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Koszmider's C(K)-space from an AD family that exists under CH
mentioned by Jesiis on Tuesday.

Argyros—Haydon's scalar-plus-compact space, sums of finitely many
incomparable copies thereof, some variants due to Tarbard and further
variants (Motakis—Puglisi—Zisimopoulou).

Z = Xau® suitably constructed subspace (K.—Laustsen).
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A perspective.

B(Z) has precisely two maximal ideals.

M1

0 — K(Z) = 8(Z)i o B(@)

This behaviour is rather rare.
Mx ={T € B(X): Ix # ATB (A, B € B(X))}
is the unique maximal ideal of B(X) <= Mx closed under addition.

co, {p (here p = oo is included, btw. { =2 L);

L,[0,1] for p € [1, x<].

co(M), ¢p(I") for p € [1,00)

loo /o, Lo (I7) for any set [ (but not every Loo(ut) is in this class!)
co- and £,-sums of /3s or £ s as well as more general sums.

Lorentz sequence spaces
determined by a decreasing, non-summable sequence and p € [1, c0).

vV V. v. v vY

» certain Orlicz spaces.
» C[0, 1], C[0,w”], C[0,w1], and the list goes on.
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» The standard u.v.b. (t,);2; of T is 1-unconditional.

» For a space with an unconditional basis and N C N we call the ideal {Py)
generated by the associated basis projection Py spatial

» For M, N C N with images of Py, Py isom. to their squares, one has
(Pn) = (Py) <= im Py = im Py.

A chain I of spatial ideals either stabilises, so that w € I, or the ideal m IS
not spatial. In T, im Py 2 im Py <= (tj)jen, (tj)jem are equivalent.



Tsirelson space is now classical, isn't it?

Theorem (Beanland—K.—Laustsen, 2019+). Let T be the (dual of the original)

Tsirelson space.
1. The family of non-trivial spatial ideals of B(T) is non-empty and has

no minimal or maximal elements.
2. Let J < J be spatial ideals of B(T). Then there is a family {I'; : L € A}

such that:
| 4 |A| = C,
> for each L € A, T'| is an uncountable chain of spatial ideals of B(T) such

that
Js L] (L erly),

and |JT| is a closed ideal that is not spatial;
» L+M=F (LelTpandMely, LMeAL#M).
3. The Banach algebra B(T) contains at least ¢ many maximal ideals.
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3. The Banach algebra B(T) contains at least ¢ many maximal ideals.
Note: For a reflexive space X, B(X) is anti-isomorphic to B(X™*) via S — S*, hence
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Theorem, ctd. The ideals of compact, strictly singular, and inessential
operators on T coincide, and they are equal to the intersection of the

non-trivial spatial ideals of B(T):
K(T)=8(T)=¢E&(T) = ﬂ{ﬂ : J is a non-trivial spatial ideal of B(T)}.



How to decide if two subsequences of (t,) are equivalent?

For M={m <mx<---} €[N] and J € [N]=*°, let
D Qytm,
jeJ

For N={n <n»<---} €[N], set mp = nog =0.
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How to decide if two subsequences of (t,) are equivalent?

For M={m <mx<---} €[N] and J € [N]=*°, let
D Qytm,
jeJ

For N={n <n»<---} €[N], set mp = nog =0.

<1}, o(M,2)=0.
N

o(M,J) = sup{z aj @ aj € [0,1],

Jjed

Theorem (Casazza—Johnson—Tzafriri) (tj)jem ~ (tj)jen if and only if
sup{a(M, M N (nj—1,nj]), o (N, NN (mj—1,mj]) - j € N} < 00

Key lemma The following conditions are equivalent for infinite M C N C N:

Pn € (Pwm);

(Pm) = (Pn);

Ty is isomorphic to a complemented subspace of Ty;
Ty is isomorphic to Ty;

(tj)jem is equivalent to (tj)jen;

S 0~ L -

there is a constant C > 1 such that (N, J) < C for each interval J in N
with JN M = 0.
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A word on Schreier spaces

8o = {{k} : k € N} U {0}, and for n € Ny, recursively define

k
Spy1 = {U Ei:keN, Ey,...,E €8, \{@}, k<minky, E; <Ex<--- < Ek}u{z}.
i=1

The Schreier space of order n, X[S,], is the completion of coo w.r.t.

|x|| = sup{z laj]: E € 85\ {@}} (x = ()21 € coo)-
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A word on Schreier spaces

8o = {{k} : k € N} U {0}, and for n € Ny, recursively define

k
SIH—l — {U E;:keN, E1,...,E, € Sn\{@}, k<mnk, E1 < Ex<---< Ek}U{Q}.
i=1
The Schreier space of order n, X[S,], is the completion of coo w.r.t.

|x|| = sup{z laj]: E € 85\ {@}} (x = ()21 € coo)-

JEE

Spis spreading: let J={j1 < o< -+ <jm}, K={ki < ko <--- < km} CN.
If K is a spread of J; that is, j; < k; for each i < m, then J € 8, = K € 3,.

Theorem (Beanland—K.-Laustsen, 2019+). Let n > 1.

1. The family of non-trivial spatial ideals of B(X[8,]) has no min/max eF.
2. Let J — J be spatial ideals of B(X[S,]). Then there is {I'| : L € A} s.t.:
| 4 |A| = C,
> foreach L € A, I is an uncountable chain of spatial ideals of B(X[S])

such that
Js L] (L ely),

and | JT is a closed ideal that is not spatial,
» LA M=J(LET, andMETy, LLMEA,LAM).
3. The Banach algebra B(X[8,]) contains at least ¢ many maximal ideals.
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A way to distinguish isomorphism types

Let X = X[8,] for some n € N, and suppose that M, N € [N] satisfy
Pm € (Pn). Then the following conditions are equivalent:

1. Py € <P/\/l>;
2. <P/\/]> = <PN>;

3. Xwm is isomorphic to Xy;
4. Xy is isomorphic to a subspace of Xy;
5

. the nt" Gasparis—Leung index
dn(M, N) = sup{7,(M(J)) : J € [N]=>°, N(J) € 8,} is finite;
6. there is a constant k € N such that 7,(N(J)) < k for each
set J € [NN (k,o00)]~°,

where

k
Tn(J):min{kEN:JQUE,-, whereEl,...,EkESnandEl<E2<---<Ek}.

=1
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Pm € (Pn). Then the following conditions are equivalent:

1. Py € <P/\/l>;
2. <P/\/]> = <PN>;

3. Xwm is isomorphic to Xy;
4. Xy is isomorphic to a subspace of Xy;
5

. the nt" Gasparis—Leung index
dn(M, N) = sup{7,(M(J)) : J € [N]=>°, N(J) € 8,} is finite;

6. there is a constant k € N such that 7,(N(J)) < k for each
set J € [NN (k,o00)]~°,

where

k
Tn(J):min{kEN:JQUE,-, whereEl,...,EkESnandEl<E2<---<Ek}.

=1

Muchas gracias!
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