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Banach function norm I

Let

I L0 be the set of all measurable complex-valued functions on R,

I L0+ be the subset of functions in L0 whose values lie in [0,∞],

I χE be the characteristic function of a measurable set E ⊂ R.

A mapping
ρ : L0+ → [0,∞]

is called a Banach function norm if,

I for all functions f , g , fn ∈ L0+ with n ∈ N,

I for all constants a ≥ 0,

I for all measurable subsets E of R,

the following properties hold:
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Banach function norm II (after W. Luxemburg, 1955)

(A1) ρ(f ) = 0⇔ f = 0 a.e.,

ρ(af ) = aρ(f ),

ρ(f + g) ≤ ρ(f ) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f ) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f ) (the Fatou property),

(A4) ρ(χE ) <∞,

(A5)

∫
E
f (x) dx ≤ CEρ(f )

with the constant CE ∈ (0,∞) that may depend on E and ρ, but
is independent of f .



Banach function spaces

When functions differing only on a set of measure zero are
identified, the set X (R) of all functions f ∈ L0 for which

ρ(|f |) <∞

is called a Banach function space. For each f ∈ X (R), the norm of
f is defined by

‖f ‖X (R) := ρ(|f |).



Associate space

If ρ is a Banach function norm, its associate norm ρ′ is defined on
L0+ by

ρ′(g) := sup

{∫
R
f (x)g(x) dx : f ∈ L0+, ρ(f ) ≤ 1

}
, g ∈ L0+.

Lemma (W. Luxemburg, 1955)

If ρ is a Banach function norm, then ρ′ is itself a Banach function
norm.

The Banach function space X ′(R) determined by the Banach
function norm ρ′ is called the associate space (Köthe dual) of
X (R). The associate space X ′(R) is naturally identified with a
subspace of the (Banach) dual space [X (R)]∗.
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Density of nice functions in Banach function spaces

Let C∞0 (R) denote the set of all infinitely differentiable compactly
supported functions on R.

Lemma
If X (R) is a separable Banach function space, then the sets
C∞0 (R) and L2(R) ∩ X (R) are dense in X (R).
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Fourier convolution operators

Let F : L2(R)→ L2(R) denote the Fourier transform

(Ff )(x) := f̂ (x) :=

∫
R
f (t)e itx dt, x ∈ R,

and let F−1 : L2(R)→ L2(R) be the inverse of F ,

(F−1g)(t) =
1

2π

∫
R
g(x)e−itx dx , t ∈ R.

It is well known that the Fourier convolution operator

W 0(a) := F−1aF

is bounded on the space L2(R) for every a ∈ L∞(R).
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Fourier multipliers on Banach function spaces

Let X (R) be a separable Banach function space. A function
a ∈ L∞(R) is called a Fourier multiplier on X (R) if the convolution
operator

W 0(a) := F−1aF

maps L2(R) ∩ X (R) into X (R) and extends to a bounded linear
operator on X (R). The function a is called the symbol of the
Fourier convolution operator W 0(a).

The set MX (R) of all Fourier multipliers on X (R) is a unital
normed algebra under pointwise operations and the norm

‖a‖MX (R)
:=
∥∥W 0(a)

∥∥
B(X (R)) ,

where B(X (R)) denotes the Banach algebra of all bounded linear
operators on the space X (R).
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The Hardy-Littlewood maximal operator

The (non-centered) Hardy-Littlewood maximal function Mf of a
function f ∈ L1loc(R) is defined by

(Mf )(x) := sup
Q3x

1

|Q|

∫
Q
|f (y)| dy ,

where the supremum is taken over all intervals Q ⊂ R of finite
length containing x .

The Hardy-Littlewood maximal operator M defined by the rule

f 7→ Mf

is a sublinear operator.



Functions of finite total variation

Suppose that a : R→ C is a function of finite total variation V (a)
given by

V (a) := sup
n∑

k=1

|a(xk)− a(xk−1)|,

where the supremum is taken over all partitions of R of the form

−∞ < x0 < x1 < · · · < xn < +∞

with n ∈ N.

The set V (R) of all functions of finite total variation on R with
the norm

‖a‖V := ‖a‖L∞(R) + V (a)

is a unital non-separable Banach algebra.
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Stechkin’s inequality for Banach function spaces

Theorem (O.K., 2015)

Let X (R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X (R) and on
its associate space X ′(R). If a function a : R→ C has a finite
total variation V (a), then the convolution operator W 0(a) is
bounded on the space X (R) and

‖W 0(a)‖B(X (R)) ≤ cX (‖a‖L∞(R) + V (a))

where cX is a positive constant depending only on X (R).



Continuous and piecewise continuous functions

I Let C (Ṙ) denote the C ∗-algebra of continuous functions on
the one-point compactification Ṙ = R ∪ {∞} of the real line.

I Let PC (Ṙ) denote the C ∗-algebra of piecewise continuous
functions on Ṙ, that is, the algebra of functions a ∈ L∞(R)
such that finite one-sided limits

a(x0 − 0) = lim
x→x0−0

a(x), a(x0 + 0) = lim
x→x0+0

a(x)

exist for each x0 ∈ Ṙ.

It is well known that

V (R) ⊂ PC (Ṙ).
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Continuous and piecewise continuous Fourier multipliers

I Let CX (Ṙ) be the closure of C (Ṙ) ∩ V (R) in the norm of
MX (R).

I Let PCX (Ṙ) be the closure of PC (Ṙ) ∩ V (R) in the norm of
MX (R).

In particular, the function

s(x) = sign(x)

belongs to PCX (Ṙ). This function is the symbol of the of the
Hilbert transform

(Sf )(x) :=
1

πi

∫
R

f (t)

t − x
dt

and S = W 0(s).
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MX (R).

In particular, the function

s(x) = sign(x)
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Algebras CX (R) and PCX (R)

Consider the smallest Banach subalgebras

CX (R) = alg{aI ,W 0(b) : a ∈ C (Ṙ), b ∈ CX (Ṙ)}

PCX (R) = alg{aI ,W 0(b) : a ∈ PC (Ṙ), b ∈ PCX (Ṙ)}

of the algebra B(X (R)) that contain

I all operators of multiplication aI by functions a ∈ C (Ṙ)
(resp. a ∈ PC (Ṙ));

I all Fourier convolution operators W 0(b) with symbols
b ∈ CX (Ṙ) (resp. b ∈ PCX (Ṙ)).
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Fredholm operators and the Calkin algebra

Recall that an operator T ∈ B(X (R)) is said to be Fredholm if

I its image is closed;

I dim KerT <∞ and dim KerT ∗ <∞.

Let K(X (R)) be the ideal of the compact operators in the Banach
algebra B(X (R)).

Equivalently, T is Fredholm if and only if

T+K(X (R)) is invertible in the Calkin algebra B(X (R))/K(X (R)).
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Our motivation:
find Fredholm criteria for operators in PCX (R)

Criteria for the Fredholmness of all operators in PCX (R) are known
in the case of

I Lp(R), 1 < p <∞ (Roland Duduchava, 1970s).

I Lp(R,w), 1 < p <∞ and w is a Muckenhoupt weight,
(Albrecht Böttcher and Ilya Spitkovsky, 1994).

I What about Orlicz spaces, rearrangement-invariant spaces, or
Nakano spaces?

I What about general Banach function spaces?
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Main result

Theorem
Let X (R) be a reflexive Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X (R) and on
its associate space X ′(R). Then the ideal of compact operators
K(X (R)) is contained in the Banach algebra CX (R).

Why is it important? Because the following subalgebras of the
Calkin algebra

CX (R)/K(X (R)) ⊂ PCX (R)/K(X (R)) ⊂ B(X (R))/K(X (R))

are correctly defined.
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Open questions

1. Is it possible to substitute ”reflexive” by ”separable” in the
previous theorem?

Recall that a Banach function space X (R) is reflexive if and
only if X (R) and its associate space X ′(R) are separable.

2. Under which condition on a Banach function space X (R), is
the algebra CX (R)/K(X (R)) commutative?

We know the answer for some interesting spaces (for instance,
for Orlicz spaces, rearrangement-invariant spaces, Nakano
spaces).

The commutativity of the algebra CX (R)/K(X (R)) is
important in the study of invertbility in the non-commutative
algebra PCX (R)/K(X (R)) by means of the Allan local
principle (a non-commutative extension of the Gelfand
theory).
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Wavelet bases in Banach function spaces

Recall that a function ψ ∈ L2(R) is called an orthonormal wavelet
if the family

ψj ,k(x) := 2j/2ψ(2jx − k), x ∈ R, j , k ∈ Z,

forms an orthonormal basis in L2(R).

Theorem (O.K., 2019)

Let X (R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X (R) and on
its associate space X ′(R). Suppose that ψ is an orthonormal
C 1-wavelet with compact support. Then the system
{ψj ,k : j , k ∈ Z} is an unconditional basis in X (R) and the wavelet
expansion

f =
∑
j∈Z

∑
k∈Z
〈f , ψj ,k〉ψj ,k ,

(
〈f , ψj ,k〉 =

∫
R
f (x)ψj ,k(x)dx

)

holds for every f ∈ X (R), where the convergence is unconditional.
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About the approximation property
in Banach function spaces

The previous theorem was proved to justify that a separable
Banach function space X (R) such that the Hardy-Littlewood
maximal operator M is bounded on X (R) and on its associate
space X ′(R) admits a Schauder basis, and thus, has the
approximation property.

This workshop is a right place to ask the following:

Is it known that separable Banach function spaces have the
approximation property?
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About an one-dimensional operator

Let C0(R) denote the set of all continuous compactly supported
function.

Lemma
Suppose X (R) is a separable Banach function space. Let
a, b ∈ C0(R) and an one-dimensional operator T1 be defined on
the space X (R) by

(T1f )(x) = a(x)

∫
R
b(y)f (y) dy .

Then there exists a function c ∈ C (Ṙ) ∩ V (R) such that

T1 = aW 0(c)bI .
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Proof of the main result

1. X (R) has the approximation property, that is, every compact
operator can be approximated in the norm by finite rank
operators.

2. The Banach space dual [X (R)]∗ of the space X (R) is
canonically isometrically isomorphic to the associate space
X ′(R).

3. Hence a finite rank operator on X (R) is of the form

(Tmf )(x) =
m∑
j=1

aj(x)

∫
R
bj(y)f (y) dy , x ∈ R,

where aj ∈ X (R) and bj ∈ X ′(R) for j ∈ {1, . . . ,m} and some
m ∈ N.
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Proof of the main result (continued)

4. Since the space X (R) is reflexive, the set C0(R) of all
continuous compactly supported functions is dense in X (R)
and in X ′(R).

5. For every ε ∈ (0, 1) and every j ∈ {1, . . . ,m}, there exist
aj ,ε, bj ,ε ∈ C0(R) such that∣∣‖aj‖X (R) − ‖aj ,ε‖X (R)
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and
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ε

2m(‖bj‖X ′(R) + 1)
,

‖bj − bj ,ε‖X ′(R) <
ε

2m(‖aj‖X (R) + 1)
.
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Proof of the main result (continued)

6. Let Tm,ε denote the operator defined by

(Tm,εf )(x) =
m∑
j=1

aj ,ε(x)

∫
R
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Proof of the main result (continued)

8. Therefore, each compact operator on the space X (R) can be
approximated in the operator norm by a finite sum of rank one
operators T1 of the form

(T1f )(x) = a(x)

∫
R
b(y)f (y) dy

with a, b ∈ C0(R).

9. By the previous lemma, each such operator can be written in
the form

T1 = aW 0(c)bI

with c ∈ C (Ṙ) ∩ V (R). Hence T1 ∈ CX (R), which completes
the proof.



Proof of the main result (continued)

8. Therefore, each compact operator on the space X (R) can be
approximated in the operator norm by a finite sum of rank one
operators T1 of the form

(T1f )(x) = a(x)

∫
R
b(y)f (y) dy

with a, b ∈ C0(R).

9. By the previous lemma, each such operator can be written in
the form

T1 = aW 0(c)bI
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