
An update on the classification program of (maximal) ideals
of algebras of operators on Banach spaces:
the cases of Tsirelson and Schreier spaces.

Tomasz Kania

Academy of Sciences of the Czech Republic, Praha

Madrid, 12.09.2019
joint work with K. Beanland & N. J. Laustsen

1



Overview

B(X ) the Banach algebra of all bdd ops on a B. space X .
Goal: to understand the lattice of closed ideals (∼= representations) of B(X ).

This is an isomorphic problem due to Eidelheit’s thm (1940).
X ∼= Y as B. spaces ⇐⇒ B(X ) ∼= B(Y ) as B. algebras.

Full classification exists for:
I 0 ↪→ K(`2) ↪→ B(`2) (Calkin, 1940).

I other classical spaces:

I 0 ↪→ K(X ) ↪→ B(X ), where X = c0 or X = `p for p ∈ [1,∞).
I 0 ↪→ K(X ) ↪→ Xℵ0 (X ) ↪→ Xℵ1 (X ) ↪→ . . . ↪→ B(X ),

where X = c0(Γ) or X = `p(Γ) for p ∈ [1,∞) and any set Γ;
Xλ(X ) ideal of ops having range of density at most λ.

I c0- and `1-sums of `n2 as n→∞
(Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák).

I Koszmider’s C(K)-space from an AD family that exists under CH
mentioned by Jesús on Tuesday.

I Argyros–Haydon’s scalar-plus-compact space, sums of finitely many
incomparable copies thereof, some variants due to Tarbard and further
variants (Motakis–Puglisi–Zisimopoulou).

I Z = XAH⊕ suitably constructed subspace (K.–Laustsen).
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Maximal ideals

A perspective.

B(Z) has precisely two maximal ideals.

0 ↪→ K(Z) ↪→ E(Z) ↪→↪→
M1

M2

↪→
↪→B(Z)

This behaviour is rather rare.

MX = {T ∈ B(X ) : IX 6= ATB (A,B ∈ B(X ))}

is the unique maximal ideal of B(X ) ⇐⇒ MX closed under addition.

I c0, `p (here p =∞ is included, btw. `∞ ∼= L∞);
I Lp[0, 1] for p ∈ [1,∞].
I c0(Γ), `p(Γ) for p ∈ [1,∞)
I `∞/c0, `c∞(Γ) for any set Γ (but not every L∞(µ) is in this class!)
I c0- and `p-sums of `n2s or `n∞s as well as more general sums.
I Lorentz sequence spaces

determined by a decreasing, non-summable sequence and p ∈ [1,∞).
I certain Orlicz spaces.
I C [0, 1],C [0, ωω],C [0, ω1], and the list goes on.
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Tsirelson space revisited (Figiel–Johnson)

Put a norm on c00:

‖x‖T = max

{
‖x‖`∞ ,

1
2

sup
∑
i

‖Nix‖T

}

where the sup runs over j ∈ N and all finite sequences of sets N1 < · · · < Nj in
N with j 6 minN1.

I The standard u.v.b. (tn)∞n=1 of T is 1-unconditional.

I For a space with an unconditional basis and N ⊂ N we call the ideal 〈PN〉
generated by the associated basis projection PN spatial

I For M,N ⊂ N with images of PN , PM isom. to their squares, one has
〈PN〉 = 〈PM〉 ⇐⇒ imPN

∼= imPM .

A chain Γ of spatial ideals either stabilises, so that
⋃

Γ ∈ Γ, or the ideal
⋃

Γ is
not spatial. In T , imPN

∼= imPM ⇐⇒ (tj)j∈N , (tj)j∈M are equivalent.
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Tsirelson space is now classical, isn’t it?

Theorem (Beanland–K.–Laustsen, 2019+). Let T be the (dual of the original)
Tsirelson space.
1. The family of non-trivial spatial ideals of B(T ) is non-empty and has

no minimal or maximal elements.
2. Let I ↪→ J be spatial ideals of B(T ). Then there is a family {ΓL : L ∈ ∆}

such that:
I |∆| = c;
I for each L ∈ ∆, ΓL is an uncountable chain of spatial ideals of B(T ) such

that
I ↪→ L ↪→ J (L ∈ ΓL),

and
⋃

ΓL is a closed ideal that is not spatial;
I L + M = J (L ∈ ΓL and M ∈ ΓM , L,M ∈ ∆, L 6= M).

3. The Banach algebra B(T ) contains at least c many maximal ideals.

Note: For a reflexive space X , B(X ) is anti-isomorphic to B(X∗) via S 7→ S∗, hence
both algebra have the same lattices of closed ideals.

Theorem, ctd. The ideals of compact, strictly singular, and inessential
operators on T coincide, and they are equal to the intersection of the
non-trivial spatial ideals of B(T ):

K(T ) = S(T ) = E(T ) =
⋂{

I : I is a non-trivial spatial ideal of B(T )
}
.
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Theorem, ctd. The ideals of compact, strictly singular, and inessential
operators on T coincide, and they are equal to the intersection of the
non-trivial spatial ideals of B(T ):
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I : I is a non-trivial spatial ideal of B(T )
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How to decide if two subsequences of (tn) are equivalent?

For M = {m1 < m2 < · · · } ∈ [N] and J ∈ [N]<∞, let

σ(M, J) = sup

{∑
j∈J

αj : αj ∈ [0, 1],
∥∥∥∑

j∈J

αj tmj

∥∥∥
T
6 1
}
, σ(M,∅) = 0.

For N = {n1 < n2 < · · · } ∈ [N], set m0 = n0 = 0.

Theorem (Casazza–Johnson–Tzafriri) (tj)j∈M ∼ (tj)j∈N if and only if

sup
{
σ
(
M,M ∩ (nj−1, nj ]

)
, σ
(
N,N ∩ (mj−1,mj ]

)
: j ∈ N

}
<∞

Key lemma The following conditions are equivalent for infinite M ⊆ N ⊆ N:

1. PN ∈ 〈PM〉;

2. 〈PM〉 = 〈PN〉;

3. TN is isomorphic to a complemented subspace of TM ;

4. TN is isomorphic to TM ;

5. (tj)j∈M is equivalent to (tj)j∈N ;

6. there is a constant C > 1 such that σ(N, J) 6 C for each interval J in N
with J ∩M = ∅.
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A word on Schreier spaces

S0 =
{
{k} : k ∈ N

}
∪ {∅}, and for n ∈ N0, recursively define

Sn+1 =

{ k⋃
i=1

Ei : k ∈ N, E1, . . . ,Ek ∈ Sn\{∅}, k 6 minE1, E1 < E2 < · · · < Ek

}
∪{∅}.

The Schreier space of order n, X [Sn], is the completion of c00 w.r.t.

‖x‖ = sup

{∑
j∈E
|αj | : E ∈ Sn \ {∅}

} (
x = (αj )

∞
j=1 ∈ c00

)
.

Sn is spreading: let J = {j1 < j2 < · · · < jm}, K = {k1 < k2 < · · · < km} ⊂ N.
If K is a spread of J; that is, ji 6 ki for each i 6 m, then J ∈ Sn ⇒ K ∈ Sn.

Theorem (Beanland–K.–Laustsen, 2019+). Let n > 1.
1. The family of non-trivial spatial ideals of B(X [Sn]) has no min/max els.
2. Let I ↪→ J be spatial ideals of B(X [Sn]). Then there is {ΓL : L ∈ ∆} s.t.:

I |∆| = c;
I for each L ∈ ∆, ΓL is an uncountable chain of spatial ideals of B(X [Sn])

such that
I ↪→ L ↪→ J (L ∈ ΓL),

and
⋃

ΓL is a closed ideal that is not spatial;
I L + M = J (L ∈ ΓL and M ∈ ΓM , L,M ∈ ∆, L 6= M).

3. The Banach algebra B(X [Sn]) contains at least c many maximal ideals.
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A way to distinguish isomorphism types

Let X = X [Sn] for some n ∈ N, and suppose that M,N ∈ [N] satisfy
PM ∈ 〈PN〉. Then the following conditions are equivalent:

1. PN ∈ 〈PM〉;

2. 〈PM〉 = 〈PN〉;

3. XM is isomorphic to XN ;

4. XN is isomorphic to a subspace of XM ;

5. the nth Gasparis–Leung index
dn(M,N) = sup

{
τn
(
M(J)

)
: J ∈ [N]<∞, N(J) ∈ Sn

}
is finite;

6. there is a constant k ∈ N such that τn(N(J)) 6 k for each
set J ∈ [N ∩ (k,∞)]<∞,

where

τn(J) = min
{
k ∈ N : J ⊆

k⋃
i=1

Ei , where E1, . . . ,Ek ∈ Sn and E1 < E2 < · · · < Ek

}
.

Muchas gracias!
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