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Background and notation

In this talk, X is usually a Banach lattice.

Special case: Banach function space (BFS).
L0(µ) = space of all measurable functions on a measure space (Ω,Σ, µ).
A BFS is a subspace X of L0(µ) endowed with a complete norm ‖ · ‖ so
that if |f | ≤ |g | and g ∈ X , then f ∈ X and ‖f ‖ ≤ ‖g‖.

Examples: Lp, Orlicz space, Lorentz space, rearrangement invariant (r.i.)
function space.
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Order convergence

xα
o−→ x if there exists (yγ) ↓ 0 (in X ) so that for all γ, there exists α0 so

that |xα − x | ≤ yγ for all α ≥ α0.

In a BFS, fα
o−→ f if and only if there exists g ∈ X and α0 so that

|fα| ≤ g for all α ≥ α0 and that (fα) converges to f a.e.

A functional f on X is order continuous if xα
o−→ x =⇒ f (xα)

o−→ f (x).

The space of all order continuous linear functionals on X is the order
continuous dual and is denoted by X∼n . It is a closed lattice ideal in X ∗.

For a BFS X ,

X∼n = {g ∈ L0(µ) : fg ∈ L1(µ) for all f ∈ X}.

Examples: (L∞)∼n = L1, (Lϕ)∼n = Lψ, where ψ is the conjugate Orlicz
function to ϕ.
X∼n = X ∗ if and only if X has order continuous norm.
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Order closure and order closed set

Let C ⊆ X . Then x ∈ C
o

if there exists (xα) in C so that xα
o−→ x .

C
o

is called the order closure of C . C is order closed if C
o

= C .

We call the smallest order closed set containing C the order closed
envelope of C , denoted by Ĉ .

In a BFS X , f ∈ C
o

if and only if there is a sequence (fn) in C and g ∈ X
so that |fn| ≤ g for all n and fn → f a.e.

Main problem: Study order closure and order closedness of a convex set
and relation to closure with respect to some topologies, particularly
σ(X ,X∼n ).
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C
o
, Ĉ and C

σ(X ,X∼
n )

Let C be a set in a Banach lattice X .

Clearly C
o ⊆ Ĉ .

By definition, if xα
o−→ x and f ∈ X∼n , then f (xα)→ f (x).

So C
σ(X ,X∼n )

is an order closed set containing C .

Thus
C

o ⊆ Ĉ ⊆ C
σ(X ,X∼n )

.

We can ask specifically:
For which Banach lattice X is it true that two of these sets coincide for all
convex sets C ⊆ X .
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Order closedness of C
o

C
o

is order closed ⇐⇒ C
o

= Ĉ .

Example: A convex set C in `∞ so that C
o

is not order closed.

Fact: In `∞, C
o

is the σ(`∞, `1)-sequential closure of C .

Let U be a free ultrafilter on N. Consider X = `∞(N× N). Set

Y = {y = (ymn) ∈ X : lim
n→U

ymn = mym1 for all m ∈ N}.

Y is a sublattice of X .

1 0 · · · 0 1 · · ·
1 0 · · · 0 2 · · ·
...

. . .
...

...
...

...
1 0 · · · 0 m · · ·
0 0 · · · 0 0 · · ·
...

...
...

...
...

...


o−→


1 0 · · ·
...

...
...

1 0 · · ·
0 0 · · ·
...

...
...

 := em as n→∞
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Order closedness of C
o

em
o−→ e =


1 0 · · ·
...

...
...

1 0 · · ·
1 0 · · ·
...

...
...

 .

Hence e ∈ Y
oo

.
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Order closedness of C
o

Y = {y = (ymn) ∈ X : lim
n→U

ymn = mym1 for all m ∈ N}.

To show: e /∈ Y
o

.

Suppose yk ∈ Y and yk
o−→ e ⇐⇒ yk → e σ(`∞, `1).

For any m, there exists k so that |ykm1 − 1| < 1
2 .

Then limn→U y
k
mn = mykm1 >

m
2 .

Hence ‖yk‖ > m
2 .

So (yk) cannot be norm bounded and so not order bounded (in any
Banach lattice containing Y ).
Thus Y

o
is not order closed.
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Order closedness of C
o

The example can be put inside any Banach lattice that contains a copy of
`∞.

Corollary

Let X be a Banach lattice that contains a lattice isomorphic copy of `∞.
There is a closed sublattice Y of X so that Y

o
is not order closed.

In particular, if X is a countably order complete Banach lattice, then Y
o

is
order closed for every closed sublattice Y of X if and only if X has order
continuous norm.
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A fuller picture

Let X be a Banach lattice. xα
uo−→ x if for any u ∈ X+,

|xα − x | ∧ u
o−→ 0. uo stands for unbounded order convergence.

uo closure of a set is defined in the obvious way.

In a BFS, fα
uo−→ f if and only if (fα) converges to f a.e.

uo closure of a set is the sequential closure with respect to a.e.
convergence.

Proposition

Let Y be a sublattice of a Banach lattice X and let I be an ideal of X∼n
that separates points of X . Then

Y
o ⊆ Y

uo ⊆ Y
oo ⊆ Y

σ(X ,I )

and Y
σ(X ,I )

is order closed.
If X has the countable sup property, then Y

uo
= Y

σ(X ,I )
is the order

closed envelope of Y .
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A fuller picture

Theorem

Let X be a countably order complete Banach lattice. TFAE.

1 X is order continuous.

2 Y
o

= Y
σ(X ,X∼n )

for any sublattice Y of X .

3 Y
o

is order closed for any sublattice Y of X .

4 Y
o

= Y
uo

for any sublattice Y of X .

Remark. Let X = `∞. Then X∼n = `1 and X has the countable sup
property.

If Y is a sublattice of X , then Y
o

= Y
seq-w∗

.

By Proposition, Y
w∗

= Y
oo

= Y
seq-w∗ seq-w

∗

is the order closed envelope
of Y .
For any subspace Z of `∞, define Z1 = Z

seq-w∗
, Zβ+1 = (Zβ)1 and

Zβ =
⋃
α<β Zα if β is a limit ordinal. A result of Ostrovskij shows that for

any countable ordinal α, there is a subspace Z of `∞ so that Zβ, β < α,
are all distinct.
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Order closedness equals σ(X ,X∼n )-closedness

Order closedness equals σ(X ,X∼n )-closedness ⇐⇒ Ĉ = C
σ(X ,X∼n )

.

P1 : Ĉ = C
σ(X ,X∼n )

for any convex set C ⊆ X .
Question: Which spaces have P1?

This question is motivated by some considerations in the theory of risk
measures in financial mathematics.

Sufficient condition: C
o

= C
σ(X ,X∼n )

for any convex C .
This has been characterized above.

Proposition

Let X be countably order complete. Then C
o

= C
σ(X ,X∼n )

for any convex
set C if and only if X is order continuous.
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Order closed but not σ(X ,X∼n )-closed

Example: A convex set C that is order closed but not σ(X ,X∼n )-closed in

X = `∞ ⊕ `1 = `∞ ⊕ (⊕`1)1.

I.e., C
o ( C

σ(X ,X∼n )
.

Observations:
(i) X∼n = `1 ⊕ (⊕`∞)∞. Hence σ(X ,X∼n ) = w∗ ⊕ w .
(ii) x ∈ C

o ⇐⇒ x is the coordinatewise limit of an order bounded
sequence in C
⇐⇒ x is the w∗ ⊕ w -limit of a norm bounded sequence in C .

A non-convex set S in `∞ ⊕ `1 = `∞ ⊕ (⊕`1)1 that is order closed but not
σ(X ,X∼n )-closed.

S = {xk,j : k , j ∈ N}, where

xk,j = (0, . . . , 0,
jth coord

2k , 2k , . . . )⊕ (0, . . . , 0,

jth coord
ej
2k

, 0, . . . ),

(ej) = unit vector basis in `1.
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Order closed but not σ(X ,X∼n )-closed

S = {xk,j : k , j ∈ N}, where

xk,j = (0, . . . , 0,
jth coord

2k , 2k , . . . )⊕ (0, . . . , 0,

jth coord
ej
2k

, 0, . . . ),

(ej) = unit vector basis in `1.

Suppose that y = u ⊕ (v1, v2, . . . ) ∈ `1 ⊕ (⊕`∞)`∞ , where u = (ui ) ∈ `1
and (vi ) is a bounded sequence in `∞.

|〈xk,j , y〉| ≤ 2k
∞∑
i=j

|ui |+
‖vj‖
2k

.

Given ε > 0, choose k so that
‖vj‖
2k

< ε
2 for any j .

Then choose j so that 2k
∑∞

i=j |ui | <
ε
2 .

This shows that 0 ∈ S
w∗⊕w

. So S is not w∗ ⊕ w = σ(X ,X∼n )-closed.
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Suppose (xkn,jn) = ykn,jn ⊕ zkn is norm bounded in X and converges to
x = y ⊕ z wrt w∗ ⊕ w .

By considering ykn,jn , we see that (kn) must be bounded. WLOG kn = k
for all n.

Then (0, . . . , 0,
jnth coord

ejn
2k

, 0, . . . )→ z weakly in (⊕`1)1, which means norm
convergence as well.

So (jn) must be eventually constant. It follows that x ∈ S .

Thus S is order closed.
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Order closed but not σ(X ,X∼n )-closed

We have the desired example except that S is not convex.

Let C = convex hull of S .
An analysis in the same vein, but technically more complicated, shows that

C is order closed and 0 ∈ C
σ(X ,X∼n )

/∈ C .

The example can be ported over to a Banach lattice X containing a set
S = {xn, yn : n ∈ N} so that

The elements in S are positive pairwise disjoint and normalized.

(xn) is order bounded in X .

There exists y∗ ∈ X∼n so that infn y
∗(yn) > 0.

The final condition says that (yn) is a disjoint `1-sequence in X and its
“`1-ness” is witnessed by an element in X∼n .

Theorem

Let X be an order complete Banach lattice so that X∼n isomorphically
norms X . If X has property P1, then either X or X∼n is order continuous.
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Ĉ = C
σ(X ,X∼

n )

Summary: P1 = “any convex set is order closed ⇐⇒ σ(X ,X∼n )-closed”.

X order continuous =⇒ P1
X∼n norming

=⇒ X or X∼n order continuous.

Natural question: X∼n order continuous =⇒ P1?
[To p.27]
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Krein-Smulyan property

In the example above, the convex set C has the property that C ∩ B is
σ(X ,X∼n )-closed for any convex, norm bounded, σ(X ,X∼n )-closed set B;
however, C is not σ(X ,X∼n )-closed.

Say that σ(X ,X∼n ) has the Krein-Smulyan property (KS) if for any convex
set C in X so that C ∩ B is σ(X ,X∼n )-closed for any convex, norm
bounded, σ(X ,X∼n )-closed set B, C is σ(X ,X∼n )-closed.

Example: Suppose that X = (X∼n )∼n (canonically) and X∼n is order
continuous. Then X = (X∼n )∗. Thus σ(X ,X∼n ) is the weak∗ topology.
Therefore, σ(X ,X∼n ) has KS by the Krein-Smulyan Theorem.
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Krein-Smulyan property

Theorem

Suppose that X = (X∼n )∼n . Then σ(X ,X∼n ) has KS if and only if X or X∼n
is order continuous.

[To p.31]

Proof.

X order continuous =⇒ X∼n = X ∗. So σ(X ,X∼n ) = weak topology and
thus has KS.

X∼n order continuous =⇒ σ(X ,X∼n ) has KS, as shown above.

Converse follows from construction of set C above.
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Krein-Smulyan property

Corollary

Suppose that X = (X∼n )∼n and that X∼n is order continuous. Then X has
P1 if and only if every norm bounded order closed convex set in X is
σ(X ,X∼n )-closed.

Proof.

Only need to show “if”. Let C be order closed and convex.

If B is convex, norm bounded and σ(X ,X∼n )-closed, then it is order closed.

Hence C ∩ B is norm bounded order closed and convex. So C ∩ B is
σ(X ,X∼n )-closed.

By Theorem above, σ(X ,X∼n ) has KS. Hence C is σ(X ,X∼n )-closed.
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Properties P2 and P3

Motivated by the Corollary, let’s define:

(P2) Every norm bounded order closed convex set in X is σ(X ,X∼n )-closed,

i.e., Ĉ = C
σ(X ,X∼n )

for every norm bounded convex set C .

(P3) C
o

= C
σ(X ,X∼n )

for every norm bounded convex set C in X .

We have
X order continuous =⇒ P1,P2,P3.

If X∼n is order continuous, then

P3 =⇒ P2
X=(X∼n )∼n⇐⇒ P1.

In the case of Orlicz spaces, it turns out that P3 always holds.

Below, we look at some properties motivated by the proof of said result in
Orlicz spaces.
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Disjoint order continuity property (DOCP)

Say that X has DOCP if for any norm bounded disjoint sequence (fn) in
X+, fn → 0 σ(X ,X∼n ) =⇒ fn → 0 weakly.

Remark. Reason for the name is that if X is countably order complete,
then X is order continuous if and only if for any norm bounded sequence
(fn) in X+, fn → 0 σ(X ,X∼n ) =⇒ fn → 0 weakly.

Relevance of DOCP to P2 is based on the following concrete situation.
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Disjoint order continuity property (DOCP)

Lemma

Let (fn) be a normalized disjoint `1 sequence in a Banach lattice X . Then
co(fn)

o
is order closed and

co(fn)
o

= {
∞∑
n=1

anfn : an ≥ 0,
∑

an = 1}(:= C ).

[p.27]

C = norm closure of co(fn) ⊆ co(fn)
o

.
Conversely, suppose that (xn) ⊆ C and xn

o−→ x .
Then (xn) is dominated in X =⇒ it is dominated by an element

∑
bnfn,

where (bn) ∈ `1.
So (xn) is relatively norm compact and it follows that x ∈ C .
So C is order closed.
Then co(fn)

o ⊆ C .
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P2 (Ĉ = C
σ(X ,X∼

n )
for bounded convex C ) implies DOCP

Proposition

P2 =⇒ DOCP.

Proof.

Suppose (fn) is a norm bounded disjoint sequence in X+.
If (fn) is not weakly null, we may assume that it is an `1-sequence.
By Lemma, C = co(fn)

o
is order closed.

By P2, C is σ(X ,X∼n )-closed.
Since 0 /∈ C , (fn) does not converge to 0 wrt σ(X ,X∼n ).
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Spaces having DOCP

The next result gives a general class of spaces having DOCP.

For a Banach lattice X , let

Xa = {x ∈ X+ : x ≥ xα ↓ 0 =⇒ ‖xα‖ → 0}.

Xa is a closed ideal of X with order continuous norm; in fact, the largest
such. It is called the order continuous part of X .
We have the canonical identification (Xa)∗ = X∼n .

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Example. If X is an Orlicz space, then X/Xa is an AM-space, hence X has
DOCP.
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Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).

Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.
There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1

2n for all n.
(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.

Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.
There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1

2n for all n.
(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.

Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1
2n for all n.

There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1
2n for all n.

(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.

Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1
2n for all n.

There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1
2n for all n.

(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.

There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1
2n for all n.

(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.
There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1

2n for all n.

(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.
There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1

2n for all n.
(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.

So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



Spaces having DOCP

Proposition

If (X/Xa)∗ is order continuous, then X has DOCP.

Proof

Suppose on the contrary that X contains a disjoint positive `1 sequence
(fn) that converges to 0 wrt σ(X ,X∼n ).
Let q : X → X/Xa be the quotient map.
Since (q(fn)) is disjoint bounded in X/Xa and (X/Xa)∗ is order
continuous, q(fn)→ 0 weakly.
Choose (gn) a convex block sequence of (fn) so that ‖q(gn)‖ < 1

2n for all n.
There exists (hn) in Xa so that 0 ≤ hn ≤ gn and ‖gn − hn‖ < 1

2n for all n.
(hn) ⊆ Xa, hn → 0 wrt σ(X ,X∼n ) =⇒ hn → 0 weakly.
So gn → 0 weakly. But (gn) is an `1-sequence. A contradiction.

26 / 34



A space without DOCP

DOCP: norm bounded disjoint sequence (fn) in X+,
fn → 0 σ(X ,X∼n ) =⇒ fn → 0 weakly.

Example: The space X = (`1(n))`∞ does not have DOCP.

Remark. Thus X fails P2 and hence P1.
Since X∼n = (`∞(n))`1 is order continuous, this gives a negative answer to
the “natural question” [p.17].

Let (en) be the uvb of `1. Set xn = (0, . . . , 0,
n
en, en, . . . ) ∈ X .

Then (xn) is a disjoint `1 sequence in X .
Hence xn 6→ 0 weakly.
But xn → 0 σ(X ,X∼n ).
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Order subsequence splitting property (OSSP)

Say that X has OSSP if for every norm bounded sequence (fn) in X+ that
uo-converges to 0, there is a subsequence (fnk ) with a splitting

fnk = xk + yk ,

where (xk) is a disjoint sequence in X+ and (yk) is an order bounded
sequence in X+.

Remark. Subsequence splitting in Lp was shown by Kadec and Pelczynski
and later generalized to order continuous Banach lattices with a weak unit
by Weis.

An order continuous Banach lattice with a weak unit 1 has SSP if every
norm bounded sequence (fn) has a subsequence (fnk ) with a splitting

fnk = xk + yk ,

where |xk | ∧ |yk | = 0, (xk) is disjoint and ‖|yk | ∧ t1− |yk |‖ → 0 uniformly
in k as t →∞.

Weis showed (among other things) that SSP ⇐⇒ some special kinds of
`∞(n)’s do not uniformly lattice embed into X .
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OSSP and P3 (C
o
= C

σ(X ,X∼
n )

for every norm bounded
convex C )

A functional ϕ ∈ (X ∗)+ is strictly positive if ϕ(|x |) = 0 =⇒ x = 0.

Lemma

Suppose that (X∼n )+ contains a strictly positive functional. If ϕ(|xn|)→ 0,
then there exists a subsequence (yn) so that yn → 0 uo.

Proposition

Suppose that X∼n is order continuous, (X∼n )+ contains a strictly positive
functional ϕ and X has OSSP. X has P3 ⇐⇒ X has DOCP.

[To p.31]
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OSSP and P3

Proof

Previously, we know that P3 =⇒ P2 =⇒ DOCP.

Conversely, suppose that X is as above and has DOCP.

Suppose 0 ∈ C
σ(X ,X∼n )

= C
|σ|(X ,X∼n )

, C convex bounded.
There exists (xn) in C so that ϕ(|xn|)→ 0. By Lemma, we may assume
that xn → 0 uo.
Since ϕ is strictly positive and X∼n is order continuous, X∼n is the closed
ideal generated by ϕ. So ϕ(|xn|)→ 0 =⇒ |xn| → 0 σ(X ,X∼n ).
Using OSSP, WLOG, split |xn| = yn + zn, where yn, zn ≥ 0, (yn) is disjoint
and (zn) is order bounded.
Then yn → 0 σ(X ,X∼n ). By DOCP, yn → 0 weakly.
There is a convex combination of (yn) that is order bounded.
So WLOG, (xn) is order bounded and xn → 0 uo. Therefore, xn

o−→ 0.
Thus 0 ∈ C

o
.
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Characterizing P1 (Ĉ = C
σ(X ,X∼

n )
for any convex C )

Theorem

Suppose that (X∼n )+ contains a strictly positive functional, X = (X∼n )∼n
and X has OSSP. TFAE

1 X has P1.

2 X has DOCP and either X or X∼n is order continuous.

3 X has DOCP and σ(X ,X∼n ) has KS.

4 Either X or X ∗ is order continuous.

(1) =⇒ (2) by Proposition on p.29.

(2) ⇐⇒ (3) comes from p.19.
Suppose X∼n is order continuous and X has DOCP.
If (xn) ⊆ X+ is a disjoint `1 sequence, then there exists ϕ ∈ (X∼n )+ so that
ϕ(xn) 6→ 0.
Then ∃ disjoint sequence 0 ≤ fn ≤ ϕ so that fn(xn) 6= 0. Contradiction.
This proves (2) =⇒ (4). (4) =⇒ (1) is easy.
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Spaces with a special modular

A special modular on a Banach lattice X is a functional ρ : X → [0,∞] so
that

1 f ∈ X+, ρ(f ) <∞, fn ∈ [0, f ], fn
o−→ 0 =⇒ ρ(fn)→ 0.

2
∑
ρ(fn) <∞ =⇒ (fn) has an order bounded subsequence.

3 ‖f ‖ ≤ 1 =⇒ ρ(f ) <∞.

Example. If X is the Orlicz space Lϕ, then ρ(f ) =
∫
ϕ(|f |) dµ is a special

modular.

More generally, if X is the Orlicz-Lorentz space Λϕ,w , then

ρ(f ) =

∫ ∞
0

ϕ(f ∗)w(t) dt

is a special modular.
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Proposition

Let ρ be a special modular on a Banach lattice X .

1 If X is order complete, then X has OSSP.

2 If X has the countable sup property and Xa is order dense in X , then
X has DOCP.

Theorem

Suppose that (X∼n )+ contains a strictly positive functional, X = (X∼n )∼n
and there is a special modular on X . Then X has P1 if and only if either
X or X ∗ is order continuous.
If, in addition, Xa is order dense in X , then the above occurs if and only if
either X or X∼n is order continuous if and only if σ(X ,X∼n ) has KS
property.
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A. Law invariant sets

L0(µ) = space of all measurable functions on a measure space (Ω,Σ, µ).

A BFS is a subspace X of L0(µ) endowed with a complete norm ‖ · ‖ so
that if |f | ≤ |g | and g ∈ X , then f ∈ X and ‖f ‖ ≤ ‖g‖.

X is rearrangement invariant (r.i.) if g
dist
= f ∈ X =⇒ g ∈ X and

‖g‖ = ‖f ‖.

Examples: Lp, Orlicz-Lorentz spaces.
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Order closure and order closed set

Let C ⊆ X , X BFS.

f ∈ C
o

if and only if there is a sequence (fn) in C and g ∈ X so that
|fn| ≤ g for all n and fn → f a.e.

C is order closed if C
o

= C .

The space of order continuous linear functionals on X , X∼n , is given by

X∼n = {g ∈ L0 : fg ∈ L1 for all f ∈ X}.

Previously, we considered the problem:
For which X is it true that for all convex sets C ⊆ X , C is order closed
⇐⇒ σ(X ,X∼n )-closed.

Now we consider this problem if X is r.i. and C is a law invariant (= r.i.)
subset of X .
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Main result

Let X be an r.i. space. A subset C of X is law invariant if g
dist
= f ∈ C

=⇒ g ∈ C .

Theorem

Let C be a convex law invariant subset of an r.i. space X on a finite
measure space (Ω,Σ, µ). Then C is order closed if and only if it is
σ(X ,X∼n )-closed.

σ(X ,X∼n )-closed always implies order closed.
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Let C be an order closed convex law invariant set in X .

1 f ∈ C and π is a finite measurable partition of Ω =⇒ E[f |π] ∈ C .

2 E[f |π] ∈ C for all finite measurable partitions π of Ω =⇒ f ∈ C .

Proof of Theorem. Let C be order closed convex law invariant.

Suppose fα ∈ C and fα → f σ(X ,X∼n ).

In particular,
∫
A fα dµ→

∫
A f dµ for any measurable A.

Thus E[fα|π]→ E[f |π] weakly for any finite measurable partition π.

By 1, E[fα|π] ∈ C .

C order closed convex =⇒ norm closed = weakly closed.

Thus E[f |π] ∈ C for any π.

Therefore f ∈ C by 2.
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Let C be an order closed convex law invariant set in X . f ∈ C and π is a
finite measurable partition of Ω =⇒ E[f |π] ∈ C .

Take π = {Ω}.

For any n. Let An = {|f | ≤ n}.

Since f χAn ∈ L∞, there exists fn ∈ C so that

‖fnχAn −
∫
An

f dµ

µ(An)
· χAn‖∞ → 0 and fnχAc

n
= f χAc

n
.

Easy to see that fn
o−→ E[f |π].

So E[f |π] ∈ C .
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Let C be an order closed convex law invariant set in X . E[f |π] ∈ C for all
finite measurable partitions π of Ω =⇒ f ∈ C .

Fact. X r.i. Hence either X = L∞ or L∞ ⊆ Xa.

Result is clear if X = L∞. Assume L∞ ⊆ Xa.

Let fn = f χ{|f |≤n}. Choose πn so that ‖fn − E[fn|πn]‖∞ → 0.

Then fn − E[fn|πn]
o−→ 0 =⇒ E[fn|πn]

o−→ f .

Since |f − fn| ≤ |f |, (f − fn)∗ ≤ f ∗. Also, (f − fn)∗ → 0 a.e.

Take any h ∈ X∼n , then

|
∫

E[f − fn|πn]h dµ| ≤
∫

(f − fn)∗h∗ dt → 0 by dominated convergence.

So E[f − fn|πn]→ 0 σ(X ,X∼n ). But E[f − fn|πn] ∈ L∞ ⊆ Xa, so
E[f − fn|πn]→ 0 weakly.
Take convex combination to assume E[f |πn]− E[fn|πn]

o−→ 0.
Then E[f |πn]

o−→ f and thus f ∈ C .
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Order Banach-Saks properties

Theorem (Delbaen and Owari)

Let Lϕ(Ω,Σ, µ) be an Orlicz space defined on a finite measure space.
Assume that (Lϕ)∗ has order continuous norm. (Equivalently, the
conjugate Orlicz function ϕ∗ is ∆2 at infinity.) If (fn) is a norm bounded
sequence in Lϕ, then there are a subsequence (fnk ) and f ∈ Lϕ such that
for any further subsequence (gk) of (fnk ), a subsequence of the averages
( 1
m

∑m
k=1 gk) order converges to f .

Definition

A Banach lattice X has the (weak) order Banach-Saks property ((w)oBS)
if any (weakly null) norm bounded sequence (xn) in X has a subsequence
(xnk ) so that the averages ( 1

m

∑m
k=1 xnk ) order converges to an element

x ∈ X . (In the case of woBS, x must be 0.)
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What happens in Lp? Comparison with (weak)
Banach-Saks property

1. L∞ has oBS because of Komlos. It is not BS, not even weak BS.

2. If X is order continuous, then order convergence implies norm
convergence. So oBS =⇒ BS and woBS =⇒ wBS when X is order
continuous.
Lp has BS if 1 < p <∞ and L1 has wBS. What about “o” versions?
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L1 fails woBS

Suppose that f is a positive function in L1 and (fn) is an independent
sequence so that fn = f in distribution for all n.

(fn) is uniformly integrable and hence has a weakly convergent
subsequence. So in fact (fn) must converge weakly.
Let gn =

∨n
m=1

1
m

∑m
k=1 fk .

Realize fk , 1 ≤ k ≤ n, as functions fk(x1, . . . , xn) = f (xk) defined in [0, 1]n.
Fix n. Set Am = {(x1, . . . , xn) ∈ [0, 1]n : xm > xi ∀i 6= m}.
Then ∫

gn ≥
n∑

m=1

∫
Am

f (xm)

m
=

n∑
m=1

1

m

∫ 1

0
yn−1f (y) dy .

It is possible to choose f ∈ L1+ such that
∑n

m=1
1
m

∫ 1
0 yn−1f (y) dy is

unbounded in n.
Since any subsequence of (fn) has the same joint distribution as the whole
sequence, ( 1

m

∑m
k=1 fnk )m cannot be order bounded for any subsequence

(fnk ).
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Orlicz space X = Lϕ has woBS implies X ∗ order continuous

The same idea can be used to prove that if Lϕ(µ) has woBS for a finite
nonatomic measure µ, then ϕ∗ satisfies ∆2 at ∞.

11 / 17



Lp, 1 < p <∞, has oBS

For reflexive Banach lattices, it is clear that oBS = woBS.

Let (fn) be a weakly null sequence in Lp.
Taking a subsequence and perturbing slightly, we may assume that (fn) is
a block sequence of the Haar basis for Lp.
By Komlos, we may assume that there exists a measurable f so that the
Cesaro averages of (fn) converges a.e. to f .
(fn) is a martingale difference sequence.
Let r = min{p, 2}. Then for any finitely supported (an)

‖ sup
k
|

k∑
n=1

anfn|‖ ∼ ‖
√∑

|anfn|2‖ ≤ (
∑
‖anfn‖r )1/r ,

where “∼” is Burkholder’s inequality.
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‖ sup
k
|

k∑
n=1

anfn|‖ ∼ ‖
√∑

|anfn|2‖ ≤ (
∑
‖anfn‖r )1/r .

In particular, let gn =
∑n

k=1
fk
k and g∗n = sup1≤k≤n |gk |.

For n > m,

‖g∗n − g∗m‖ ≤ ‖ sup
m<k≤n

|
k∑

i=m+1

fi
i
|‖ ≤ C (

n∑
i=m+1

1

i r
)1/r .

Hence (g∗n ) converges in norm in Lp, to g , say. (And g∗n ↑ g .)
Then |

∑k
n=1

fn
n | ≤ g for all k.
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anfn|‖ ∼ ‖
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|anfn|2‖ ≤ (
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‖anfn‖r )1/r .

|gn| = |
k∑

n=1

fn
n
| ≤ g ∈ Lp for all k.

Let `k = 1
k(k+1)

∑k
n=1 fn.

By the above, ‖`k‖ ≤ Ck1/r

k(k+1) . So
∑
|`k | converges in Lp. Since

1

n

n∑
k=1

fk = gn −
n−1∑
k=1

`k ,

we have

|1
n

n∑
k=1

fk | ≤ g +
∞∑
k=1

|`k | for all n.

Recall that ( 1n
∑n

k=1 fk)n converges pointwise to some f . LDCT shows
that the convergence is also in Lp-norm.
Since (fn) is weakly null, f = 0 and 1

n

∑n
k=1 fk

o−→ 0.
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From the argument to a general result

The same argument works provided:

1 X is a separable r.i. space – so that the Haar functions is a basis for
X . [R.i. in the sense of Lindenstrauss and Tzafriri.]

2 The upper Boyd index qX <∞ – Johnson-Schechtman proved BDG
inequality holds in X .

3 X is p-convex for some p > 1.

Note that a separable r.i. space on [0, 1] is contained in L1 as a subset. So
Komlos applies for a.e. convergence of averages.

Theorem

Let X be a separable r.i. space on [0, 1] that is p-convex for some p > 1
and whose upper Boyd index qX <∞. Then X has woBS.

In particular, if X is a reflexive separable r.i. space on [0, 1], then X has
oBS.
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Orlicz spaces

For Lϕ, define property (H): every weakly null sequence in Hϕ has a
subsequence whose Cesaro means are order bounded in Lϕ.

Proposition

TFAE

1 Lϕ has (H).

2 Lϕ has oBS.

3 Lϕ has woBS.

Proposition

TFAE

1 Hϕ is reflexive.

2 Hϕ has oBS.

3 Hϕ has woBS.

Question: Is (H) equivalent to ϕ∗ being ∆2?
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The setting

(Ω,Σ,P): atomless probability space.
L0(P): the space of all real-valued measurable functions, endowed with the
topology of convergence in probability.

L0(P) is a completely metrizable TVS.

It is not locally convex; in fact, L0(P)∗ = {0}.

General Question: What does local convexity on a subset do?
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Local convexity for subsets of L0(P)

A subset S of L0(P) is bounded in probability if it is a bounded subset
of the TVS L0(P). Same as

lim
n→∞

sup{P(|f | > n) : f ∈ S} = 0.

If (fn) is a sequence in L0(P), and gk ∈ co(fn)∞n=k for all k , then (gn)
is a sequence of forward convex combinations (FCCs) of (fn).

Q ∼ P if Q� P and P� Q.

Theorem. [Kardaras-Zitkovic. PAMS 2013] Let fn, f ∈ L0
+(P), where (fn)

converges to f in probability. TFAE

1 All FCCs of (fn) converges to f in probability.

2 The L0(P)-topology is locally convex on co((fn) ∪ {f }).

3 There exists Q ∼ P such that (fn) is L1(Q)-bounded and that
‖fn − f ‖L1(Q) → 0.
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A subset S in L0
+(P) is positive solid if 0 ≤ g ≤ f and f ∈ S imply g ∈ S .

Theorem. [Kardaras. JFA 2014] Let K be a convex positive solid subset
of L0

+(P) that is bounded in probability. TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that K is bounded in L1(Q) and that the
L0(Q)- and L1(Q)-topologies agree on K .

3 There exists Q ∼ P such that K is Q-uniform integrable.

Questions:

Q1 Are (1) and (2) equivalent for convex sets in L0
+(P) that are bounded

in probability?

Q2 Are (2) and (3) equivalent for closed convex sets in L0
+(P) that are

bounded in probability?

Example. Let K = {f ∈ L1
+(P) :

∫
f dP = 1}. Then K satisfies (2) but

not (3).
[To p.14] [p.16][p.18]
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Nonpositive sets & “de-switching”

[Branath-Schachermayer. LNM 1999] Let K be a convex set in L0
+(P) that

is bounded in probability. Then there exists Q ∼ P so that K is a bounded
set in L1(Q).

We generalize the questions above to bounded convex sets in L1(P).
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It is also convenient to eliminate the switching of probabilities.

Proposition. Let K be a convex bounded set in L1(P). Consider the
following conditions.

1 There exists Q ∼ P such that K is bounded in L1(Q) and that the
L0(Q)- and L1(Q)-topologies agree on K .

2 For any ε > 0, there is a measurable set A with P(A) > 1− ε so that
‖(fn − f )χA‖L1(P) → 0 for any fn, f ∈ K so that fn → f in probability.

3 There exists Q ∼ P such that K is Q-uniform integrable.

4 For any ε > 0, there is a measurable set A with P(A) > 1− ε so that
KA = {f χA : f ∈ K} is P-uniformly integrable.

Then (1) ⇐⇒ (2) and (3) ⇐⇒ (4).
Remark. To get (2), it suffices to obtain the following:
For any measurable A with P(A) > 0, there exists measurable B ⊆ A with
P(B) > 0 so that ‖(fn − f )χB‖L1(P) → 0 for any fn, f ∈ K so that fn → f
in probability.
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P(B) > 0 so that ‖(fn − f )χB‖L1(P) → 0 for any fn, f ∈ K so that fn → f
in probability.
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An application of Komlos’ Theorem

Theorem. [Komlos. Acta MAS Hung. 1967] Let (fn) be a bounded
sequence in L1(P), there is a subsequence (fnk ) and a function f ∈ L1(P)
so that ( 1

m

∑m
k=1 fnk )m converges a.e. to f .

A subset S in L0(P) is solid if |g | ≤ |f | and f ∈ S imply g ∈ S .

Theorem. Let K be a convex bounded set in L1(P). TFAE

1 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree

on K
L0(P)

.

2 There exists Q ∼ P such that K is Q-uniform integrable.

In particular, “Yes” for Q2.
[To p.4]
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Sketch. We’ll show that (2) =⇒ (4) in the preceding proposition for the
set K .

Let ε > 0. Choose A so that P(A) > 1− ε and fn, f ∈ K , fn → f a.e.
implies ‖(fn − f )χA‖1 → 0.

Suppose that {f χA : f ∈ K} is not P-uniformly integrable.

Find (fn) ⊆ K so that (fnχA) ∼ `1-basis.

Komlos =⇒ WLOG ( 1
n

∑n
k=1 fk)n converges a.e. to some f , which must

be in K .

By choice of A, ( 1
n

∑n
k=1 fkχA)n must be norm convergent. Contradiction.
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Locally convex solid

Aim: To characterize the condition that there exists Q ∼ P such that the
L0(Q)- and L1(Q)-topologies agree on K , where K is convex bounded in
L1(P).

Definition. Let S be a nonempty subset of K . We say that the
L0(P)-topology is uniformly locally convex solid on S if for each
L0(P)-neighborhood U of 0, there is a convex solid set W ⊆ U such that
for each f ∈ S , (f + W ) ∩ K is a neighborhood of f for the restriction of
the L0(P)-topology to K .
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A separation theorem and its consequence

Theorem. Let K be a convex bounded set in L1(P) and let S be a
nonempty subset of K . Assume that the L0(P)-topology is uniformly
locally convex solid on S . If A is a measurable set with P(A) > 0, then
there exists 0 6= g ∈ L∞+ (P), supp g ⊆ A such that∫

|fn − f |g dP→ 0 if fn, f ∈ K and fn → f in probability.

Idea: Find a sequence of convex solid sets Wk and r > 0 so that

1 For each f ∈ S , (f + Wk) ∩ K is a a neighborhood of f for the
restriction of the L0(P)-topology to K .

2 g is a linear functional that separates rBL1(P) and kWk on one side
and χA on the other.
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A local Hahn-Banach Theorem

Theorem. Let (X , τ) be a real Hausdorff TVS. Let K be a convex circled
set in X . Suppose that the restriction of τ to K is locally convex (at 0).
The set of all linear functionals on X that are τ -continuous on K separates
points of K .
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A characterization

Theorem. Let K be a bounded convex set in L1(P). TFAE

1 The L0(P)-topology is uniformly locally convex solid on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

Remark. If K is also circled, then the L0(P)-topology is uniformly locally
convex solid on K if and only if it is locally convex solid at 0.
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Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

3 There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.
There is a convex set C ⊆ U so that C ∩ K is an L0(P)-neighborhood of 0
in K .
Choose a solid neighborhood of 0 in L0(P), V , so that V ∩ K ⊆ C ∩ K .
Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set contained in
C ⊆ U and W ∩ K is a neigborhood of 0 in K .

13 / 19



Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

3 There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.

There is a convex set C ⊆ U so that C ∩ K is an L0(P)-neighborhood of 0
in K .
Choose a solid neighborhood of 0 in L0(P), V , so that V ∩ K ⊆ C ∩ K .
Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set contained in
C ⊆ U and W ∩ K is a neigborhood of 0 in K .

13 / 19



Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

3 There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.
There is a convex set C ⊆ U so that C ∩ K is an L0(P)-neighborhood of 0
in K .

Choose a solid neighborhood of 0 in L0(P), V , so that V ∩ K ⊆ C ∩ K .
Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set contained in
C ⊆ U and W ∩ K is a neigborhood of 0 in K .

13 / 19



Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

3 There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.
There is a convex set C ⊆ U so that C ∩ K is an L0(P)-neighborhood of 0
in K .
Choose a solid neighborhood of 0 in L0(P), V , so that V ∩ K ⊆ C ∩ K .

Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set contained in
C ⊆ U and W ∩ K is a neigborhood of 0 in K .

13 / 19



Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1 The L0(P)-topology is locally convex on K .

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree
on K .

3 There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.
There is a convex set C ⊆ U so that C ∩ K is an L0(P)-neighborhood of 0
in K .
Choose a solid neighborhood of 0 in L0(P), V , so that V ∩ K ⊆ C ∩ K .
Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set contained in
C ⊆ U and W ∩ K is a neigborhood of 0 in K .

13 / 19



A counterexample

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded
convex circled set K in L1(0, 1) that is L0-compact so that the L0-topology
is locally convex on K , but there does not exists Q ∼ λ such that the
L0(Q)- and L1(Q)-topologies agree on K .

[To p.4]

Let (Xn) be a sequence of independent RVs with the Cauchy distribution
(∼ 1

π(1+x2)
).

Let 1 < p < 2, kn = n(log(n + 2))p and βn = log((1 + k2
n).

Define Fn on R by Fn(x) = 1
βn
χ[−kn,kn](x).

Set Yn = Fn(Xn) and

K = {
∑

anYn :
∑
|an| ≤ 1}.
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Back to the positive case

Theorem. [Kardaras-Zitkovic. PAMS 2013] Let fn, f ∈ L0
+(P), where (fn)

converges to f in probability. TFAE

1 All FCCs of (fn) converges to f in probability.

2 The L0(P)-topology is locally convex on co((fn) ∪ {f }).

3 There exists Q ∼ P such that (fn) is L1(Q)-bounded and that
‖fn − f ‖L1(Q) → 0.

Corollary. Let K be a bounded convex set in L1
+(P). Assume that the

L0(P)-topology is locally convex on K . Then for any f ∈ K and any ε > 0,
there is a measurable set A with P(A) > 1− ε so that
‖(fn − f )χA‖L1(P) → 0 for any sequence (fn) in K that converges to f in
probability.
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Corollary. Let K be a bounded convex set in L1
+(P). Assume that the

L0(P)-topology is locally convex on K . Let S be a countable set in K .
Then for any ε > 0, there is a measurable set A with P(A) > 1− ε so that
‖(fn − f )χA‖L1(P) → 0 for any sequence (fn) in K that converges to some
f ∈ S in probability.

Proposition. Let (fn) be a bounded sequence in L1
+(P) and let

K = co(fn). If the L0(P)-topology is locally convex on K , then there exists
Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K .

This is a special case of Q1. [p.4]
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Proposition. Let (fn) be a bounded sequence in L1
+(P) and let

K = co(fn). If the L0(P)-topology is locally convex on K , then there exists
Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K .

Let
S = {

∑
bnfn : (bn) ∈ c00, bn ∈ Q+,

∑
bn = 1}.

Given ε > 0, choose A as in the Corollary for set S .
Say gk ∈ K , gk → g =

∑m
n=1 cnfn ∈ K in probability.

Choose bn ∈ Q, bn ≥ cn
2 , 1 ≤ n ≤ m, and b =

∑
bn ≤ 1.

hk =
1

2
gk +

m∑
n=1

(bn −
cn
2

)fn + (1− b)fm+1 ∈ K ,

hk →
1

2
g +

m∑
n=1

(bn −
cn
2

)fn + (1− b)fm+1 =
m∑

n=1

bnfn + (1− b)fm+1 ∈ S .

Thus ‖(gk − g)χA‖L1(P) → 0.
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A counterexample to Q1 in the positive case

Let Γ be an uncountable set. Let P be the product measure on 2Γ×N.
There exists a convex norm bounded set K in L1

+(P) so that the L0(P)
topology on K is locally convex, but there does not exist any Q ∼ P so
that the L0(Q)- and L0(P)-topologies agree on K .

ϕγ,1 = 2χ{ε:ε(γ,1)=0} and ϕγ,n = ϕγ,1 + 2nχ{ε:ε(γ,i)=0,1≤i≤n}, n ≥ 2.

K = co{ϕγ,n : γ ∈ Γ, n ≥ 2}.

Q1 is still open if K is assumed to be L0(P)-closed or if P is a separable
probability measure.

[To p.4]
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Thank You
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