An update on the classification program of (maximal) ideals of algebras of operators on Banach spaces: *the cases of Tsirelson and Schreier spaces*.

Tomasz Kania

Academy of Sciences of the Czech Republic, Praha

Madrid, 12.09.2019 joint work with K. Beanland & N. J. Laustsen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff B(X) \cong B(Y)$ as B. algebras.

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X. Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:
 - ▶ $0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

▶ 0
$$\hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$$
, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

$$\blacktriangleright \ 0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathfrak{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathfrak{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$$

where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940). $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

Full classification exists for:

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

▶ 0
$$\hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$$
, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

$$\blacktriangleright \ 0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$$

where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .

• c_0 - and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940).

 $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

•
$$0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$$
, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

$$\blacktriangleright \ 0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathfrak{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathfrak{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$$

- where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .
- c_0 and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák).
- Koszmider's C(K)-space from an AD family that exists under CH mentioned by Jesús on Tuesday.

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940).

 $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

•
$$0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$$
, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

•
$$0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$$

- where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .
- c_0 and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák).
- Koszmider's C(K)-space from an AD family that exists under CH mentioned by Jesús on Tuesday.
- Argyros–Haydon's scalar-plus-compact space, sums of finitely many incomparable copies thereof, some variants due to Tarbard and further variants (Motakis–Puglisi–Zisimopoulou).

 $\mathcal{B}(X)$ the Banach algebra of all bdd ops on a B. space X.

Goal: to understand the lattice of **closed** ideals (\cong representations) of $\mathcal{B}(X)$.

This is an isomorphic problem due to Eidelheit's thm (1940).

 $X \cong Y$ as B. spaces $\iff \mathcal{B}(X) \cong \mathcal{B}(Y)$ as B. algebras.

- ▶ $0 \hookrightarrow \mathcal{K}(\ell_2) \hookrightarrow \mathcal{B}(\ell_2)$ (Calkin, 1940).
- other classical spaces:

•
$$0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{B}(X)$$
, where $X = c_0$ or $X = \ell_p$ for $p \in [1, \infty)$.

•
$$0 \hookrightarrow \mathcal{K}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{0}}}(X) \hookrightarrow \mathcal{X}^{\aleph_{\mathbf{1}}}(X) \hookrightarrow \ldots \hookrightarrow \mathcal{B}(X),$$

- where $X = c_0(\Gamma)$ or $X = \ell_p(\Gamma)$ for $p \in [1, \infty)$ and any set Γ ; $\mathfrak{X}^{\lambda}(X)$ ideal of ops having range of density at most λ .
- c_0 and ℓ_1 -sums of ℓ_2^n as $n \to \infty$ (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák).
- Koszmider's C(K)-space from an AD family that exists under CH mentioned by Jesús on Tuesday.
- Argyros–Haydon's scalar-plus-compact space, sums of finitely many incomparable copies thereof, some variants due to Tarbard and further variants (Motakis–Puglisi–Zisimopoulou).
- ► $Z = X_{AH} \oplus$ suitably constructed subspace (K.-Laustsen).

A perspective.

▲□▶▲@▶▲≧▶▲≧▶ ≧ めへぐ

Maximal ideals

A perspective.

 $\mathcal{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\checkmark}{\searrow} \overset{\mathcal{M}_{1} \searrow}{\underset{\mathcal{M}_{2}}{\nearrow}} \mathcal{B}(Z)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<?

Maximal ideals

A perspective.

 $\mathcal{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\nearrow}{\searrow} \frac{\mathcal{M}_1 \searrow}{\mathcal{M}_2} \mathcal{B}(Z)$$

This behaviour is rather rare.

 $\mathcal{M}_{X} = \{T \in \mathcal{B}(X) \colon I_{X} \neq ATB \ (A, B \in \mathcal{B}(X))\}$

is the **unique** maximal ideal of $\mathcal{B}(X) \iff \mathcal{M}_X$ closed under addition.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めるの

Maximal ideals

A perspective.

 $\mathfrak{B}(Z)$ has precisely two maximal ideals.

$$0 \hookrightarrow \mathcal{K}(Z) \hookrightarrow \mathcal{E}(Z) \overset{\nearrow}{\searrow} \frac{\mathcal{M}_1 \searrow}{\mathcal{M}_2} \mathcal{B}(Z)$$

This behaviour is rather rare.

$$\mathfrak{M}_{X} = \{ T \in \mathfrak{B}(X) \colon I_{X} \neq ATB \ (A, B \in \mathfrak{B}(X)) \}$$

is the **unique** maximal ideal of $\mathcal{B}(X) \iff \mathcal{M}_X$ closed under addition.

- ▶ c_0 , ℓ_p (here $p = \infty$ is included, btw. $\ell_\infty \cong L_\infty$);
- $L_p[0,1]$ for $p \in [1,\infty]$.
- $c_0(\Gamma), \ell_p(\Gamma)$ for $p \in [1, \infty)$
- ℓ_{∞}/c_0 , $\ell_{\infty}^c(\Gamma)$ for any set Γ (but not every $L_{\infty}(\mu)$ is in this class!)
- c_0 and ℓ_p -sums of ℓ_2^n s or ℓ_{∞}^n s as well as more general sums.
- ► Lorentz sequence spaces determined by a decreasing, non-summable sequence and p ∈ [1,∞).
- certain Orlicz spaces.
- $C[0,1], C[0,\omega^{\omega}], C[0,\omega_1]$, and the list goes on.

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|\mathcal{N}_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|N_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

• The standard u.v.b. $(t_n)_{n=1}^{\infty}$ of T is 1-unconditional.

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|N_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

- The standard u.v.b. $(t_n)_{n=1}^{\infty}$ of T is 1-unconditional.
- ▶ For a space with an unconditional basis and $N \subset \mathbb{N}$ we call the ideal $\langle P_N \rangle$ generated by the associated basis projection P_N spatial

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|N_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

- The standard u.v.b. $(t_n)_{n=1}^{\infty}$ of T is 1-unconditional.
- ▶ For a space with an unconditional basis and $N \subset \mathbb{N}$ we call the ideal $\langle P_N \rangle$ generated by the associated basis projection P_N spatial
- For $M, N \subset \mathbb{N}$ with images of P_N , P_M isom. to their squares, one has $\langle P_N \rangle = \langle P_M \rangle \iff \operatorname{im} P_N \cong \operatorname{im} P_M$.

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|\mathcal{N}_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

- The standard u.v.b. $(t_n)_{n=1}^{\infty}$ of T is 1-unconditional.
- ▶ For a space with an unconditional basis and $N \subset \mathbb{N}$ we call the ideal $\langle P_N \rangle$ generated by the associated basis projection P_N spatial
- For $M, N \subset \mathbb{N}$ with images of P_N , P_M isom. to their squares, one has $\langle P_N \rangle = \langle P_M \rangle \iff \operatorname{im} P_N \cong \operatorname{im} P_M$.

A chain Γ of spatial ideals either stabilises, so that $\overline{\bigcup \Gamma} \in \Gamma$, or the ideal $\overline{\bigcup \Gamma}$ is not spatial.

$$\|x\|_{\mathcal{T}} = \max\left\{\|x\|_{\ell_{\infty}}, \frac{1}{2}\sup\sum_{i}\|\mathcal{N}_{i}x\|_{\mathcal{T}}
ight\}$$

where the sup runs over $j \in \mathbb{N}$ and all finite sequences of sets $N_1 < \cdots < N_j$ in \mathbb{N} with $j \leq \min N_1$.

- The standard u.v.b. $(t_n)_{n=1}^{\infty}$ of T is 1-unconditional.
- ▶ For a space with an unconditional basis and $N \subset \mathbb{N}$ we call the ideal $\langle P_N \rangle$ generated by the associated basis projection P_N spatial
- For $M, N \subset \mathbb{N}$ with images of P_N , P_M isom. to their squares, one has $\langle P_N \rangle = \langle P_M \rangle \iff \operatorname{im} P_N \cong \operatorname{im} P_M$.

A chain Γ of spatial ideals either stabilises, so that $\overline{\bigcup \Gamma} \in \Gamma$, or the ideal $\overline{\bigcup \Gamma}$ is not spatial. In T, im $P_N \cong \operatorname{im} P_M \iff (t_j)_{j \in N}, (t_j)_{j \in M}$ are equivalent.

Tsirelson space is now classical, isn't it?

Theorem (Beanland–K.–Laustsen, 2019+). Let T be the (dual of the original) Tsirelson space.

- 1. The family of non-trivial spatial ideals of $\mathcal{B}(T)$ is non-empty and has no minimal or maximal elements.
- 2. Let $\mathfrak{I} \hookrightarrow \mathfrak{J}$ be spatial ideals of $\mathfrak{B}(T)$. Then there is a family $\{\Gamma_L : L \in \Delta\}$ such that:
 - $|\Delta| = \mathfrak{c};$
 - for each $L \in \Delta$, Γ_L is an uncountable chain of spatial ideals of $\mathcal{B}(T)$ such that

 $\mathfrak{I} \hookrightarrow \mathcal{L} \hookrightarrow \mathcal{J} \qquad (\mathcal{L} \in \mathsf{\Gamma}_L),$

and $\bigcup \Gamma_L$ is a closed ideal that is not spatial;

- $\overline{\mathcal{L} + \mathcal{M}} = \mathcal{J} \ (\mathcal{L} \in \Gamma_L \text{ and } \mathcal{M} \in \Gamma_M, \ L, M \in \Delta, L \neq M).$
- 3. The Banach algebra $\mathcal{B}(T)$ contains at least \mathfrak{c} many maximal ideals.

Tsirelson space is now classical, isn't it?

Theorem (Beanland–K.–Laustsen, 2019+). Let T be the (dual of the original) Tsirelson space.

- 1. The family of non-trivial spatial ideals of $\mathcal{B}(T)$ is non-empty and has no minimal or maximal elements.
- 2. Let $\mathfrak{I} \hookrightarrow \mathfrak{J}$ be spatial ideals of $\mathfrak{B}(T)$. Then there is a family $\{\Gamma_L : L \in \Delta\}$ such that:
 - $|\Delta| = \mathfrak{c};$
 - For each L ∈ Δ, Γ_L is an uncountable chain of spatial ideals of B(T) such that

 $\mathfrak{I} \hookrightarrow \mathcal{L} \hookrightarrow \mathcal{J} \qquad (\mathcal{L} \in \mathsf{\Gamma}_L),$

▲□▶ ▲□▶ ▲■▶ ▲■▶ ■ のQ@

and $\bigcup \Gamma_L$ is a closed ideal that is not spatial;

- $\overline{\mathcal{L} + \mathcal{M}} = \mathcal{J} \ (\mathcal{L} \in \Gamma_L \text{ and } \mathcal{M} \in \Gamma_M, \ L, M \in \Delta, L \neq M).$
- 3. The Banach algebra $\mathcal{B}(T)$ contains at least \mathfrak{c} many maximal ideals.

Note: For a reflexive space X, $\mathcal{B}(X)$ is anti-isomorphic to $\mathcal{B}(X^*)$ via $S \mapsto S^*$, hence both algebra have the same lattices of closed ideals.

5

Tsirelson space is now classical, isn't it?

Theorem (Beanland–K.–Laustsen, 2019+). Let T be the (dual of the original) Tsirelson space.

- 1. The family of non-trivial spatial ideals of $\mathcal{B}(T)$ is non-empty and has no minimal or maximal elements.
- 2. Let $\mathfrak{I} \hookrightarrow \mathfrak{J}$ be spatial ideals of $\mathfrak{B}(T)$. Then there is a family $\{\Gamma_L : L \in \Delta\}$ such that:
 - $|\Delta| = \mathfrak{c};$
 - ► for each $L \in \Delta$, Γ_L is an uncountable chain of spatial ideals of $\mathcal{B}(T)$ such that

 $\mathfrak{I} \hookrightarrow \mathcal{L} \hookrightarrow \mathfrak{J} \qquad (\mathcal{L} \in \Gamma_L),$

and $\bigcup \Gamma_L$ is a closed ideal that is not spatial;

•
$$\overline{\mathcal{L} + \mathcal{M}} = \mathcal{J} \ (\mathcal{L} \in \Gamma_L \text{ and } \mathcal{M} \in \Gamma_M, \ L, M \in \Delta, L \neq M).$$

3. The Banach algebra $\mathcal{B}(T)$ contains at least \mathfrak{c} many maximal ideals.

Note: For a reflexive space X, $\mathcal{B}(X)$ is anti-isomorphic to $\mathcal{B}(X^*)$ via $S \mapsto S^*$, hence both algebra have the same lattices of closed ideals.

Theorem, ctd. The ideals of compact, strictly singular, and inessential operators on T coincide, and they are equal to the intersection of the non-trivial spatial ideals of $\mathcal{B}(T)$:

 $\mathcal{K}(T) = \mathcal{S}(T) = \mathcal{E}(T) = \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a non-trivial spatial ideal of } \mathcal{B}(T) \}.$

How to decide if two subsequences of (t_n) are equivalent?

For
$$M = \{m_1 < m_2 < \cdots\} \in [\mathbb{N}] \text{ and } J \in [\mathbb{N}]^{<\infty}$$
, let
 $\sigma(M, J) = \sup \left\{ \sum_{j \in J} \alpha_j : \alpha_j \in [0, 1], \left\| \sum_{j \in J} \alpha_j t_{m_j} \right\|_T \leq 1 \right\}, \quad \sigma(M, \emptyset) = 0.$
For $N = \{n_1 < n_2 < \cdots\} \in [\mathbb{N}]$, set $m_0 = n_0 = 0.$
Theorem (Casazza–Johnson–Tzafriri) $(t_j)_{j \in M} \sim (t_j)_{j \in N}$ if and only if

$$\sup \Big\{ \sigma \big(M, M \cap (n_{j-1}, n_j] \big), \sigma \big(N, N \cap (m_{j-1}, m_j] \big) : j \in \mathbb{N} \Big\} < \infty$$

6

How to decide if two subsequences of (t_n) are equivalent?

For
$$M = \{m_1 < m_2 < \cdots\} \in [\mathbb{N}] \text{ and } J \in [\mathbb{N}]^{<\infty}$$
, let

$$\sigma(M, J) = \sup \left\{ \sum_{j \in J} \alpha_j : \alpha_j \in [0, 1], \left\| \sum_{j \in J} \alpha_j t_{m_j} \right\|_T \leq 1 \right\}, \qquad \sigma(M, \emptyset) = 0.$$
For $N = \{n_1 < n_2 < \cdots\} \in [\mathbb{N}]$, set $m_0 = n_0 = 0$.
Theorem (Casazza–Johnson–Tzafriri) $(t_j)_{j \in M} \sim (t_j)_{j \in N}$ if and only if
 $\sup \left\{ \sigma(M, M \cap (n_{j-1}, n_j]), \sigma(N, N \cap (m_{j-1}, m_j]) : j \in \mathbb{N} \right\} < \infty$

Key lemma The following conditions are equivalent for infinite $M \subseteq N \subseteq \mathbb{N}$:

- 1. $P_N \in \overline{\langle P_M \rangle};$
- 2. $\langle P_M \rangle = \langle P_N \rangle;$
- 3. T_N is isomorphic to a complemented subspace of T_M ;
- 4. T_N is isomorphic to T_M ;
- 5. $(t_j)_{j \in M}$ is equivalent to $(t_j)_{j \in N}$;
- 6. there is a constant $C \ge 1$ such that $\sigma(N, J) \le C$ for each interval J in N with $J \cap M = \emptyset$.

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

 S_n is spreading: let $J = \{j_1 < j_2 < \cdots < j_m\}$, $K = \{k_1 < k_2 < \cdots < k_m\} \subset \mathbb{N}$. If K is a spread of J; that is, $j_i \leq k_i$ for each $i \leq m$, then $J \in S_n \Rightarrow K \in S_n$.

$$S_0 = \left\{ \{k\} : k \in \mathbb{N} \right\} \cup \{\emptyset\}, \text{ and for } n \in \mathbb{N}_0, \text{ recursively define}$$
$$S_{n+1} = \left\{ \bigcup_{i=1}^k E_i : k \in \mathbb{N}, E_1, \dots, E_k \in S_n \setminus \{\emptyset\}, k \leq \min E_1, E_1 < E_2 < \dots < E_k \right\} \cup \{\emptyset\}.$$

The Schreier space of order n, $X[S_n]$, is the completion of c_{00} w.r.t.

$$\|x\| = \sup\left\{\sum_{j\in E} |\alpha_j| \colon E \in S_n \setminus \{\emptyset\}\right\} \qquad (x = (\alpha_j)_{j=1}^\infty \in c_{00}).$$

 S_n is spreading: let $J = \{j_1 < j_2 < \cdots < j_m\}$, $K = \{k_1 < k_2 < \cdots < k_m\} \subset \mathbb{N}$. If K is a spread of J; that is, $j_i \leq k_i$ for each $i \leq m$, then $J \in S_n \Rightarrow K \in S_n$.

Theorem (Beanland–K.–Laustsen, 2019+). Let $n \ge 1$.

- 1. The family of non-trivial spatial ideals of $\mathcal{B}(X[S_n])$ has no min/max el^s.
- 2. Let $\mathfrak{I} \hookrightarrow \mathfrak{J}$ be spatial ideals of $\mathfrak{B}(X[\mathfrak{S}_n])$. Then there is $\{\Gamma_L : L \in \Delta\}$ s.t.:
 - $\blacktriangleright |\Delta| = \mathfrak{c};$
 - For each L ∈ Δ, Γ_L is an uncountable chain of spatial ideals of B(X[S_n]) such that

 $\mathfrak{I} \hookrightarrow \mathcal{L} \hookrightarrow \mathfrak{J} \qquad (\mathcal{L} \in \Gamma_L),$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ の ()

and $\bigcup \Gamma_L$ is a closed ideal that is not spatial;

- $\overline{\mathcal{L} + \mathcal{M}} = \mathcal{J} \ (\mathcal{L} \in \Gamma_L \text{ and } \mathcal{M} \in \Gamma_M, \ L, M \in \Delta, L \neq M).$
- 3. The Banach algebra $\mathcal{B}(X[S_n])$ contains at least \mathfrak{c} many maximal ideals.

A way to distinguish isomorphism types

Let $X = X[S_n]$ for some $n \in \mathbb{N}$, and suppose that $M, N \in [\mathbb{N}]$ satisfy $P_M \in \overline{\langle P_N \rangle}$. Then the following conditions are equivalent:

- 1. $P_N \in \overline{\langle P_M \rangle};$
- 2. $\langle P_M \rangle = \langle P_N \rangle$;
- 3. X_M is isomorphic to X_N ;
- 4. X_N is isomorphic to a subspace of X_M ;
- 5. the n^{th} Gasparis–Leung index $d_n(M, N) = \sup \{ \tau_n(M(J)) : J \in [\mathbb{N}]^{<\infty}, N(J) \in S_n \}$ is finite;
- 6. there is a constant $k \in \mathbb{N}$ such that $\tau_n(N(J)) \leq k$ for each set $J \in [\mathbb{N} \cap (k, \infty)]^{<\infty}$,

where

$$\tau_n(J) = \min\Big\{k \in \mathbb{N} : J \subseteq \bigcup_{i=1}^k E_i, \text{ where } E_1, \ldots, E_k \in S_n \text{ and } E_1 < E_2 < \cdots < E_k\Big\}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A way to distinguish isomorphism types

Let $X = X[S_n]$ for some $n \in \mathbb{N}$, and suppose that $M, N \in [\mathbb{N}]$ satisfy $P_M \in \overline{\langle P_N \rangle}$. Then the following conditions are equivalent:

- 1. $P_N \in \overline{\langle P_M \rangle};$
- 2. $\langle P_M \rangle = \langle P_N \rangle$;
- 3. X_M is isomorphic to X_N ;
- 4. X_N is isomorphic to a subspace of X_M ;
- 5. the n^{th} Gasparis–Leung index $d_n(M, N) = \sup \{ \tau_n(M(J)) : J \in [\mathbb{N}]^{<\infty}, N(J) \in S_n \}$ is finite;
- 6. there is a constant $k \in \mathbb{N}$ such that $\tau_n(N(J)) \leq k$ for each set $J \in [\mathbb{N} \cap (k, \infty)]^{<\infty}$,

where

$$\tau_n(J) = \min\Big\{k \in \mathbb{N} : J \subseteq \bigcup_{i=1}^k E_i, \text{ where } E_1, \ldots, E_k \in S_n \text{ and } E_1 < E_2 < \cdots < E_k\Big\}.$$

Muchas gracias!

8