Approximation properties in Lipschitz-free spaces over groups

Pedro L. Kaufmann – Federal University of São Paulo

ICMAT – Workshop on Banach Spaces and Banach Lattices September 11th, 2019

Supported by FAPESP grants 2017/18623-5, 2016/25574-8

Lipschitz-free space definition reminder

Let (M, d) be a metric space, $0 \in M$.

Notation

$$Lip_0(M) := \{f : M o \mathbb{R} | f \text{ is Lipschitz, } f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}$$

For each $x \in M$, consider the evaluation functional $\delta_x \in Lip_0(M)^*$ por $\delta_x f := f(x)$.

Definition/Proposition

$$\mathcal{F}(M) := \overline{span}\{\delta_x | x \in M\}$$

is the free space over M, and it is an isometric predual to $Lip_0(M)$.

 $\delta: M \to \mathcal{F}(M)$ is an isometry. Moreover:

Linear interpretation property

 $\forall \varphi : M \to N$ Lipschitz with $\varphi(0_M) = 0_N \exists ! \hat{\varphi} : \mathcal{F}(M) \to \mathcal{F}(N)$ linear such that the following diagram commutes:

$$\begin{array}{ccc} M & \stackrel{\varphi}{\longrightarrow} & N \\ & \downarrow^{\delta^M} & \qquad \downarrow^{\delta^N} \\ \mathcal{F}(M) & \stackrel{\hat{\varphi}}{\longrightarrow} & \mathcal{F}(N) \end{array}$$

Also, $\|\hat{\varphi}\| = L(\varphi)$.

On the w^* topology of $Lip_0(M)$

On bounded subsets of $Lip_0(M)$, w^* and the topology of pointwise convergence coincide.

Metric framework: topological groups equipped with invariant, compatible metrics. Such metrics are plentyful:

A topological group G is left-invariant metrizable whenever: (1) G is T₀ and e admits a countable open basis, (2) G is locally countably compact and {e} is a countable intersection of open sets, or (3) G is compact and {e} is a countable intersection of open sets.

• If G is compact with Haar measure $d\lambda$ admitting a compatible metric d, we can construct a compatible and bi-invariant one by taking:

$$d'(x,y) \doteq \int \int d(zxw,zyw)d\lambda(z) d\lambda(w).$$

General goal: study free spaces over such metrics, in particular concerning *approximation properties*.

Metric framework: topological groups equipped with invariant, compatible metrics. Such metrics are plentyful:

• A topological group G is left-invariant metrizable whenever: (1) G is T_0 and e admits a countable open basis, (2) G is locally countably compact and $\{e\}$ is a countable intersection of open sets, or (3) G is compact and $\{e\}$ is a countable intersection of open sets.

• If G is compact with Haar measure $d\lambda$ admitting a compatible metric d, we can construct a compatible and bi-invariant one by taking:

$$d'(x,y) \doteq \int \int d(zxw,zyw) d\lambda(z) d\lambda(w).$$

General goal: study free spaces over such metrics, in particular concerning *approximation properties*.

Metric framework: topological groups equipped with invariant, compatible metrics. Such metrics are plentyful:

• A topological group G is left-invariant metrizable whenever: (1) G is T_0 and e admits a countable open basis, (2) G is locally countably compact and $\{e\}$ is a countable intersection of open sets, or (3) G is compact and $\{e\}$ is a countable intersection of open sets.

• If G is compact with Haar measure $d\lambda$ admitting a compatible metric d, we can construct a compatible and bi-invariant one by taking:

$$d'(x,y) \doteq \int \int d(zxw,zyw) d\lambda(z) d\lambda(w).$$

General goal: study free spaces over such metrics, in particular concerning *approximation properties*.

Different equivalent metrics can lead to very different free spaces: On $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, let *d* be the usual metric inherited from \mathbb{R} and d^{α} $(0 < \alpha < 1)$ be its snowflaked version. Then $\mathcal{F}(\mathbb{T}, d) \simeq L_1$ and $\mathcal{F}(\mathbb{T}, d^{\alpha})$ is isomorphic to a dual space.

Different equivalent metrics can lead to very different free spaces: On $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, let d be the usual metric inherited from \mathbb{R} and d^{α} $(0 < \alpha < 1)$ be its snowflaked version. Then $\mathcal{F}(\mathbb{T}, d) \simeq L_1$ and $\mathcal{F}(\mathbb{T}, d^{\alpha})$ is isomorphic to a dual space. Let $\lambda \ge 1$. A Banach space X has the λ -bounded approximation property (λ -BAP) if it satisfies one of the following equivalent properties:

• $\forall \epsilon > 0, \forall K \subset X$ compact, there is a λ -bounded finite rank operator on X such that $||Tx - x|| < \epsilon, \forall x \in K$;

• There is a λ -bounded net of finite rank operators (T_{α}) on X such that $T_{\alpha} \xrightarrow{WOT} Id_X$.

X has the **metric approximation property (MAP)** if it has the 1-BAP.

X has λ -**FDD** if there is a sequence P_n of commuting projections with increasing range such that dim $(P_n - P_{n-1})X < \infty$ $(P_0 = 0)$, $||P_n|| \le \lambda$ and $P_n \xrightarrow{SOT} Id$. If dim $(P_n - P_{n-1})X = 1$, X has a λ -Schauder basis. Let $\lambda \ge 1$. A Banach space X has the λ -bounded approximation property (λ -BAP) if it satisfies one of the following equivalent properties:

• $\forall \epsilon > 0, \forall K \subset X$ compact, there is a λ -bounded finite rank operator on X such that $||Tx - x|| < \epsilon, \forall x \in K$;

• There is a λ -bounded net of finite rank operators (T_{α}) on X such that $T_{\alpha} \xrightarrow{WOT} Id_X$.

X has the **metric approximation property (MAP)** if it has the 1-BAP.

X has λ -**FDD** if there is a sequence P_n of commuting projections with increasing range such that dim $(P_n - P_{n-1})X < \infty$ $(P_0 = 0)$, $||P_n|| \le \lambda$ and $P_n \xrightarrow{SOT} Id$. If dim $(P_n - P_{n-1})X = 1$, X has a λ -Schauder basis.

Problem: if G is a compact group with a left invariant compatible metric, does $\mathcal{F}(M)$ have the MAP?

Keep in mind:

Godefroy, Ozawa 2012

If X is a separable Banach space and $C \subset X$ is convex with $\overline{span}C = X$, then X has an 1-complemented isometric copy in $\mathcal{F}(C)$.

Corollary

There exists a compact metric K with $\mathcal{F}(K)$ failing AP.

Problem: if G is a compact group with a left invariant compatible metric, does $\mathcal{F}(M)$ have the MAP? Keep in mind:

Godefroy, Ozawa 2012

If X is a separable Banach space and $C \subset X$ is convex with $\overline{span}C = X$, then X has an 1-complemented isometric copy in $\mathcal{F}(C)$.

Corollary

There exists a compact metric K with $\mathcal{F}(K)$ failing AP.

Let X be a Banach space. If for all $\delta > 0$ X has the $(\lambda + \delta)$ -BAP, it follows that X hast the λ -BAP.

Proof. Fix a compact set $K \subset X$ and $\epsilon > 0$, and take δ small enough so that $M\delta(\lambda + \delta)/\lambda < \epsilon/2$, where $M = \sup_{x \in K} ||x||$. Let T be a finite rank, $(\lambda + \delta)$ -bounded operator on X such that $||Tx - x|| < \epsilon/2$, for all $x \in K$. Then the λ -bounded operator $S = \lambda T/||T||$ satisfies, for each $x \in K$,

$$\|Sx - x\| \le \|Sx - Tx\| + \|Tx - x\|$$

= $\left\| \left(\frac{\|T\|}{\lambda} - 1 \right) Tx \right\| + \epsilon/2$
 $\le M\delta(\lambda + \delta)/\lambda + \epsilon/2$
 $< \epsilon. \square$

Let G be a locally compact group equipped with Haar measure λ . A D"-sequence in G is a sequence $\{U_n, V_n\}$ of pairs of Borel subsets of finite measure in G such that

$$U_1 \supset U_2 \supset ...,$$

- 3 there is an A > 0 such that $0 < \lambda(U_n U_n^{-1}) < A\lambda(U_n)$, for all n,
- **(a)** every neighborhood of e contains some U_n , and
- $V_n^{-1}V_n \subset U_n$ and there exists B > 0 such that $\lambda(U_n) \leq B\lambda(V_n)$.

We shall say that a locally compact group G is summability-friendly if it admits a D"-sequence U_n with the property that each U_n is invariant under inner automorphisms of G ($\forall g \in G, gU_ng^{-1} \in U_n$).

Examples of summability-friendly groups: closed subgroups of finite dimensional unitary groups.

Thm 44.25, Hewitt & Ross Abstract Harmonic Analysis Vol. 2

Suppose that G is a summability-friendly compact group equipped with left-invariant Haar measure λ . Then there exists a sequence F_n of positive functions on G satisfying

• each F_n is a positive definite *central* (commutes under convolution with any L_1 function) trigonometric polynomial,

3
$$F_n(g^{-1})=F_n(g),\ g\in G$$
, for each $n,$

• for each
$$n$$
, $\int F_n d\lambda = 1$, and

•
$$f * F_n(x) \to f(x) \lambda$$
-almost everywhere for every $f \in L_p(G), 1 \le p < \infty$.

Key points:

• if P is a trigonometric polynomial, the continuous operator $f \in C(G) \mapsto f * P \in C(G)$ is of finite rank;

• G equipped with left-invariant metric $\Rightarrow ||f * g||_{Lip} \le ||f||_{L_1} ||g||_{Lip}$.

Thm 44.25, Hewitt & Ross Abstract Harmonic Analysis Vol. 2

Suppose that G is a summability-friendly compact group equipped with left-invariant Haar measure λ . Then there exists a sequence F_n of positive functions on G satisfying

• each F_n is a positive definite *central* (commutes under convolution with any L_1 function) trigonometric polynomial,

3
$$F_n(g^{-1})=F_n(g),\ g\in G$$
, for each $n,$

③ for each
$$n$$
, $\int F_n d\lambda = 1$, and

•
$$f * F_n(x) \to f(x) \lambda$$
-almost everywhere for every $f \in L_p(G), 1 \le p < \infty$.

Key points:

- if P is a trigonometric polynomial, the continuous operator $f \in C(G) \mapsto f * P \in C(G)$ is of finite rank;
- G equipped with left-invariant metric $\Rightarrow ||f * g||_{Lip} \le ||f||_{L_1} ||g||_{Lip}$.

Thm 44.25, Hewitt & Ross Abstract Harmonic Analysis Vol. 2

Suppose that G is a summability-friendly compact group equipped with left-invariant Haar measure λ . Then there exists a sequence F_n of positive functions on G satisfying

• each F_n is a positive definite *central* (commutes under convolution with any L_1 function) trigonometric polynomial,

3
$$F_n(g^{-1})=F_n(g),\ g\in G$$
, for each $n,$

$${f 0}$$
 for each ${\it n},\,\int {\it F}_{\it n}\,d\lambda=1$, and

•
$$f * F_n(x) \to f(x) \lambda$$
-almost everywhere for every $f \in L_p(G), 1 \le p < \infty$.

Key points:

- if P is a trigonometric polynomial, the continuous operator
- $f \in C(G) \mapsto f * P \in C(G)$ is of finite rank;
- G equipped with left-invariant metric $\Rightarrow ||f * g||_{Lip} \le ||f||_{L_1} ||g||_{Lip}$.

Characterization of BAP for Lipschitz-free spaces over compact metric spaces

Let K be a compact metric space and $\lambda \ge 1$. The following assertions are equivalent:

- $\mathcal{F}(K)$ has the λ -BAP;
- 3 for each $\epsilon > 0$ there is a net T_{α} of bounded operators on C(K) such that
 - **1** T_{α} are of finite rank,
 - **②** T_{α} maps Lipschitz functions to Lipschitz functions,
 - $\| T_{\alpha} f \|_{Lip} \leq (\lambda + \epsilon) \| f \|_{Lip} \text{ for each } \alpha \text{ and each Lipschitz } f, \text{ and}$
 - $T_{\alpha}f \xrightarrow{pt} f$, for each Lipschitz f.

Proof. $((1)\Rightarrow(2))$ Let $T_{\alpha}: \mathcal{F}(K) \to \mathcal{F}(K)$ be λ -bounded, finite rank, $T_{\alpha} \stackrel{WOT}{\to} Id_{\mathcal{F}(M)}$. Then $T_{\alpha}^*: Lip_0(K) \to Lip_0(K)$ extend to operators on C(K) satisfying (1)–(4). $((2)\Rightarrow(1))$ Chose some $0 \in K$. The operators S_{α} defined on C(K) by

 $S_{\alpha}(f)(x) = T_{\alpha}(f)(x) - T_{\alpha}(f)(0)$

are bounded, and satisfy (1)–(4) as T_{α} and are $(\lambda + \epsilon)$ -bounded operators on $Lip_0(K)$. Lemma $\Rightarrow \exists R_{\alpha}$ finite-rank, $(\lambda + \epsilon)$ -bounded operators on $\mathcal{F}(K)$ with $R_{\alpha}^* = S_{\alpha}$, that is:

 $\langle S_{\alpha}f,\gamma\rangle = \langle f,R_{\alpha}\gamma\rangle, \forall f\in Lip_{0}(K), \forall \gamma\in\mathcal{F}(K).$

Now since $S_{\alpha}f$ is a bounded net in $Lip_0(K)$ converging pointwise to f, it must converge w^* , thus R_{α} converges to $Id_{\mathcal{F}(M)}$ in the weak operator topology. \Box

Proof. $((1)\Rightarrow(2))$ Let $T_{\alpha}: \mathcal{F}(K) \to \mathcal{F}(K)$ be λ -bounded, finite rank, $T_{\alpha} \stackrel{WOT}{\to} Id_{\mathcal{F}(M)}$. Then $T_{\alpha}^*: Lip_0(K) \to Lip_0(K)$ extend to operators on C(K) satisfying (1)-(4). $((2)\Rightarrow(1))$ Chose some $0 \in K$. The operators S_{α} defined on C(K) by

$$S_{\alpha}(f)(x) = T_{\alpha}(f)(x) - T_{\alpha}(f)(0)$$

are bounded, and satisfy (1)–(4) as T_{α} and are $(\lambda + \epsilon)$ -bounded operators on $Lip_0(K)$. Lemma $\Rightarrow \exists R_{\alpha}$ finite-rank, $(\lambda + \epsilon)$ -bounded operators on $\mathcal{F}(K)$ with $R_{\alpha}^* = S_{\alpha}$, that is:

$$\langle S_{\alpha}f,\gamma\rangle = \langle f,R_{\alpha}\gamma\rangle, \, \forall f\in Lip_{0}(K), \, \forall\gamma\in\mathcal{F}(K).$$

Now since $S_{\alpha}f$ is a bounded net in $Lip_0(K)$ converging pointwise to f, it must converge w^* , thus R_{α} converges to $Id_{\mathcal{F}(M)}$ in the weak operator topology. \Box

Another method: Godefroy 2016, "BAP characterization for free spaces via near-extensions"

Let M_n be finite ϵ_n -dense subsets of a compact metric space M with $\epsilon_n \searrow 0$. TFAE:

- $\mathcal{F}(M)$ has the λ -BAP;
- There are λ-bounded linear operators *E_n* from
 $(Lip_0(M_n), \|\cdot\|_{Lip})$ into $(Lip_0(M), \|\cdot\|_{Lip})$ such that
 $\sup_{\|f\|_{Lip_0(M_n)} \le 1} \|E_n(f)\|_{M_n} f\|_{\infty} \xrightarrow{n} 0.$

If moreover $M_1 \subset M_2 \subset ...$ and (2) is satisfied with the $\|\cdot\|_{\infty}$ norm involved being always 0 (that is, E_n are actual extensions), we have that $\mathcal{F}(M)$ has the λ -FDD.

Adapting from [Lancien, Pernecká 2013], we get 1-FDD for ℓ_1^n/\mathbb{Z}^n . But not for ℓ_p^n/\mathbb{Z}^n !

Yet another method. With the toolkit:

Lang, Plaut 2001 (euclidean embedding tool)

If a compact metric space is locally bilipschitz embeddable in some \mathbb{R}^N , then it is bilipschitz embeddable in some \mathbb{R}^M .

Lee, Naor 2005 *(Lipschitz extension tool)*

There is a universal constant C > 0 such that, for any $N \in \mathbb{N}$ and any subset $F \subset \mathbb{R}^N$ (with the euclidean norm), there exists a $C\sqrt{N}$ -bounded and w^* continuous linear extension operator from $Lip_0(F)$ into $Lip_0(\mathbb{R}^N)$.

Godefroy, Kalton 2003

X finite dimensional $\Rightarrow \mathcal{F}(X)$ has the MAP.

we can show that $(\mathbb{R}^n, \|\cdot\|)/\mathbb{Z}^n$ has λ -BAP, for any norm $\|\cdot\|$, but λ is sensitive to the choice of $\|\cdot\|$.

P. L. Kaufmann - ICMAT 2019 Approximation properties in Lipschitz-free spaces over groups

Yet another method. With the toolkit:

Lang, Plaut 2001 (euclidean embedding tool)

If a compact metric space is locally bilipschitz embeddable in some \mathbb{R}^N , then it is bilipschitz embeddable in some \mathbb{R}^M .

Lee, Naor 2005 (Lipschitz extension tool)

There is a universal constant C > 0 such that, for any $N \in \mathbb{N}$ and any subset $F \subset \mathbb{R}^N$ (with the euclidean norm), there exists a $C\sqrt{N}$ -bounded and w^* continuous linear extension operator from $Lip_0(F)$ into $Lip_0(\mathbb{R}^N)$.

Godefroy, Kalton 2003

X finite dimensional $\Rightarrow \mathcal{F}(X)$ has the MAP.

we can show that $(\mathbb{R}^n, \|\cdot\|)/\mathbb{Z}^n$ has λ -BAP, for any norm $\|\cdot\|$, but λ is sensitive to the choice of $\|\cdot\|$.

P. L. Kaufmann - ICMAT 2019 Approximation properties in Lipschitz-free spaces over groups

Yet another method. With the toolkit:

Lang, Plaut 2001 (euclidean embedding tool)

If a compact metric space is locally bilipschitz embeddable in some \mathbb{R}^N , then it is bilipschitz embeddable in some \mathbb{R}^M .

Lee, Naor 2005 (Lipschitz extension tool)

There is a universal constant C > 0 such that, for any $N \in \mathbb{N}$ and any subset $F \subset \mathbb{R}^N$ (with the euclidean norm), there exists a $C\sqrt{N}$ -bounded and w^* continuous linear extension operator from $Lip_0(F)$ into $Lip_0(\mathbb{R}^N)$.

Godefroy, Kalton 2003

X finite dimensional $\Rightarrow \mathcal{F}(X)$ has the MAP.

we can show that $(\mathbb{R}^n, \|\cdot\|)/\mathbb{Z}^n$ has λ -BAP, for any norm $\|\cdot\|$, but λ is sensitive to the choice of $\|\cdot\|$.

Thank you! Gracias! Obrigado!