

This has been characterized above.

Proposition

Let X be countably order complete. Then $\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for any convex set C if and only if X is order continuous.

• ় ় ় 12 / 34

Example: A convex set C that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$.

Example: A convex set C that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Example: A convex set C that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Observations:

(i) $X_n^{\sim} = \ell^1 \oplus (\oplus \ell^{\infty})_{\infty}$. Hence $\sigma(X, X_n^{\sim}) = w^* \oplus w$.

Example: A convex set C that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Observations:

(i) $X_n^{\sim} = \ell^1 \oplus (\oplus \ell^{\infty})_{\infty}$. Hence $\sigma(X, X_n^{\sim}) = w^* \oplus w$. (ii) $x \in \overline{C}^o \iff x$ is the coordinatewise limit of an order bounded sequence in C

Example: A convex set *C* that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Observations:

(i) $X_n^{\sim} = \ell^1 \oplus (\oplus \ell^{\infty})_{\infty}$. Hence $\sigma(X, X_n^{\sim}) = w^* \oplus w$.

(ii) $x \in \overline{C}^{\circ} \iff x$ is the coordinatewise limit of an order bounded sequence in *C*

 \iff x is the $w^* \oplus w$ -limit of a norm bounded sequence in C.

Example: A convex set *C* that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Observations:

(i)
$$X_n^{\sim} = \ell^1 \oplus (\oplus \ell^{\infty})_{\infty}$$
. Hence $\sigma(X, X_n^{\sim}) = w^* \oplus w$.

(ii) $x \in \overline{C}^{\circ} \iff x$ is the coordinatewise limit of an order bounded sequence in C

 \iff x is the $w^* \oplus w$ -limit of a norm bounded sequence in C.

A non-convex set S in $\ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$ that is order closed but not $\sigma(X, X_n^{\sim})$ -closed.

Example: A convex set *C* that is order closed but not $\sigma(X, X_n^{\sim})$ -closed in $X = \ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$. I.e., $\overline{C}^o \subsetneq \overline{C}^{\sigma(X, X_n^{\sim})}$.

Observations:

(i)
$$X_n^{\sim} = \ell^1 \oplus (\oplus \ell^{\infty})_{\infty}$$
. Hence $\sigma(X, X_n^{\sim}) = w^* \oplus w$.

(ii) $x \in \overline{C}^{o} \iff x$ is the coordinatewise limit of an order bounded sequence in C

 $\iff x \text{ is the } w^* \oplus w \text{-limit of a norm bounded sequence in } C.$

A non-convex set S in $\ell^{\infty} \oplus \ell^1 = \ell^{\infty} \oplus (\oplus \ell^1)_1$ that is order closed but not $\sigma(X, X_n^{\sim})$ -closed.

$$S = \{x_{k,j} : k, j \in \mathbb{N}\}$$
, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

୍ର ବ୍ C 13 / 34

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \stackrel{j ext{th coord}}{2^k}, 2^k, \ldots) \oplus (0,\ldots,0, \stackrel{j ext{th coord}}{\frac{e_j}{2^k}}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

ク ९ (や 14 / 34

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose that $y = u \oplus (v_1, v_2, ...) \in \ell^1 \oplus (\oplus \ell^{\infty})_{\ell^{\infty}}$, where $u = (u_i) \in \ell^1$ and (v_i) is a bounded sequence in ℓ^{∞} .

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ \frac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose that $y = u \oplus (v_1, v_2, ...) \in \ell^1 \oplus (\oplus \ell^{\infty})_{\ell^{\infty}}$, where $u = (u_i) \in \ell^1$ and (v_i) is a bounded sequence in ℓ^{∞} .

$$|\langle x_{k,j}, y \rangle| \leq 2^k \sum_{i=j}^{\infty} |u_i| + \frac{\|v_j\|}{2^k}.$$

୬ < ୯ 14 / 34

$$\mathcal{S} = \{x_{k,j}: k,j \in \mathbb{N}\}$$
, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ \frac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose that $y = u \oplus (v_1, v_2, ...) \in \ell^1 \oplus (\oplus \ell^{\infty})_{\ell^{\infty}}$, where $u = (u_i) \in \ell^1$ and (v_i) is a bounded sequence in ℓ^{∞} .

$$|\langle x_{k,j}, y \rangle| \leq 2^k \sum_{i=j}^{\infty} |u_i| + \frac{\|v_j\|}{2^k}.$$

Given $\varepsilon > 0$, choose k so that $\frac{\|v_j\|}{2^k} < \frac{\varepsilon}{2}$ for any j.

୬ < ୍ 14 / 34

$$S = \{x_{k,j} : k, j \in \mathbb{N}\}$$
, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ \frac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose that $y = u \oplus (v_1, v_2, ...) \in \ell^1 \oplus (\oplus \ell^{\infty})_{\ell^{\infty}}$, where $u = (u_i) \in \ell^1$ and (v_i) is a bounded sequence in ℓ^{∞} .

$$|\langle x_{k,j}, y \rangle| \leq 2^k \sum_{i=j}^{\infty} |u_i| + \frac{\|v_j\|}{2^k}$$

Given $\varepsilon > 0$, choose k so that $\frac{\|v_j\|}{2^k} < \frac{\varepsilon}{2}$ for any j. Then choose j so that $2^k \sum_{i=1}^{\infty} |u_i| < \frac{\varepsilon}{2}$.

> ୬ < ୯ 14 / 34
$$S = \{x_{k,j} : k, j \in \mathbb{N}\}$$
, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ \frac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose that $y = u \oplus (v_1, v_2, ...) \in \ell^1 \oplus (\oplus \ell^{\infty})_{\ell^{\infty}}$, where $u = (u_i) \in \ell^1$ and (v_i) is a bounded sequence in ℓ^{∞} .

$$|\langle x_{k,j}, y \rangle| \le 2^k \sum_{i=j}^{\infty} |u_i| + \frac{\|v_j\|}{2^k}$$

Given $\varepsilon > 0$, choose k so that $\frac{\|v_j\|}{2^k} < \frac{\varepsilon}{2}$ for any j.

Then choose j so that $2^k \sum_{i=j}^{\infty} |u_i| < \frac{\varepsilon}{2}$.

This shows that $0 \in \overline{S}^{w^* \oplus w}$. So S is not $w^* \oplus w = \sigma(X, X_n^{\sim})$ -closed.

14/34

$$\mathcal{S} = \{x_{k,j} : k, j \in \mathbb{N}\}$$
, where

$$x_{k,j} = (0,\ldots,0, \stackrel{j ext{th coord}}{2^k}, 2^k, \ldots) \oplus (0,\ldots,0, \stackrel{j ext{th coord}}{\frac{e_j}{2^k}}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose $(x_{k_n,j_n}) = y_{k_n,j_n} \oplus z_{k_n}$ is norm bounded in X and converges to $x = y \oplus z$ wrt $w^* \oplus w$.

୬ ବ C 15 / 34

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose $(x_{k_n,j_n}) = y_{k_n,j_n} \oplus z_{k_n}$ is norm bounded in X and converges to $x = y \oplus z$ wrt $w^* \oplus w$.

By considering y_{k_n,j_n} , we see that (k_n) must be bounded. WLOG $k_n = k$ for all n.

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose $(x_{k_n,j_n}) = y_{k_n,j_n} \oplus z_{k_n}$ is norm bounded in X and converges to $x = y \oplus z$ wrt $w^* \oplus w$.

By considering y_{k_n,j_n} , we see that (k_n) must be bounded. WLOG $k_n = k$ for all n.

 j_n th coord Then $(0, \ldots, 0, \frac{e_{j_n}}{2^k}, 0, \ldots) \rightarrow z$ weakly in $(\oplus \ell^1)_1$, which means norm convergence as well.

> ୬ <u>୦</u> ୦ 15 / 34

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose $(x_{k_n,j_n}) = y_{k_n,j_n} \oplus z_{k_n}$ is norm bounded in X and converges to $x = y \oplus z$ wrt $w^* \oplus w$.

By considering y_{k_n,j_n} , we see that (k_n) must be bounded. WLOG $k_n = k$ for all n.

Then $(0, \ldots, 0, \frac{e_{j_n}}{2^k}, 0, \ldots) \to z$ weakly in $(\oplus \ell^1)_1$, which means norm convergence as well.

So (j_n) must be eventually constant. It follows that $x \in S$.

୬ ୯ ୯ 15 / 34

 $S = \{x_{k,j} : k, j \in \mathbb{N}\}$, where

$$x_{k,j} = (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ 2^k \end{array}, 2^k, \ldots) \oplus (0,\ldots,0, \begin{array}{c} {}^{j ext{th coord}} \\ rac{e_j}{2^k} \end{array}, 0, \ldots),$$

 $(e_j) =$ unit vector basis in ℓ^1 .

Suppose $(x_{k_n,j_n}) = y_{k_n,j_n} \oplus z_{k_n}$ is norm bounded in X and converges to $x = y \oplus z$ wrt $w^* \oplus w$.

By considering y_{k_n,j_n} , we see that (k_n) must be bounded. WLOG $k_n = k$ for all n.

Then $(0, \ldots, 0, \frac{e_{j_n}}{2^k}, 0, \ldots) \to z$ weakly in $(\oplus \ell^1)_1$, which means norm convergence as well.

So (j_n) must be eventually constant. It follows that $x \in S$. Thus S is order closed.

୬ ବ ୯ 15 / 34

We have the desired example except that S is not convex.

We have the desired example *except* that S is not convex. Let C = convex hull of S.

We have the desired example except that S is not convex.

Let C = convex hull of S.

An analysis in the same vein, but technically more complicated, shows that C is order closed and $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} \notin C$.

We have the desired example except that S is not convex.

Let C = convex hull of S.

An analysis in the same vein, but technically more complicated, shows that C is order closed and $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} \notin C$.

The example can be ported over to a Banach lattice X containing a set $S = \{x_n, y_n : n \in \mathbb{N}\}$ so that

- The elements in S are positive pairwise disjoint and normalized.
- (x_n) is order bounded in X.
- There exists $y^* \in X_n^{\sim}$ so that $\inf_n y^*(y_n) > 0$.

The final condition says that (y_n) is a disjoint ℓ^1 -sequence in X and its " ℓ^1 -ness" is witnessed by an element in X_n^{\sim} .

We have the desired example except that S is not convex.

Let C = convex hull of S.

An analysis in the same vein, but technically more complicated, shows that C is order closed and $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} \notin C$.

The example can be ported over to a Banach lattice X containing a set $S = \{x_n, y_n : n \in \mathbb{N}\}$ so that

- The elements in S are positive pairwise disjoint and normalized.
- (x_n) is order bounded in X.
- There exists $y^* \in X_n^{\sim}$ so that $\inf_n y^*(y_n) > 0$.

The final condition says that (y_n) is a disjoint ℓ^1 -sequence in X and its " ℓ^1 -ness" is witnessed by an element in X_n^{\sim} .

Theorem

Let X be an order complete Banach lattice so that X_n^{\sim} isomorphically norms X. If X has property P1, then either X or X_n^{\sim} is order continuous.

Summary: P1 = "any convex set is order closed $\iff \sigma(X, X_n^{\sim})$ -closed".

X order continuous $\implies P1 \stackrel{X_n^{\sim} \text{ norming}}{\implies} X \text{ or } X_n^{\sim} \text{ order continuous.}$

Summary: P1 = "any convex set is order closed $\iff \sigma(X, X_n^{\sim})$ -closed".

X order continuous $\implies P1 \stackrel{X_n^{\sim} \text{ norming}}{\implies} X \text{ or } X_n^{\sim} \text{ order continuous.}$

Natural question: X_n^{\sim} order continuous \implies P1?

[To p.27]

Krein-Smulyan property

ি 18/34 In the example above, the convex set C has the property that $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed for any convex, norm bounded, $\sigma(X, X_n^{\sim})$ -closed set B; however, C is not $\sigma(X, X_n^{\sim})$ -closed.

In the example above, the convex set C has the property that $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed for any convex, norm bounded, $\sigma(X, X_n^{\sim})$ -closed set B; however, C is not $\sigma(X, X_n^{\sim})$ -closed.

Say that $\sigma(X, X_n^{\sim})$ has the Krein-Smulyan property (KS) if for any convex set C in X so that $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed for any convex, norm bounded, $\sigma(X, X_n^{\sim})$ -closed set B, C is $\sigma(X, X_n^{\sim})$ -closed.

In the example above, the convex set C has the property that $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed for any convex, norm bounded, $\sigma(X, X_n^{\sim})$ -closed set B; however, C is not $\sigma(X, X_n^{\sim})$ -closed.

Say that $\sigma(X, X_n^{\sim})$ has the Krein-Smulyan property (KS) if for any convex set C in X so that $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed for any convex, norm bounded, $\sigma(X, X_n^{\sim})$ -closed set B, C is $\sigma(X, X_n^{\sim})$ -closed.

Example: Suppose that $X = (X_n^{\sim})_n^{\sim}$ (canonically) and X_n^{\sim} is order continuous. Then $X = (X_n^{\sim})^*$. Thus $\sigma(X, X_n^{\sim})$ is the weak* topology. Therefore, $\sigma(X, X_n^{\sim})$ has KS by the Krein-Smulyan Theorem.

Suppose that $X = (X_n^{\sim})_n^{\sim}$. Then $\sigma(X, X_n^{\sim})$ has KS if and only if X or X_n^{\sim} is order continuous.

[To p.31]

Suppose that $X = (X_n^{\sim})_n^{\sim}$. Then $\sigma(X, X_n^{\sim})$ has KS if and only if X or X_n^{\sim} is order continuous.

[To p.31]

Proof.

X order continuous $\implies X_n^{\sim} = X^*$. So $\sigma(X, X_n^{\sim}) =$ weak topology and thus has KS.

Suppose that $X = (X_n^{\sim})_n^{\sim}$. Then $\sigma(X, X_n^{\sim})$ has KS if and only if X or X_n^{\sim} is order continuous.

[To p.31]

Proof.

X order continuous $\implies X_n^{\sim} = X^*$. So $\sigma(X, X_n^{\sim}) =$ weak topology and thus has KS.

 X_n^{\sim} order continuous $\implies \sigma(X, X_n^{\sim})$ has KS, as shown above.

996

Suppose that $X = (X_n^{\sim})_n^{\sim}$. Then $\sigma(X, X_n^{\sim})$ has KS if and only if X or X_n^{\sim} is order continuous.

[To p.31]

Proof.

X order continuous $\implies X_n^{\sim} = X^*$. So $\sigma(X, X_n^{\sim}) =$ weak topology and thus has KS.

 X_n^{\sim} order continuous $\implies \sigma(X, X_n^{\sim})$ has KS, as shown above.

Converse follows from construction of set C above.

99C

Suppose that $X = (X_n^{\sim})_n^{\sim}$ and that X_n^{\sim} is order continuous. Then X has P1 if and only if every *norm bounded* order closed convex set in X is $\sigma(X, X_n^{\sim})$ -closed.

Suppose that $X = (X_n^{\sim})_n^{\sim}$ and that X_n^{\sim} is order continuous. Then X has P1 if and only if every *norm bounded* order closed convex set in X is $\sigma(X, X_n^{\sim})$ -closed.

Proof.

Only need to show "if". Let C be order closed and convex.

Suppose that $X = (X_n^{\sim})_n^{\sim}$ and that X_n^{\sim} is order continuous. Then X has P1 if and only if every *norm bounded* order closed convex set in X is $\sigma(X, X_n^{\sim})$ -closed.

Proof.

Only need to show "if". Let C be order closed and convex.

If B is convex, norm bounded and $\sigma(X, X_n^{\sim})$ -closed, then it is order closed.

Suppose that $X = (X_n^{\sim})_n^{\sim}$ and that X_n^{\sim} is order continuous. Then X has P1 if and only if every *norm bounded* order closed convex set in X is $\sigma(X, X_n^{\sim})$ -closed.

Proof.

Only need to show "if". Let C be order closed and convex.

If B is convex, norm bounded and $\sigma(X, X_n^{\sim})$ -closed, then it is order closed.

Hence $C \cap B$ is norm bounded order closed and convex. So $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed.

Suppose that $X = (X_n^{\sim})_n^{\sim}$ and that X_n^{\sim} is order continuous. Then X has P1 if and only if every *norm bounded* order closed convex set in X is $\sigma(X, X_n^{\sim})$ -closed.

Proof.

Only need to show "if". Let C be order closed and convex.

If B is convex, norm bounded and $\sigma(X, X_n^{\sim})$ -closed, then it is order closed.

Hence $C \cap B$ is norm bounded order closed and convex. So $C \cap B$ is $\sigma(X, X_n^{\sim})$ -closed.

By Theorem above, $\sigma(X, X_n^{\sim})$ has KS. Hence C is $\sigma(X, X_n^{\sim})$ -closed.

Motivated by the Corollary, let's define:

(P2) Every norm bounded order closed convex set in X is σ(X, X_n[~])-closed, i.e., C
= C
^{σ(X,X_n[~])} for every norm bounded convex set C.
(P3) C
^o = C
^{σ(X,X_n[~])} for every norm bounded convex set C in X.

Motivated by the Corollary, let's define:

(P2) Every norm bounded order closed convex set in X is σ(X, X_n[~])-closed, i.e., C
= C
^{σ(X,X_n[~])} for every norm bounded convex set C.
(P3) C
^o = C
^{σ(X,X_n[~])} for every norm bounded convex set C in X.

We have

X order continuous
$$\implies$$
 P1, P2, P3.

If X_n^{\sim} is order continuous, then

$$P3 \implies P2 \stackrel{X=(X_n^{\sim})_n^{\sim}}{\iff} P1.$$

Motivated by the Corollary, let's define:

(P2) Every norm bounded order closed convex set in X is σ(X, X_n[~])-closed, i.e., C
= C
^{σ(X,X_n[~])} for every norm bounded convex set C.
(P3) C
^o = C
^{σ(X,X_n[~])} for every norm bounded convex set C in X.

We have

X order continuous
$$\implies$$
 P1, P2, P3.

If X_n^{\sim} is order continuous, then

$$P3 \implies P2 \stackrel{X=(X_n^{\sim})_n^{\sim}}{\iff} P1.$$

In the case of Orlicz spaces, it turns out that P3 always holds.

Motivated by the Corollary, let's define:

(P2) Every norm bounded order closed convex set in X is σ(X, X_n[~])-closed, i.e., C
= C
^{σ(X,X_n[~])} for every norm bounded convex set C.
(P3) C
^o = C
^{σ(X,X_n[~])} for every norm bounded convex set C in X.

We have

X order continuous
$$\implies$$
 P1, P2, P3.

If X_n^{\sim} is order continuous, then

$$P3 \implies P2 \stackrel{X=(X_n^{\sim})_n^{\sim}}{\iff} P1.$$

In the case of Orlicz spaces, it turns out that P3 always holds.

Below, we look at some properties motivated by the proof of said result in Orlicz spaces.

୬ ୯.୯ 21 / 34 Say that X has DOCP if for any norm bounded *disjoint* sequence (f_n) in X_+ , $f_n \to 0$ $\sigma(X, X_n^{\sim}) \implies f_n \to 0$ weakly.

- Say that X has DOCP if for any norm bounded *disjoint* sequence (f_n) in X_+ , $f_n \to 0 \ \sigma(X, X_n^{\sim}) \implies f_n \to 0$ weakly.
- Remark. Reason for the name is that if X is countably order complete, then X is order continuous if and only if for any norm bounded sequence (f_n) in X_+ , $f_n \to 0 \ \sigma(X, X_n^{\sim}) \implies f_n \to 0$ weakly.

Say that X has DOCP if for any norm bounded *disjoint* sequence (f_n) in X_+ , $f_n \to 0 \ \sigma(X, X_n^{\sim}) \implies f_n \to 0$ weakly.

Remark. Reason for the name is that if X is countably order complete, then X is order continuous if and only if for any norm bounded sequence (f_n) in X_+ , $f_n \to 0 \ \sigma(X, X_n^{\sim}) \implies f_n \to 0$ weakly.

Relevance of DOCP to P2 is based on the following concrete situation.

Disjoint order continuity property (DOCP)

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

Disjoint order continuity property (DOCP)

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

 $C = \text{norm closure of } \operatorname{co}(f_n) \subseteq \overline{\operatorname{co}(f_n)}^o$.
Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

C = norm closure of $co(f_n) \subseteq \overline{co(f_n)}^o$. Conversely, suppose that $(x_n) \subseteq C$ and $x_n \xrightarrow{o} x$.

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

 $C = \text{norm closure of } \operatorname{co}(f_n) \subseteq \overline{\operatorname{co}(f_n)}^{\circ}$. Conversely, suppose that $(x_n) \subseteq C$ and $x_n \xrightarrow{\circ} x$. Then (x_n) is dominated in $X \implies$ it is dominated by an element $\sum b_n f_n$, where $(b_n) \in \ell^1$.

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

 $C = \text{norm closure of } \operatorname{co}(f_n) \subseteq \overline{\operatorname{co}(f_n)}^{\circ}$. Conversely, suppose that $(x_n) \subseteq C$ and $x_n \xrightarrow{\circ} x$. Then (x_n) is dominated in $X \implies$ it is dominated by an element $\sum b_n f_n$, where $(b_n) \in \ell^1$. So (x_n) is relatively norm compact and it follows that $x \in C$.

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

 $C = \text{norm closure of } \operatorname{co}(f_n) \subseteq \overline{\operatorname{co}(f_n)}^{\circ}$. Conversely, suppose that $(x_n) \subseteq C$ and $x_n \xrightarrow{\circ} x$. Then (x_n) is dominated in $X \implies$ it is dominated by an element $\sum b_n f_n$, where $(b_n) \in \ell^1$. So (x_n) is relatively norm compact and it follows that $x \in C$. So C is order closed.

> ୬ <u>୦</u> ୦ 23 / 34

Lemma

Let (f_n) be a normalized disjoint ℓ^1 sequence in a Banach lattice X. Then $\overline{co(f_n)}^o$ is order closed and

$$\overline{\operatorname{co}(f_n)}^o = \{\sum_{n=1}^{\infty} a_n f_n : a_n \ge 0, \sum a_n = 1\} (:= C).$$

[p.27]

 $C = \text{norm closure of } co(f_n) \subseteq \overline{co(f_n)}^{\circ}.$ Conversely, suppose that $(x_n) \subseteq C$ and $x_n \xrightarrow{o} x$. Then (x_n) is dominated in $X \implies$ it is dominated by an element $\sum b_n f_n$, where $(b_n) \in \ell^1$. So (x_n) is relatively norm compact and it follows that $x \in C$. So C is order closed. Then $\overline{co(f_n)}^{\circ} \subseteq C$.

Proposition

 $P2 \implies DOCP.$

Proof.

Suppose (f_n) is a norm bounded disjoint sequence in X_+ .

୬ <u>୦</u> ୦ 24 / 34

Proposition

 $P2 \implies DOCP.$

Proof.

Suppose (f_n) is a norm bounded disjoint sequence in X_+ . If (f_n) is not weakly null, we may assume that it is an ℓ^1 -sequence.

Proposition

 $P2 \implies DOCP.$

Proof.

Suppose (f_n) is a norm bounded disjoint sequence in X_+ . If (f_n) is not weakly null, we may assume that it is an ℓ^1 -sequence. By Lemma, $C = \overline{\operatorname{co}(f_n)}^o$ is order closed.

Proposition

 $P2 \implies DOCP.$

Proof.

Suppose (f_n) is a norm bounded disjoint sequence in X_+ . If (f_n) is not weakly null, we may assume that it is an ℓ^1 -sequence. By Lemma, $C = \overline{\operatorname{co}(f_n)}^o$ is order closed. By P2, C is $\sigma(X, X_n^\circ)$ -closed.

Proposition

 $P2 \implies DOCP.$

Proof.

Suppose (f_n) is a norm bounded disjoint sequence in X_+ . If (f_n) is not weakly null, we may assume that it is an ℓ^1 -sequence. By Lemma, $C = \overline{\operatorname{co}(f_n)}^o$ is order closed. By P2, C is $\sigma(X, X_n^{\sim})$ -closed. Since $0 \notin C$, (f_n) does not converge to 0 wrt $\sigma(X, X_n^{\sim})$.

> ୬ <u>୦</u> ୦ 24 / 34

The next result gives a general class of spaces having DOCP.

The next result gives a general class of spaces having DOCP. For a Banach lattice X, let

$$X_{a} = \{ x \in X_{+} : x \ge x_{\alpha} \downarrow 0 \implies ||x_{\alpha}|| \to 0 \}.$$

 X_a is a closed ideal of X with order continuous norm; in fact, the largest such. It is called the order continuous part of X. We have the canonical identification $(X_a)^* = X_n^{\sim}$. The next result gives a general class of spaces having DOCP. For a Banach lattice X, let

$$X_{a} = \{ x \in X_{+} : x \ge x_{\alpha} \downarrow 0 \implies ||x_{\alpha}|| \to 0 \}.$$

 X_a is a closed ideal of X with order continuous norm; in fact, the largest such. It is called the order continuous part of X. We have the canonical identification $(X_a)^* = X_n^{\sim}$.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

The next result gives a general class of spaces having DOCP. For a Banach lattice X, let

$$X_{a} = \{ x \in X_{+} : x \ge x_{\alpha} \downarrow 0 \implies ||x_{\alpha}|| \to 0 \}.$$

 X_a is a closed ideal of X with order continuous norm; in fact, the largest such. It is called the order continuous part of X. We have the canonical identification $(X_a)^* = X_n^{\sim}$.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Example. If X is an Orlicz space, then X/X_a is an AM-space, hence X has DOCP.

୬ <u>୦</u> ୦ 25 / 34

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly.

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly. Choose (g_n) a convex block sequence of (f_n) so that $||q(g_n)|| < \frac{1}{2^n}$ for all n.

996

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly. Choose (g_n) a convex block sequence of (f_n) so that $||q(g_n)|| < \frac{1}{2^n}$ for all n. There exists (h_n) in X_a so that $0 \le h_n \le g_n$ and $||g_n - h_n|| < \frac{1}{2^n}$ for all n.

500

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly. Choose (g_n) a convex block sequence of (f_n) so that $||q(g_n)|| < \frac{1}{2^n}$ for all n. There exists (h_n) in X_a so that $0 \le h_n \le g_n$ and $||g_n - h_n|| < \frac{1}{2^n}$ for all n. $(h_n) \subseteq X_a, h_n \to 0$ wrt $\sigma(X, X_n^{\sim}) \Longrightarrow h_n \to 0$ weakly.

500

Proposition

If $(X/X_a)^*$ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive ℓ^1 sequence (f_n) that converges to 0 wrt $\sigma(X, X_n^{\sim})$. Let $q: X \to X/X_a$ be the quotient map. Since $(q(f_n))$ is disjoint bounded in X/X_a and $(X/X_a)^*$ is order continuous, $q(f_n) \to 0$ weakly. Choose (g_n) a convex block sequence of (f_n) so that $||q(g_n)|| < \frac{1}{2^n}$ for all n. There exists (h_n) in X_a so that $0 \le h_n \le g_n$ and $||g_n - h_n|| < \frac{1}{2^n}$ for all n. $(h_n) \subseteq X_a, h_n \to 0$ wrt $\sigma(X, X_n^{\sim}) \implies h_n \to 0$ weakly. So $g_n \to 0$ weakly. But (g_n) is an ℓ^1 -sequence. A contradiction.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1. Since $X_n^{\sim} = (\ell^{\infty}(n))_{\ell^1}$ is order continuous, this gives a negative answer to the "natural question" [p.17].

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1. Since $X_n^{\sim} = (\ell^{\infty}(n))_{\ell^1}$ is order continuous, this gives a negative answer to the "natural question" [p.17].

Let (e_n) be the uvb of ℓ^1 . Set $x_n = (0, \ldots, 0, e_n^n, e_n, \ldots) \in X$.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1. Since $X_n^{\sim} = (\ell^{\infty}(n))_{\ell^1}$ is order continuous, this gives a negative answer to the "natural question" [p.17].

Let (e_n) be the uvb of ℓ^1 . Set $x_n = (0, \ldots, 0, e_n^n, e_n, \ldots) \in X$. Then (x_n) is a disjoint ℓ^1 sequence in X.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1. Since $X_n^{\sim} = (\ell^{\infty}(n))_{\ell^1}$ is order continuous, this gives a negative answer to the "natural question" [p.17].

Let (e_n) be the uvb of ℓ^1 . Set $x_n = (0, \ldots, 0, e_n^n, e_n, \ldots) \in X$. Then (x_n) is a disjoint ℓ^1 sequence in X. Hence $x_n \not\to 0$ weakly.

Example: The space $X = (\ell^1(n))_{\ell^{\infty}}$ does not have DOCP.

Remark. Thus X fails P2 and hence P1. Since $X_n^{\sim} = (\ell^{\infty}(n))_{\ell^1}$ is order continuous, this gives a negative answer to the "natural question" [p.17].

Let (e_n) be the uvb of ℓ^1 . Set $x_n = (0, \ldots, 0, e_n^n, e_n, \ldots) \in X$. Then (x_n) is a disjoint ℓ^1 sequence in X. Hence $x_n \not\to 0$ weakly. But $x_n \to 0 \sigma(X, X_n^{\sim})$.

Say that X has OSSP if for every norm bounded sequence (f_n) in X_+ that uo-converges to 0, there is a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where (x_k) is a disjoint sequence in X_+ and (y_k) is an order bounded sequence in X_+ .

Say that X has OSSP if for every norm bounded sequence (f_n) in X_+ that uo-converges to 0, there is a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where (x_k) is a disjoint sequence in X_+ and (y_k) is an order bounded sequence in X_+ .

Remark. Subsequence splitting in L^p was shown by Kadec and Pelczynski and later generalized to order continuous Banach lattices with a weak unit by Weis.

Say that X has OSSP if for every norm bounded sequence (f_n) in X_+ that uo-converges to 0, there is a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where (x_k) is a disjoint sequence in X_+ and (y_k) is an order bounded sequence in X_+ .

Remark. Subsequence splitting in L^p was shown by Kadec and Pelczynski and later generalized to order continuous Banach lattices with a weak unit by Weis.

An order continuous Banach lattice with a weak unit 1 has SSP if every norm bounded sequence (f_n) has a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where $|x_k| \wedge |y_k| = 0$, (x_k) is disjoint and $||y_k| \wedge t1 - |y_k|| \to 0$ uniformly in k as $t \to \infty$.

୬ **୯** ୯ 28 / 34

Say that X has OSSP if for every norm bounded sequence (f_n) in X_+ that uo-converges to 0, there is a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where (x_k) is a disjoint sequence in X_+ and (y_k) is an order bounded sequence in X_+ .

Remark. Subsequence splitting in L^p was shown by Kadec and Pelczynski and later generalized to order continuous Banach lattices with a weak unit by Weis.

An order continuous Banach lattice with a weak unit 1 has SSP if every norm bounded sequence (f_n) has a subsequence (f_{n_k}) with a splitting

$$f_{n_k}=x_k+y_k,$$

where $|x_k| \wedge |y_k| = 0$, (x_k) is disjoint and $||y_k| \wedge t1 - |y_k|| \to 0$ uniformly in k as $t \to \infty$.

Weis showed (among other things) that SSP \iff some special kinds of $\ell^{\infty}(n)$'s do not uniformly lattice embed into X.

OSSP and P3 ($\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for every norm bounded convex C)

୬ **୯** ୧୦ 29 / 34
OSSP and P3 ($\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for every norm bounded convex C)

A functional $\varphi \in (X^*)_+$ is strictly positive if $\varphi(|x|) = 0 \implies x = 0$.

୬ **୯** ୧୦ 29 / 34

OSSP and P3 ($\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for every norm bounded convex *C*)

A functional $\varphi \in (X^*)_+$ is strictly positive if $\varphi(|x|) = 0 \implies x = 0$.

Lemma

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional. If $\varphi(|x_n|) \to 0$, then there exists a subsequence (y_n) so that $y_n \to 0$ uo.

OSSP and P3 ($\overline{C}^{o} = \overline{C}^{\sigma(X,X_{n}^{\sim})}$ for every norm bounded convex *C*)

A functional $\varphi \in (X^*)_+$ is strictly positive if $\varphi(|x|) = 0 \implies x = 0$.

Lemma

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional. If $\varphi(|x_n|) \to 0$, then there exists a subsequence (y_n) so that $y_n \to 0$ uo.

Proposition

Suppose that X_n^{\sim} is order continuous, $(X_n^{\sim})_+$ contains a strictly positive functional φ and X has OSSP. X has P3 \iff X has DOCP.

[To p.31]

≁) Q (* 29 / 34

Previously, we know that P3 \implies P2 \implies DOCP.

30 / 34

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded.

୬୯୯

30 / 34

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ .

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded. Then $y_n \to 0 \ \sigma(X, X_n^{\sim})$.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded.

Then $y_n \to 0 \ \sigma(X, X_n^{\sim})$. By DOCP, $y_n \to 0$ weakly.

500

30 / 34

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, C convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \to 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded. Then $y_n \to 0 \ \sigma(X, X_n^{\sim})$. By DOCP, $y_n \to 0$ weakly.

There is a convex combination of (y_n) that is order bounded.

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, *C* convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \rightarrow 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded. Then $y_n \to 0$ $\sigma(X, X_n^{\sim})$. By DOCP, $y_n \to 0$ weakly. There is a convex combination of (y_n) that is order bounded. So WLOG, (x_n) is order bounded and $x_n \to 0$ uo. Therefore, $x_n \stackrel{o}{\longrightarrow} 0$.

590

Previously, we know that P3 \implies P2 \implies DOCP.

Conversely, suppose that X is as above and has DOCP. Suppose $0 \in \overline{C}^{\sigma(X,X_n^{\sim})} = \overline{C}^{|\sigma|(X,X_n^{\sim})}$, *C* convex bounded. There exists (x_n) in C so that $\varphi(|x_n|) \to 0$. By Lemma, we may assume that $x_n \rightarrow 0$ uo. Since φ is strictly positive and X_n^{\sim} is order continuous, X_n^{\sim} is the closed ideal generated by φ . So $\varphi(|x_n|) \to 0 \implies |x_n| \to 0 \ \sigma(X, X_n^{\sim})$. Using OSSP, WLOG, split $|x_n| = y_n + z_n$, where $y_n, z_n \ge 0$, (y_n) is disjoint and (z_n) is order bounded. Then $y_n \to 0$ $\sigma(X, X_n^{\sim})$. By DOCP, $y_n \to 0$ weakly. There is a convex combination of (y_n) that is order bounded. So WLOG, (x_n) is order bounded and $x_n \to 0$ uo. Therefore, $x_n \stackrel{o}{\longrightarrow} 0$. Thus $0 \in \overline{C}^{\circ}$.

590

30 / 34

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- **3** X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- **3** X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

If $(x_n) \subseteq X_+$ is a disjoint ℓ^1 sequence, then there exists $\varphi \in (X_n^{\sim})_+$ so that $\varphi(x_n) \not\to 0$.

୬ < ୯ 31 / 34

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- **3** X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

If $(x_n) \subseteq X_+$ is a disjoint ℓ^1 sequence, then there exists $\varphi \in (X_n^{\sim})_+$ so that $\varphi(x_n) \not\to 0$.

Then \exists disjoint sequence $0 \le f_n \le \varphi$ so that $f_n(x_n) \ne 0$.

୬ ବ ୯ 31 / 34

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- **3** X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

If $(x_n) \subseteq X_+$ is a disjoint ℓ^1 sequence, then there exists $\varphi \in (X_n^{\sim})_+$ so that $\varphi(x_n) \not\to 0$.

Then \exists disjoint sequence $0 \le f_n \le \varphi$ so that $f_n(x_n) \ne 0$. Contradiction.

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X* is order continuous.

$$(1) \implies (2)$$
 by Proposition on p.29.

(2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

If $(x_n) \subseteq X_+$ is a disjoint ℓ^1 sequence, then there exists $\varphi \in (X_n^{\sim})_+$ so that $\varphi(x_n) \not\to 0$.

Then \exists disjoint sequence $0 \le f_n \le \varphi$ so that $f_n(x_n) \ne 0$. Contradiction. This proves (2) \implies (4).

Characterizing P1 (
$$\widehat{C} = \overline{C}^{\sigma(X,X_n^{\sim})}$$
 for any convex C)

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and X has OSSP. TFAE

- X has P1.
- **2** X has DOCP and either X or X_n^{\sim} is order continuous.
- **3** X has DOCP and $\sigma(X, X_n^{\sim})$ has KS.
- Either X or X^* is order continuous.
- (1) \implies (2) by Proposition on p.29.
- (2) \iff (3) comes from p.19.

Suppose X_n^{\sim} is order continuous and X has DOCP.

If $(x_n) \subseteq X_+$ is a disjoint ℓ^1 sequence, then there exists $\varphi \in (X_n^{\sim})_+$ so that $\varphi(x_n) \not\to 0$.

Then \exists disjoint sequence $0 \le f_n \le \varphi$ so that $f_n(x_n) \ne 0$. Contradiction. This proves (2) \implies (4). (4) \implies (1) is easy. A special modular on a Banach lattice X is a functional $\rho: X \to [0,\infty]$ so that

- $\sum \rho(f_n) < \infty \implies (f_n) \text{ has an order bounded subsequence.}$
- $\|f\| \leq 1 \implies \rho(f) < \infty.$

A special modular on a Banach lattice X is a functional $\rho: X \to [0,\infty]$ so that

② ∑ $\rho(f_n) < \infty \implies (f_n)$ has an order bounded subsequence.
 ③ ||f|| ≤ 1 ⇒ $\rho(f) < \infty$.

Example. If X is the Orlicz space L^{φ} , then $\rho(f) = \int \varphi(|f|) d\mu$ is a special modular.

A special modular on a Banach lattice X is a functional $\rho: X \to [0,\infty]$ so that

∑ ρ(f_n) < ∞ ⇒ (f_n) has an order bounded subsequence.
||f|| ≤ 1 ⇒ ρ(f) < ∞.

Example. If X is the Orlicz space L^{φ} , then $\rho(f) = \int \varphi(|f|) d\mu$ is a special modular.

More generally, if X is the Orlicz-Lorentz space $\Lambda_{\varphi,w}$, then

$$\rho(f) = \int_0^\infty \varphi(f^*) w(t) \, dt$$

is a special modular.

୬ ବ ୯ 32 / 34

Proposition

Let ρ be a special modular on a Banach lattice X.

- If X is order complete, then X has OSSP.
- If X has the countable sup property and X_a is order dense in X, then X has DOCP.

Proposition

Let ρ be a special modular on a Banach lattice X.

- If X is order complete, then X has OSSP.
- If X has the countable sup property and X_a is order dense in X, then X has DOCP.

Theorem

Suppose that $(X_n^{\sim})_+$ contains a strictly positive functional, $X = (X_n^{\sim})_n^{\sim}$ and there is a special modular on X. Then X has P1 if and only if either X or X^{*} is order continuous.

If, in addition, X_a is order dense in X, then the above occurs if and only if either X or X_n^{\sim} is order continuous if and only if $\sigma(X, X_n^{\sim})$ has KS property.

୬ ବ (୦ 33 / 34

Thank You Muchas Gracias

Order and Topology Part 2. Miscellaneous topics

Denny H. Leung

National University of Singapore

Workshop on Banach spaces and Banach lattices ICMAT September 2019

Based on joint work with Niushan Gao and Made Tantrawan

 $L^{0}(\mu) =$ space of all measurable functions on a measure space (Ω, Σ, μ) . A BFS is a subspace X of $L^{0}(\mu)$ endowed with a complete norm $\|\cdot\|$ so that if $|f| \leq |g|$ and $g \in X$, then $f \in X$ and $\|f\| \leq \|g\|$.

X is rearrangement invariant (r.i.) if $g \stackrel{\text{dist}}{=} f \in X \implies g \in X$ and $\|g\| = \|f\|$.

Examples: L^p , Orlicz-Lorentz spaces.

Let $C \subseteq X$, X BFS.

 $f \in \overline{C}^{o}$ if and only if there is a sequence (f_n) in C and $g \in X$ so that $|f_n| \leq g$ for all n and $f_n \to f$ a.e.

C is order closed if $\overline{C}^o = C$.

The space of order continuous linear functionals on X, X_n^{\sim} , is given by

$$X_n^{\sim} = \{g \in L^0 : fg \in L^1 \text{ for all } f \in X\}.$$

Let $C \subseteq X$, X BFS.

 $f \in \overline{C}^{o}$ if and only if there is a sequence (f_n) in C and $g \in X$ so that $|f_n| \leq g$ for all n and $f_n \to f$ a.e.

C is order closed if $\overline{C}^o = C$.

The space of order continuous linear functionals on X, X_n^{\sim} , is given by

$$X_n^{\sim} = \{g \in L^0 : fg \in L^1 \text{ for all } f \in X\}.$$

Previously, we considered the problem:

For which X is it true that for all convex sets $C \subseteq X$, C is order closed $\iff \sigma(X, X_n^{\sim})$ -closed.

Let $C \subseteq X$, X BFS.

 $f \in \overline{C}^{o}$ if and only if there is a sequence (f_{n}) in C and $g \in X$ so that $|f_{n}| \leq g$ for all n and $f_{n} \to f$ a.e.

C is order closed if $\overline{C}^{o} = C$.

The space of order continuous linear functionals on X, X_n^{\sim} , is given by

$$X_n^{\sim} = \{g \in L^0 : fg \in L^1 \text{ for all } f \in X\}.$$

Previously, we considered the problem:

For which X is it true that for all convex sets $C \subseteq X$, C is order closed $\iff \sigma(X, X_n^{\sim})$ -closed.

Now we consider this problem if X is r.i. and C is a law invariant (= r.i.) subset of X.

Let X be an r.i. space. A subset C of X is law invariant if $g \stackrel{\text{dist}}{=} f \in C$ $\implies g \in C$.
Let X be an r.i. space. A subset C of X is law invariant if $g \stackrel{\text{dist}}{=} f \in C$ $\implies g \in C$.

Theorem

Let C be a convex law invariant subset of an r.i. space X on a finite measure space (Ω, Σ, μ) . Then C is order closed if and only if it is $\sigma(X, X_n^{\sim})$ -closed.

Let X be an r.i. space. A subset C of X is law invariant if $g \stackrel{\text{dist}}{=} f \in C$ $\implies g \in C$.

Theorem

Let C be a convex law invariant subset of an r.i. space X on a finite measure space (Ω, Σ, μ) . Then C is order closed if and only if it is $\sigma(X, X_n^{\sim})$ -closed.

 $\sigma(X, X_n^{\sim})$ -closed always implies order closed.

• $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \to f \sigma(X, X_n^{\sim})$.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \to f \sigma(X, X_n^{\sim})$.

In particular, $\int_A f_\alpha \, d\mu \to \int_A f \, d\mu$ for any measurable A.

- **1** $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \to f \sigma(X, X_n^{\sim})$.

In particular, $\int_A f_\alpha d\mu \to \int_A f d\mu$ for any measurable A.

Thus $\mathbb{E}[f_{\alpha}|\pi] \to \mathbb{E}[f|\pi]$ weakly for any finite measurable partition π .

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \to f \sigma(X, X_n^{\sim})$.

In particular, $\int_A f_\alpha d\mu \to \int_A f d\mu$ for any measurable A.

Thus $\mathbb{E}[f_{\alpha}|\pi] \to \mathbb{E}[f|\pi]$ weakly for any finite measurable partition π . By 1, $\mathbb{E}[f_{\alpha}|\pi] \in C$.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \rightarrow f \sigma(X, X_{n}^{\sim})$.

In particular, $\int_A f_\alpha \, d\mu \to \int_A f \, d\mu$ for any measurable A.

Thus $\mathbb{E}[f_{\alpha}|\pi] \to \mathbb{E}[f|\pi]$ weakly for any finite measurable partition π . By 1, $\mathbb{E}[f_{\alpha}|\pi] \in C$.

C order closed convex \implies norm closed = weakly closed.

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \to f \sigma(X, X_n^{\sim})$.

In particular, $\int_A f_\alpha \, d\mu \to \int_A f \, d\mu$ for any measurable A.

Thus $\mathbb{E}[f_{\alpha}|\pi] \to \mathbb{E}[f|\pi]$ weakly for any finite measurable partition π . By 1, $\mathbb{E}[f_{\alpha}|\pi] \in C$.

C order closed convex \implies norm closed = weakly closed.

Thus $\mathbb{E}[f|\pi] \in C$ for any π .

- $f \in C$ and π is a finite measurable partition of $\Omega \implies \mathbb{E}[f|\pi] \in C$.
- **2** $\mathbb{E}[f|\pi] \in C$ for all finite measurable partitions π of $\Omega \implies f \in C$.

Proof of Theorem. Let C be order closed convex law invariant.

Suppose $f_{\alpha} \in C$ and $f_{\alpha} \rightarrow f \sigma(X, X_{n}^{\sim})$.

In particular, $\int_A f_\alpha \, d\mu \to \int_A f \, d\mu$ for any measurable A.

Thus $\mathbb{E}[f_{\alpha}|\pi] \to \mathbb{E}[f|\pi]$ weakly for any finite measurable partition π . By 1, $\mathbb{E}[f_{\alpha}|\pi] \in C$.

C order closed convex \implies norm closed = weakly closed.

Thus $\mathbb{E}[f|\pi] \in C$ for any π .

Therefore $f \in C$ by 2.

Take $\pi = \{\Omega\}$.

Take $\pi = \{\Omega\}$.

For any *n*. Let $A_n = \{|f| \le n\}$.

Take $\pi = \{\Omega\}$.

For any *n*. Let $A_n = \{|f| \le n\}$.

Since $f\chi_{A_n} \in L^{\infty}$, there exists $f_n \in C$ so that

$$\|f_n\chi_{A_n} - \frac{\int_{A_n} f \,d\mu}{\mu(A_n)} \cdot \chi_{A_n}\|_{\infty} \to 0 \text{ and } f_n\chi_{A_n^c} = f\chi_{A_n^c}.$$

Easy to see that $f_n \stackrel{o}{\longrightarrow} \mathbb{E}[f|\pi]$.

Take $\pi = \{\Omega\}$.

For any *n*. Let $A_n = \{|f| \le n\}$.

Since $f\chi_{A_n} \in L^{\infty}$, there exists $f_n \in C$ so that

$$\|f_n\chi_{A_n}-\frac{\int_{A_n}f\,d\mu}{\mu(A_n)}\cdot\chi_{A_n}\|_{\infty}\to 0 \text{ and } f_n\chi_{A_n^c}=f\chi_{A_n^c}.$$

Easy to see that $f_n \stackrel{o}{\longrightarrow} \mathbb{E}[f|\pi]$. So $\mathbb{E}[f|\pi] \in C$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f \chi_{\{|f| \le n\}}$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$. Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0$

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.

Then $f_n - \mathbb{E}[f_n | \pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n | \pi_n] \xrightarrow{o} f$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$. Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$. Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$. Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$. Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.

Fact. X r.i. Hence either $X = L^{\infty}$ or $L^{\infty} \subseteq X_a$.

Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.

Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$. Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$. Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e. Take any $h \in X_n^{\sim}$, then

Fact. X r.i. Hence either
$$X = L^{\infty}$$
 or $L^{\infty} \subseteq X_a$.
Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.
Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.
Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$.
Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.
Take any $h \in X_n^{\sim}$, then

 $|\int \mathbb{E}[f - f_n | \pi_n] h \, d\mu| \leq \int (f - f_n)^* h^* \, dt \to 0$ by dominated convergence.

Fact. X r.i. Hence either
$$X = L^{\infty}$$
 or $L^{\infty} \subseteq X_a$.
Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.
Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.
Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$.
Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.
Take any $h \in X_n^{\sim}$, then

 $|\int \mathbb{E}[f - f_n | \pi_n] h \, d\mu| \leq \int (f - f_n)^* h^* \, dt \to 0$ by dominated convergence.

So $\mathbb{E}[f - f_n | \pi_n] \to 0 \ \sigma(X, X_n^{\sim}).$

Fact. X r.i. Hence either
$$X = L^{\infty}$$
 or $L^{\infty} \subseteq X_a$.
Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.
Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.
Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$.
Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.
Take any $h \in X_n^{\sim}$, then

 $|\int \mathbb{E}[f - f_n | \pi_n] h \, d\mu| \leq \int (f - f_n)^* h^* \, dt \to 0$ by dominated convergence.

So $\mathbb{E}[f - f_n | \pi_n] \to 0 \ \sigma(X, X_n^{\sim})$. But $\mathbb{E}[f - f_n | \pi_n] \in L^{\infty} \subseteq X_a$, so $\mathbb{E}[f - f_n | \pi_n] \to 0$ weakly.

つへで 7/17

Fact. X r.i. Hence either
$$X = L^{\infty}$$
 or $L^{\infty} \subseteq X_a$.
Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.
Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.
Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$.
Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.
Take any $h \in X_n^{\sim}$, then

 $|\int \mathbb{E}[f - f_n | \pi_n] h \, d\mu| \leq \int (f - f_n)^* h^* \, dt \to 0$ by dominated convergence.

So $\mathbb{E}[f - f_n | \pi_n] \to 0$ $\sigma(X, X_n^{\sim})$. But $\mathbb{E}[f - f_n | \pi_n] \in L^{\infty} \subseteq X_a$, so $\mathbb{E}[f - f_n | \pi_n] \to 0$ weakly. Take convex combination to assume $\mathbb{E}[f | \pi_n] - \mathbb{E}[f_n | \pi_n] \xrightarrow{o} 0$.

Fact. X r.i. Hence either
$$X = L^{\infty}$$
 or $L^{\infty} \subseteq X_a$.
Result is clear if $X = L^{\infty}$. Assume $L^{\infty} \subseteq X_a$.
Let $f_n = f\chi_{\{|f| \le n\}}$. Choose π_n so that $||f_n - \mathbb{E}[f_n|\pi_n]||_{\infty} \to 0$.
Then $f_n - \mathbb{E}[f_n|\pi_n] \xrightarrow{o} 0 \implies \mathbb{E}[f_n|\pi_n] \xrightarrow{o} f$.
Since $|f - f_n| \le |f|$, $(f - f_n)^* \le f^*$. Also, $(f - f_n)^* \to 0$ a.e.
Take any $h \in X_n^{\sim}$, then

 $|\int \mathbb{E}[f - f_n | \pi_n] h \, d\mu| \leq \int (f - f_n)^* h^* \, dt \to 0$ by dominated convergence.

So $\mathbb{E}[f - f_n | \pi_n] \to 0 \ \sigma(X, X_n^{\sim})$. But $\mathbb{E}[f - f_n | \pi_n] \in L^{\infty} \subseteq X_a$, so $\mathbb{E}[f - f_n | \pi_n] \to 0$ weakly. Take convex combination to assume $\mathbb{E}[f | \pi_n] - \mathbb{E}[f_n | \pi_n] \xrightarrow{o} 0$. Then $\mathbb{E}[f | \pi_n] \xrightarrow{o} f$ and thus $f \in C$.

√) Q (~)
7 / 17

৩৫়ে 8/17

Theorem (Delbaen and Owari)

Let $L^{\varphi}(\Omega, \Sigma, \mu)$ be an Orlicz space defined on a finite measure space. Assume that $(L^{\varphi})^*$ has order continuous norm. (Equivalently, the conjugate Orlicz function φ^* is Δ_2 at infinity.) If (f_n) is a norm bounded sequence in L^{φ} , then there are a subsequence (f_{n_k}) and $f \in L^{\varphi}$ such that for any further subsequence (g_k) of (f_{n_k}) , a subsequence of the averages $(\frac{1}{m}\sum_{k=1}^m g_k)$ order converges to f.
Theorem (Delbaen and Owari)

Let $L^{\varphi}(\Omega, \Sigma, \mu)$ be an Orlicz space defined on a finite measure space. Assume that $(L^{\varphi})^*$ has order continuous norm. (Equivalently, the conjugate Orlicz function φ^* is Δ_2 at infinity.) If (f_n) is a norm bounded sequence in L^{φ} , then there are a subsequence (f_{n_k}) and $f \in L^{\varphi}$ such that for any further subsequence (g_k) of (f_{n_k}) , a subsequence of the averages $(\frac{1}{m}\sum_{k=1}^m g_k)$ order converges to f.

Definition

A Banach lattice X has the (weak) order Banach-Saks property ((w)oBS) if any (weakly null) norm bounded sequence (x_n) in X has a subsequence (x_{n_k}) so that the averages $(\frac{1}{m}\sum_{k=1}^m x_{n_k})$ order converges to an element $x \in X$. (In the case of woBS, x must be 0.)

1. L^{∞} has oBS because of Komlos.

1. L^{∞} has oBS because of Komlos. It is not BS, not even weak BS.

- 1. L^{∞} has oBS because of Komlos. It is not BS, not even weak BS.
- 2. If X is order continuous, then order convergence implies norm convergence. So oBS \implies BS and woBS \implies wBS when X is order continuous.

- 1. L^{∞} has oBS because of Komlos. It is not BS, not even weak BS.
- 2. If X is order continuous, then order convergence implies norm convergence. So oBS \implies BS and woBS \implies wBS when X is order continuous.
- L^p has BS if $1 and <math>L^1$ has wBS.

- 1. L^{∞} has oBS because of Komlos. It is not BS, not even weak BS.
- 2. If X is order continuous, then order convergence implies norm convergence. So oBS \implies BS and woBS \implies wBS when X is order continuous.
- L^p has BS if $1 and <math>L^1$ has wBS. What about "o" versions?

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly.

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly.

Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$.

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly.

Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$. Realize f_k , $1 \le k \le n$, as functions $f_k(x_1, \dots, x_n) = f(x_k)$ defined in $[0, 1]^n$.

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly. Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$. Realize f_k , $1 \le k \le n$, as functions $f_k(x_1, \ldots, x_n) = f(x_k)$ defined in $[0, 1]^n$.

Fix *n*. Set $A_m = \{(x_1, ..., x_n) \in [0, 1]^n : x_m > x_i \ \forall i \neq m\}.$

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly. Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$.

Realize f_k , $1 \le k \le n$, as functions $f_k(x_1, \ldots, x_n) = f(x_k)$ defined in $[0, 1]^n$. Fix n. Set $A_m = \{(x_1, \ldots, x_n) \in [0, 1]^n : x_m > x_i \ \forall i \ne m\}$. Then

$$\int g_n \geq \sum_{m=1}^n \int_{A_m} \frac{f(x_m)}{m} = \sum_{m=1}^n \frac{1}{m} \int_0^1 y^{n-1} f(y) \, dy.$$

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly. Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$.

Realize f_k , $1 \le k \le n$, as functions $f_k(x_1, \ldots, x_n) = f(x_k)$ defined in $[0, 1]^n$. Fix n. Set $A_m = \{(x_1, \ldots, x_n) \in [0, 1]^n : x_m > x_i \ \forall i \ne m\}$. Then

Then

$$\int g_n \geq \sum_{m=1}^n \int_{A_m} \frac{f(x_m)}{m} = \sum_{m=1}^n \frac{1}{m} \int_0^1 y^{n-1} f(y) \, dy.$$

It is possible to choose $f \in L^1_+$ such that $\sum_{m=1}^n \frac{1}{m} \int_0^1 y^{n-1} f(y) dy$ is unbounded in *n*.

Suppose that f is a positive function in L^1 and (f_n) is an independent sequence so that $f_n = f$ in distribution for all n.

 (f_n) is uniformly integrable and hence has a weakly convergent subsequence. So in fact (f_n) must converge weakly. Let $g_n = \bigvee_{m=1}^n \frac{1}{m} \sum_{k=1}^m f_k$.

Realize f_k , $1 \le k \le n$, as functions $f_k(x_1, \ldots, x_n) = f(x_k)$ defined in $[0, 1]^n$. Fix n. Set $A_m = \{(x_1, \ldots, x_n) \in [0, 1]^n : x_m > x_i \ \forall i \ne m\}$. Then

$$\int g_n \geq \sum_{m=1}^n \int_{A_m} \frac{f(x_m)}{m} = \sum_{m=1}^n \frac{1}{m} \int_0^1 y^{n-1} f(y) \, dy.$$

It is possible to choose $f \in L^1_+$ such that $\sum_{m=1}^n \frac{1}{m} \int_0^1 y^{n-1} f(y) dy$ is unbounded in *n*.

Since any subsequence of (f_n) has the same joint distribution as the whole sequence, $(\frac{1}{m}\sum_{k=1}^{m} f_{n_k})_m$ cannot be order bounded for any subsequence (f_{n_k}) .

The same idea can be used to prove that if $L^{\varphi}(\mu)$ has woBS for a finite nonatomic measure μ , then φ^* satisfies Δ_2 at ∞ .

For reflexive Banach lattices, it is clear that oBS = woBS.

For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . Taking a subsequence and perturbing slightly, we may assume that (f_n) is a block sequence of the Haar basis for L^p . For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . Taking a subsequence and perturbing slightly, we may assume that (f_n) is a block sequence of the Haar basis for L^p . By Komlos, we may assume that there exists a measurable f so that the Cesaro averages of (f_n) converges a.e. to f. For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . Taking a subsequence and perturbing slightly, we may assume that (f_n) is a block sequence of the Haar basis for L^p . By Komlos, we may assume that there exists a measurable f so that the Cesaro averages of (f_n) converges a.e. to f. (f_n) is a martingale difference sequence. For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . Taking a subsequence and perturbing slightly, we may assume that (f_n) is a block sequence of the Haar basis for L^p . By Komlos, we may assume that there exists a measurable f so that the

By Komlos, we may assume that there exists a measurable f so that the Cesaro averages of (f_n) converges a.e. to f.

 (f_n) is a martingale difference sequence.

Let $r = \min\{p, 2\}$. Then for any finitely supported (a_n)

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r},$$

where " \sim " is Burkholder's inequality.

For reflexive Banach lattices, it is clear that oBS = woBS. Let (f_n) be a weakly null sequence in L^p . Taking a subsequence and perturbing slightly, we may assume that (f_n) is a block sequence of the Haar basis for L^p . By Komlos, we may assume that there exists a measurable f so that the

By Komlos, we may assume that there exists a measurable f so that the Cesaro averages of (f_n) converges a.e. to f.

 (f_n) is a martingale difference sequence.

Let $r = \min\{p, 2\}$. Then for any finitely supported (a_n)

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r},$$

where " \sim " is Burkholder's inequality.

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r}.$$

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r}.$$

In particular, let $g_n = \sum_{k=1}^n \frac{f_k}{k}$ and $g_n^* = \sup_{1 \le k \le n} |g_k|$.

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r}.$$

In particular, let $g_n = \sum_{k=1}^n \frac{f_k}{k}$ and $g_n^* = \sup_{1 \le k \le n} |g_k|$. For n > m,

$$\|g_n^* - g_m^*\| \le \|\sup_{m < k \le n} |\sum_{i=m+1}^k \frac{f_i}{i}|\| \le C(\sum_{i=m+1}^n \frac{1}{i^r})^{1/r}.$$

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r}.$$

In particular, let $g_n = \sum_{k=1}^n \frac{f_k}{k}$ and $g_n^* = \sup_{1 \le k \le n} |g_k|$. For n > m,

$$\|g_n^* - g_m^*\| \le \|\sup_{m < k \le n} |\sum_{i=m+1}^k \frac{f_i}{i}|\| \le C(\sum_{i=m+1}^n \frac{1}{i^r})^{1/r}.$$

Hence (g_n^*) converges in norm in L^p , to g, say. (And $g_n^* \uparrow g$.)

うへで 13/17

$$\|\sup_{k}|\sum_{n=1}^{k}a_{n}f_{n}|\|\sim \|\sqrt{\sum|a_{n}f_{n}|^{2}}\|\leq (\sum \|a_{n}f_{n}\|^{r})^{1/r}.$$

In particular, let $g_n = \sum_{k=1}^n \frac{f_k}{k}$ and $g_n^* = \sup_{1 \le k \le n} |g_k|$. For n > m,

$$\|g_n^* - g_m^*\| \le \|\sup_{m < k \le n} |\sum_{i=m+1}^k \frac{f_i}{i}|\| \le C(\sum_{i=m+1}^n \frac{1}{i^r})^{1/r}.$$

Hence (g_n^*) converges in norm in L^p , to g, say. (And $g_n^* \uparrow g$.) Then $|\sum_{n=1}^k \frac{f_n}{n}| \le g$ for all k.

> • ৲ ৭ ে 13 / 17

$$\|\sup_{k} |\sum_{n=1}^{k} a_{n} f_{n}| \| \sim \|\sqrt{\sum |a_{n} f_{n}|^{2}} \| \leq (\sum \|a_{n} f_{n}\|^{r})^{1/r}.$$
$$|g_{n}| = |\sum_{n=1}^{k} \frac{f_{n}}{n}| \leq g \in L^{p} \text{ for all } k.$$

$$\|\sup_{k} |\sum_{n=1}^{k} a_{n} f_{n}| \| \sim \|\sqrt{\sum |a_{n} f_{n}|^{2}}\| \leq (\sum \|a_{n} f_{n}\|^{r})^{1/r}.$$
$$|g_{n}| = |\sum_{n=1}^{k} \frac{f_{n}}{n}| \leq g \in L^{p} \text{ for all } k.$$

Let $\ell_k = \frac{1}{k(k+1)} \sum_{n=1}^k f_n$. By the above, $\|\ell_k\| \leq \frac{Ck^{1/r}}{k(k+1)}$. So $\sum |\ell_k|$ converges in L^p . Since

$$\frac{1}{n}\sum_{k=1}^{n}f_{k}=g_{n}-\sum_{k=1}^{n-1}\ell_{k},$$

we have

$$|rac{1}{n}\sum_{k=1}^n f_k| \leq g + \sum_{k=1}^\infty |\ell_k|$$
 for all n .

Recall that $(\frac{1}{n}\sum_{k=1}^{n} f_k)_n$ converges pointwise to some f. LDCT shows that the convergence is also in L^p -norm. Since (f_n) is weakly null, f = 0 and $\frac{1}{n}\sum_{k=1}^{n} f_k \stackrel{o}{\longrightarrow} 0$.

14 / 17

The same argument works provided:

- X is a separable r.i. space so that the Haar functions is a basis for X. [R.i. in the sense of Lindenstrauss and Tzafriri.]
- ② The upper Boyd index q_X < ∞ − Johnson-Schechtman proved BDG inequality holds in X.</p>
- **③** *X* is *p*-convex for some p > 1.

Note that a separable r.i. space on [0, 1] is contained in L^1 as a subset. So Komlos applies for a.e. convergence of averages.

The same argument works provided:

- X is a separable r.i. space so that the Haar functions is a basis for X. [R.i. in the sense of Lindenstrauss and Tzafriri.]
- ② The upper Boyd index q_X < ∞ − Johnson-Schechtman proved BDG inequality holds in X.</p>
- X is *p*-convex for some p > 1.

Note that a separable r.i. space on [0, 1] is contained in L^1 as a subset. So Komlos applies for a.e. convergence of averages.

Theorem

Let X be a separable r.i. space on [0,1] that is p-convex for some p > 1and whose upper Boyd index $q_X < \infty$. Then X has woBS.

In particular, if X is a reflexive separable r.i. space on [0, 1], then X has oBS.

Orlicz spaces

For L^{φ} , define property (H): every weakly null sequence in H^{φ} has a subsequence whose Cesaro means are order bounded in L^{φ} .

Proposition	
TFAE	
• L^{φ} has (H).	
2 L^{φ} has oBS.	
3 L^{φ} has woBS.	

Orlicz spaces

For L^{φ} , define property (H): every weakly null sequence in H^{φ} has a subsequence whose Cesaro means are order bounded in L^{φ} .

Proposition	
TFAE	
1 L^{φ} has (H).	
2 L^{φ} has oBS.	
3 L^{φ} has woBS.	
Droposition	
Proposition	

TFAE

- H^{φ} is reflexive.
- **2** H^{φ} has oBS.
- **3** H^{φ} has woBS.

クへで 16/17

Orlicz spaces

For L^{φ} , define property (H): every weakly null sequence in H^{φ} has a subsequence whose Cesaro means are order bounded in L^{φ} .

Proposition
TFAE
• L^{φ} has (H).
2 L^{φ} has oBS.
3 L^{φ} has woBS.
Proposition
TFAE
• H^{φ} is reflexive.
2 H^{φ} has oBS.

Question: Is (H) equivalent to φ^* being Δ_2 ?

Thank You Muchas Gracias
Local convexity in L^0

Denny H. Leung

National University of Singapore

Workshop on Banach spaces and Banach lattices ICMAT September 2019

Based on joint work with Niushan Gao and Foivos Xanthos

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

It is not locally convex; in fact, $L^0(\mathbb{P})^* = \{0\}$.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

It is not locally convex; in fact, $L^0(\mathbb{P})^* = \{0\}$.

General Question: What does local convexity on a subset do?

 A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

 A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).

 A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

- If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).
- $\mathbb{Q} \sim \mathbb{P}$ if $\mathbb{Q} \ll \mathbb{P}$ and $\mathbb{P} \ll \mathbb{Q}$.

 A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).

•
$$\mathbb{Q} \sim \mathbb{P}$$
 if $\mathbb{Q} \ll \mathbb{P}$ and $\mathbb{P} \ll \mathbb{Q}$.

Theorem. [Kardaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- All FCCs of (f_n) converges to f in probability.
- ② The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0.$

クへで 3/19

Theorem. [Kardaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- Output Provide the set of the
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Theorem. [Kardaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- Output Provide the state of the state of
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Theorem. [Kardaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- Output Provide the state of the state of
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

- Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?
- Q2 Are (2) and (3) equivalent for closed convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Theorem. [Kardaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- Output Provide the state of the state of
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

- Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?
- Q2 Are (2) and (3) equivalent for closed convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Example. Let $K = \{f \in L^1_+(\mathbb{P}) : \int f d\mathbb{P} = 1\}$. Then K satisfies (2) but not (3).

[To p.14] [p.16][p.18]

クへで 4/19 [Branath-Schachermayer. LNM 1999] Let K be a convex set in $L^0_+(\mathbb{P})$ that is bounded in probability. Then there exists $\mathbb{Q} \sim \mathbb{P}$ so that K is a bounded set in $L^1(\mathbb{Q})$.

[Branath-Schachermayer. LNM 1999] Let K be a convex set in $L^0_+(\mathbb{P})$ that is bounded in probability. Then there exists $\mathbb{Q} \sim \mathbb{P}$ so that K is a bounded set in $L^1(\mathbb{Q})$.

We generalize the questions above to *bounded* convex sets in $L^1(\mathbb{P})$.

クへぐ 6/19

Proposition. Let K be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- O For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that
 $\|(f_n f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.
- So For any ε > 0, there is a measurable set A with P(A) > 1 − ε so that K_A = {f χ_A : f ∈ K} is P-uniformly integrable.

Proposition. Let K be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- O For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that
 $\|(f_n f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.
- So For any ε > 0, there is a measurable set A with P(A) > 1 − ε so that K_A = {f χ_A : f ∈ K} is P-uniformly integrable.

Then (1) \iff (2) and (3) \iff (4).

Proposition. Let *K* be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- O For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that
 $\|(f_n f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.
- So For any ε > 0, there is a measurable set A with P(A) > 1 − ε so that K_A = {f χ_A : f ∈ K} is P-uniformly integrable.

Then (1) \iff (2) and (3) \iff (4). Remark. To get (2), it suffices to obtain the following: For any measurable A with $\mathbb{P}(A) > 0$, there exists measurable $B \subseteq A$ with $\mathbb{P}(B) > 0$ so that $\|(f_n - f)\chi_B\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.

> クへで 6/19

A subset S in $L^0(\mathbb{P})$ is *solid* if $|g| \le |f|$ and $f \in S$ imply $g \in S$.

A subset S in $L^0(\mathbb{P})$ is solid if $|g| \le |f|$ and $f \in S$ imply $g \in S$.

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$. TFAE

- O There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K^{L⁰(P)}.
- **2** There exists $\mathbb{Q} \sim \mathbb{P}$ such that *K* is \mathbb{Q} -uniform integrable.

A subset S in $L^0(\mathbb{P})$ is solid if $|g| \le |f|$ and $f \in S$ imply $g \in S$.

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$. TFAE

O There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K^{L⁰(P)}.

2 There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable. In particular, "Yes" for Q2.

[To p.4]

Let $\varepsilon > 0$. Choose A so that $\mathbb{P}(A) > 1 - \varepsilon$ and $f_n, f \in \overline{K}, f_n \to f$ a.e. implies $\|(f_n - f)\chi_A\|_1 \to 0$.

Let $\varepsilon > 0$. Choose A so that $\mathbb{P}(A) > 1 - \varepsilon$ and $f_n, f \in \overline{K}, f_n \to f$ a.e. implies $\|(f_n - f)\chi_A\|_1 \to 0$.

Suppose that $\{f\chi_A : f \in \overline{K}\}$ is not \mathbb{P} -uniformly integrable.

Let $\varepsilon > 0$. Choose A so that $\mathbb{P}(A) > 1 - \varepsilon$ and $f_n, f \in \overline{K}, f_n \to f$ a.e. implies $\|(f_n - f)\chi_A\|_1 \to 0$.

Suppose that $\{f\chi_A : f \in \overline{K}\}$ is not \mathbb{P} -uniformly integrable.

Find $(f_n) \subseteq \overline{K}$ so that $(f_n \chi_A) \sim \ell^1$ -basis.

Let $\varepsilon > 0$. Choose A so that $\mathbb{P}(A) > 1 - \varepsilon$ and $f_n, f \in \overline{K}, f_n \to f$ a.e. implies $\|(f_n - f)\chi_A\|_1 \to 0$.

Suppose that $\{f\chi_A : f \in \overline{K}\}$ is not \mathbb{P} -uniformly integrable.

Find
$$(f_n) \subseteq \overline{K}$$
 so that $(f_n \chi_A) \sim \ell^1$ -basis.

Komlos \implies WLOG $(\frac{1}{n}\sum_{k=1}^{n}f_k)_n$ converges a.e. to some f, which must be in \overline{K} .

Let $\varepsilon > 0$. Choose A so that $\mathbb{P}(A) > 1 - \varepsilon$ and $f_n, f \in \overline{K}, f_n \to f$ a.e. implies $\|(f_n - f)\chi_A\|_1 \to 0$.

Suppose that $\{f\chi_A : f \in \overline{K}\}$ is not \mathbb{P} -uniformly integrable.

Find
$$(f_n) \subseteq \overline{K}$$
 so that $(f_n \chi_A) \sim \ell^1$ -basis.

Komlos \implies WLOG $(\frac{1}{n}\sum_{k=1}^{n} f_k)_n$ converges a.e. to some f, which must be in \overline{K} .

By choice of A, $(\frac{1}{n}\sum_{k=1}^{n} f_k \chi_A)_n$ must be norm convergent. Contradiction.

Aim: To characterize the condition that there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K, where K is convex bounded in $L^1(\mathbb{P})$.

Aim: To characterize the condition that there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K, where K is convex bounded in $L^1(\mathbb{P})$.

Definition. Let *S* be a nonempty subset of *K*. We say that the $L^0(\mathbb{P})$ -topology is *uniformly locally convex solid* on *S* if for each $L^0(\mathbb{P})$ -neighborhood *U* of 0, there is a convex solid set $W \subseteq U$ such that for each $f \in S$, $(f + W) \cap K$ is a neighborhood of *f* for the restriction of the $L^0(\mathbb{P})$ -topology to *K*.

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$ and let S be a nonempty subset of K. Assume that the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on S. If A is a measurable set with $\mathbb{P}(A) > 0$, then there exists $0 \neq g \in L^{\infty}_{+}(\mathbb{P})$, supp $g \subseteq A$ such that

$$\int |f_n - f| g \ d\mathbb{P} \to 0 \text{ if } f_n, f \in K \text{ and } f_n \to f \text{ in probability.}$$

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$ and let S be a nonempty subset of K. Assume that the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on S. If A is a measurable set with $\mathbb{P}(A) > 0$, then there exists $0 \neq g \in L^{\infty}_{+}(\mathbb{P})$, supp $g \subseteq A$ such that

$$\int |f_n - f| g \ d\mathbb{P} o 0$$
 if $f_n, f \in K$ and $f_n o f$ in probability.

Idea: Find a sequence of convex solid sets W_k and r > 0 so that

- For each f ∈ S, (f + W_k) ∩ K is a neighborhood of f for the restriction of the L⁰(P)-topology to K.
- g is a linear functional that separates rB_{L¹(ℙ)} and kW_k on one side and χ_A on the other.

Theorem. Let (X, τ) be a real Hausdorff TVS. Let K be a convex circled set in X. Suppose that the restriction of τ to K is locally convex (at 0). The set of all linear functionals on X that are τ -continuous on K separates points of K.

Theorem. Let K be a bounded convex set in $L^1(\mathbb{P})$. TFAE

- The $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
Theorem. Let K be a bounded convex set in $L^1(\mathbb{P})$. TFAE

- The $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.

Remark. If K is also circled, then the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K if and only if it is locally convex solid at 0.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K.

Choose a solid neighborhood of 0 in $L^0(\mathbb{P})$, V, so that $V \cap K \subseteq C \cap K$.

- The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- **③** There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K.

Choose a solid neighborhood of 0 in $L^0(\mathbb{P})$, V, so that $V \cap K \subseteq C \cap K$. Since $V \cap K$ is solid, $W = co(V \cap K)$ is a solid convex set contained in $C \subseteq U$ and $W \cap K$ is a neighborhood of 0 in K.

[To p.4]

[To p.4]

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$.

[To p.4]

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$.

[To p.4]

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$. Define F_n on \mathbb{R} by $F_n(x) = \frac{1}{\beta_n}\chi_{[-k_n,k_n]}(x)$.

[To p.4]

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$. Define F_n on \mathbb{R} by $F_n(x) = \frac{1}{\beta_n}\chi_{[-k_n,k_n]}(x)$. Set $Y_n = F_n(X_n)$ and

$$\mathcal{K} = \{\sum a_n Y_n : \sum |a_n| \leq 1\}.$$

∽ ९ (∾ 14 / 19 **Theorem**. [Kardaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- All FCCs of (f_n) converges to f in probability.
- ② The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0.$

Theorem. [Kardaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- All FCCs of (f_n) converges to f in probability.
- **2** The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0.$

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Then for any $f \in K$ and any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to *f* in probability.

クへで 15/19 **Corollary**. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Let *S* be a countable set in *K*. Then for any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to some $f \in S$ in probability.

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Let *S* be a countable set in *K*. Then for any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to some $f \in S$ in probability.

Proposition. Let (f_n) be a bounded sequence in $L^1_+(\mathbb{P})$ and let $K = \operatorname{co}(f_n)$. If the $L^0(\mathbb{P})$ -topology is locally convex on K, then there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Let *S* be a countable set in *K*. Then for any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to some $f \in S$ in probability.

Proposition. Let (f_n) be a bounded sequence in $L^1_+(\mathbb{P})$ and let $K = \operatorname{co}(f_n)$. If the $L^0(\mathbb{P})$ -topology is locally convex on K, then there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

This is a special case of Q1. [p.4]

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

$$h_k \rightarrow \frac{1}{2}g + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} = \sum_{n=1}^m b_n f_n + (1-b)f_{m+1} \in S.$$

୬ ବ ୯ 17 / 19

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

$$h_k \to \frac{1}{2}g + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} = \sum_{n=1}^m b_n f_n + (1-b)f_{m+1} \in S.$$

Thus $||(g_k - g)\chi_A||_{L^1(\mathbb{P})} \to 0.$

୍ର ବ୍ 17 / 19 Let Γ be an uncountable set. Let \mathbb{P} be the product measure on $2^{\Gamma \times \mathbb{N}}$. There exists a convex norm bounded set K in $L^1_+(\mathbb{P})$ so that the $L^0(\mathbb{P})$ topology on K is locally convex, but there does not exist any $\mathbb{Q} \sim \mathbb{P}$ so that the $L^0(\mathbb{Q})$ - and $L^0(\mathbb{P})$ -topologies agree on K. Let Γ be an uncountable set. Let \mathbb{P} be the product measure on $2^{\Gamma \times \mathbb{N}}$. There exists a convex norm bounded set K in $L^1_+(\mathbb{P})$ so that the $L^0(\mathbb{P})$ topology on K is locally convex, but there does not exist any $\mathbb{Q} \sim \mathbb{P}$ so that the $L^0(\mathbb{Q})$ - and $L^0(\mathbb{P})$ -topologies agree on K.

$$\varphi_{\gamma,1} = 2\chi_{\{\varepsilon:\varepsilon(\gamma,1)=0\}} \text{ and } \varphi_{\gamma,n} = \varphi_{\gamma,1} + 2^n\chi_{\{\varepsilon:\varepsilon(\gamma,i)=0,1\leq i\leq n\}}, n \geq 2.$$

 $K = \operatorname{co}\{\varphi_{\gamma,n}: \gamma \in \Gamma, n \geq 2\}.$

Let Γ be an uncountable set. Let \mathbb{P} be the product measure on $2^{\Gamma \times \mathbb{N}}$. There exists a convex norm bounded set K in $L^1_+(\mathbb{P})$ so that the $L^0(\mathbb{P})$ topology on K is locally convex, but there does not exist any $\mathbb{Q} \sim \mathbb{P}$ so that the $L^0(\mathbb{Q})$ - and $L^0(\mathbb{P})$ -topologies agree on K.

$$\varphi_{\gamma,1} = 2\chi_{\{\varepsilon:\varepsilon(\gamma,1)=0\}} \text{ and } \varphi_{\gamma,n} = \varphi_{\gamma,1} + 2^n\chi_{\{\varepsilon:\varepsilon(\gamma,i)=0,1\leq i\leq n\}}, n \geq 2.$$

 $K = \operatorname{co}\{\varphi_{\gamma,n}: \gamma \in \Gamma, n \geq 2\}.$

Q1 is still open if K is assumed to be $L^0(\mathbb{P})$ -closed or if \mathbb{P} is a separable probability measure.

[To p.4]

っへで 18/19

Thank You