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This talk is based mainly on a recent joint work with Jan
Hamhalter, Antonio M. Peralta and Herman Pfitzner contained
in the papers:

[HKPP1] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner:
Measures of weak non-compactness in preduals of von
Neumann algebras and JBW*-triples, arXiv:1901.08056, to
appear in J. Funct. Anal.

[HKPP2] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner:
Grothendieck’s inequalities for JB*-triples: Proof of the
Barton-Friedman conjecture, arXiv:1903.08931
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1. Grothendieck inequalities — historical introduction
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Grothendieck inequalities — the origin

Theorem [Grothendieck 1956]

There is kg > 0 such that whenever V : C(K;) x C(Kz) — Fis
a bounded bilinear form, there are probability measures p1, 2
on Ki, K2 such that

N\ N\
V(1. 9)| < wall VI (/ 1 du1> (/ g duz)
K, Q

for f € C(K1), g € C(K?).

Ondrej F.K. Kalenda Grothendieck inequalities



Grothendieck inequalities — the origin

Theorem [Grothendieck 1956]

There is kg > 0 such that whenever V : C(K;) x C(Kz) — Fis
a bounded bilinear form, there are probability measures p1, 2
on Ki, K2 such that

A\ N\
V(F.9)| < Kl V| / Pdus / 9Pdz
K, Qb

for f € C(K1), g € C(K?).

Remark
The best value of kg is called Grothendieck constant. The
exact value is not known.

Ondrej F.K. Kalenda Grothendieck inequalities



The case of C*-algebras

Theorem [Pisier 1978 & Haagerup 1985]

Aq, A, C*-algebras, V : Ay x Ao — C a bounded bilinear form =
there are states ¢4 € A7, p2 € A3 such that

XX* + X*x 2 ywe+y'y 2
2 v2 2

Vix,y) <4 V] o1 (

forx € Ay, y € Ap.
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The case of C*-algebras

Theorem [Pisier 1978 & Haagerup 1985]

Aq, A, C*-algebras, V : Ay x Ao — C a bounded bilinear form =
there are states ¢4 € A7, p2 € A3 such that

XX* + X*x 2 ywe+y'y 2
2 v2 2

Vix,y) <4 V] o1 (

forx € Ay, y € Ap.

Remarks
> pec Atisastateif o > 0and |¢|| = 1.
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The case of C*-algebras

Theorem [Pisier 1978 & Haagerup 1985]

Aq, A, C*-algebras, V : Ay x Ao — C a bounded bilinear form =
there are states ¢4 € A7, p2 € A3 such that

XX* + X*x 2 ywe+y'y 2
2 v2 2

Vix,y) <4 V] o1 (

forx € Ay, y € Ap.

Remarks
> pec Atisastateif o > 0and |¢|| = 1.
» States on C(K) are exactly probability measures.
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An easier version - Little Grothedieck Theorem

Theorem [Grothendieck 1956]

There is kg > 0 such that whenever T : C(K) — His a
bounded linear operator (where H is a Hilbert space), then
there is a probability 1 on K such that

1/2
|THl < ks |IT] ( Ji; dﬂ) for f € C(K).
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An easier version - Little Grothedieck Theorem

Theorem [Grothendieck 1956]

There is kg > 0 such that whenever T : C(K) — His a
bounded linear operator (where H is a Hilbert space), then
there is a probability 1 on K such that

1/2
|THl < ks |IT] ( Ji; dﬂ) for f € C(K).

2

G in the

The optimal value of kg is /7% in the real case and
complex case.
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]

A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that
ITx(F < T (01(x*x) + pa(xx*)) /2 for x € A
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]
A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that

ITx|F < T (01(x*x) + pa(xx*)) /2 for x € A
[Haagerup & Itoh 1995] Moreover, this inequality is optimal.
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]

A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that

I TXI| < 1T (01 (x*X) + a(xx7)) /2 for x € A
[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, T : A— H bounded linear
operator = there is a state ¢ € A* such that

ITX| < 2| Tl (X2522) 72 for x € A
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]

A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that

I TXI| < 1T (01 (x*X) + a(xx7)) /2 for x € A
[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, T : A— H bounded linear
operator = there is a state ¢ € A* such that

ITX| < 2| Tl (X2522) 72 for x € A
Proof: Take ¢ = (1 + ¢2).
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]

A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that

1T < [IT] (01(x"x) + @2(xx*))'/2 for x € A.
[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, T : A— H bounded linear
operator = there is a state ¢ € A* such that

ITX| < 2| Tl (X2522) 72 for x € A

Proof: Take ¢ = 5 (1 + ¢2).
Question: Is the constant 2 optimal?
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]

A C*-algebra, H Hilbert space, T : A — H bounded linear
operator = there are states ¢, p» € A* such that

1T < [IT] (01(x"x) + @2(xx*))'/2 for x € A.
[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary
A C*-algebra, H Hilbert space, T : A— H bounded linear
operator = there is a state ¢ € A* such that

ITX| < 2| Tl (X2522) 72 for x € A
Proof: Take ¢ = (1 + ¢2).
Question: Is the constant 2 optimal?
Easy: The optimal constant is from [v/2, 2].
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GT «—— LGT

GT = LGT
T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a
bounded bilinear form
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GT «—— LGT

GT = LGT

T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a
bounded bilinear form

LGT = GT
> V:Ax B — F abounded bilinear form
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GT «—— LGT

GT = LGT
T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a

bounded bilinear form
LGT = GT
> V:Ax B — F abounded bilinear form

» T:a— (b— V(a,b))is abounded linear operator
T:A— B*
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GT «—— LGT

GT = LGT
T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a
bounded bilinear form

LGT = GT
» V:Ax B — F abounded bilinear form
» T:a— (b— V(a,b))is abounded linear operator
T:A— B*
» T factors through a Hilbert space,i.e. T=UV,V:A— H,
U:H— B*
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GT «—— LGT

GT = LGT
T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a
bounded bilinear form

LGT = GT
» V:Ax B — F abounded bilinear form
» T:a— (b— V(a, b)) is abounded linear operator
T:A— B*
» T factors through a Hilbert space,i.e. T=UV,V:A— H,
U:H— B*
» apply LGT to V andto U*|g: B — H*
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GT «—— LGT

GT = LGT
T : A— H abounded linear operator = V(a, b) = (Ta, Tb*) is a
bounded bilinear form

LGT = GT
» V:Ax B — F abounded bilinear form
» T:a— (b— V(a, b)) is abounded linear operator
T:A— B*
» T factors through a Hilbert space,i.e. T=UV,V:A— H,
U:H— B*
» apply LGT to V andto U*|g: B — H*

A drawback of the argument
The proof of the key step uses GT.
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LGT — a dual version

Theorem
M von Neumann algebra, H Hilbert space, T : M — H w*-to-w
continuous linear operator = there is a normal state ¢ € M.
such that i/

ITX] < 2Tl (22022°) "% for x € M.
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LGT — a dual version

Theorem
M von Neumann algebra, H Hilbert space, T : M — H w*-to-w
continuous linear operator = there is a normal state ¢ € M,
such that i/

ITX] < 2Tl (22022°) "% for x € M.

Remark
One way of proving LGT is to prove first the dual version and
then to apply itto 7 : A** — H.
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LGT — a dual version

Theorem
M von Neumann algebra, H Hilbert space, T : M — H w*-to-w
continuous linear operator = there is a normal state ¢ € M,
such that o

ITX] < 2Tl (22022°) "% for x € M.

Remark
One way of proving LGT is to prove first the dual version and
then to apply itto 7** : A** — H.

Definition
M von Neumann algebra. The strong* topology on M is

generated by seminorms x — ¢ (X250 12 1 ¢, state.
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LGT — a dual version

Theorem
M von Neumann algebra, H Hilbert space, T : M — H w*-to-w
continuous linear operator = there is a normal state ¢ € M,
such that o

ITX] < 2Tl (22022°) "% for x € M.

Remark
One way of proving LGT is to prove first the dual version and
then to apply itto 7** : A** — H.

Definition

M von Neumann algebra. The strong* topology on M is
generated by seminorms x — ¢ (X250 12 1 ¢, state.
Remark

LGT shows that any w*-to-w continuous linear operator

T : M — H is strong*-to-norm continuous in a precise way.
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Remark
LGT shows that any w*-to-w continuous linear operator
T : M — H is strong*-to-norm continuous in a precise way.
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Remark
LGT shows that any w*-to-w continuous linear operator
T : M — H is strong*-to-norm continuous in a precise way.

A qualitative approach
T : M — H w*-to-w continuous
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Remark
LGT shows that any w*-to-w continuous linear operator
T : M — H is strong*-to-norm continuous in a precise way.

A qualitative approach

T : M — H w*-to-w continuous
= T = S* forsome S: H* — M,, S weakly compact
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Remark
LGT shows that any w*-to-w continuous linear operator
T : M — H is strong*-to-norm continuous in a precise way.

A qualitative approach

T : M — H w*-to-w continuous
= T = S* forsome S: H* — M., S weakly compact
= T = §* is Mackey-to-norm continuous [Grothendieck 1953]
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Remark
LGT shows that any w*-to-w continuous linear operator
T : M — H is strong*-to-norm continuous in a precise way.

A qualitative approach

T : M — H w*-to-w continuous

= T = S* forsome S: H* — M,, S weakly compact

= T = §* is Mackey-to-norm continuous [Grothendieck 1953]
= T|p,, is strong*-to-norm continuous [Akemann 1967]
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2. JB*-triples — definitions, examples, properties
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JB*-triples — definition

A JB*-triple is a complex Banach space E equipped with a
continuous triple product {-,-,-} : E® — E satisfying the
following conditions:

1. {-,y,-} is a symmetric bilinear mapping,

2. {x,-,z} is conjugate-linear,
Aa b, {x,y,z}} =

{a. b, x},y,z} —{x,{b,a,y},z} +{x,y,{a b, z}},
. {x, x,-} is a hermitian operator with nonnegative spectrum,
X xHl = IxP.

w

(G2
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JB*-triples — definition

A JB*-triple is a complex Banach space E equipped with a
continuous triple product {-,-,-} : E® — E satisfying the
following conditions:
1. {-,y,-} is a symmetric bilinear mapping,
2. {x,-, z} is conjugate-linear,
Aa b, {x,y,z}} =
{{a,b,x},y, 2z} —{x,{b,a,y},z} +{x,y.{a,b, z}},
4. {x, x,-} is a hermitian operator with nonnegative spectrum,
5. [1{x, X, x} | = |IxI1°.
One of the motivations: Characterization of complex Banach

spaces whose unit balls are bounded symmetric domains.
[Kaup 1983]

w
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with
{x,y.2} = 3(xy"z + zy*x);
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with
xy.zy =5y z+zy'x);
» H, K Hilbert spaces = B(H, K) is a JB*-triple with
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with

(x.y.2} =}z + zy°x);
» H, K Hilbert spaces = B(H, K) is a JB*-triple with
» H Hilbert space = H is a JB*-triple as H = B(C, H);
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with

(x.y.2} =}z + zy°x);
» H, K Hilbert spaces = B(H, K) is a JB*-triple with
» H Hilbert space = H is a JB*-triple as H = B(C, H);

> a closed subspace of a C*-algebra stable under the above
triple product is a JB*-triple;
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with
(x.y.2} = Jxy'z +zy°x);
» H, K Hilbert spaces = B(H, K) is a JB*-triple with
» H Hilbert space = H is a JB*-triple as H = B(C, H);
> a closed subspace of a C*-algebra stable under the above
triple product is a JB*-triple;

» C(K,Hs(0)) (and its subtriples);

(O = complex octonions, dimQ = 8,

Hs3(0) = hermitian 3 x 3 matrices over O, dim H3(0) = 27)
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JB*-triples — examples

» A C*-algebra = Ais a JB*-triple with
{x.y,2} = 3(xy*z+zy*x);
» H, K Hilbert spaces = B(H, K) is a JB*-triple with
» H Hilbert space = H is a JB*-triple as H = B(C, H);
> a closed subspace of a C*-algebra stable under the above
triple product is a JB*-triple;
C(K, H3(0)) (and its subtriples);
(O = complex octonions, dimQ = 8,
Hs3(0) = hermitian 3 x 3 matrices over O, dim H3(0) = 27)
» any JB*-triple is of the form Eg @, Ee, Where
E; (special) is a subtriple of a C*-algebra
and E, (exceptional) is a subtriple of C(K, H3(Q)).

v
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JB*-triples and JBW*-triples — properties

Theorem [Kaup 1983]

E, F JB*-triples, T : E — F a linear bijection.
T is an isometry < T preserves the triple product
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JB*-triples and JBW*-triples — properties

Theorem [Kaup 1983]
E, F JB*-triples, T : E — F a linear bijection.
T is an isometry < T preserves the triple product

Definition
A JBW*-triple is a JB*-triple which is a dual Banach space.
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JB*-triples and JBW*-triples — properties

Theorem [Kaup 1983]

E, F JB*-triples, T : E — F a linear bijection.
T is an isometry < T preserves the triple product

Definition
A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]
» M JBW*-triple = the predual M. is unique;
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JB*-triples and JBW*-triples — properties

Theorem [Kaup 1983]

E, F JB*-triples, T : E — F a linear bijection.
T is an isometry < T preserves the triple product

Definition
A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]

» M JBW*-triple = the predual M. is unique;
» M JBW*-triple = {-,-,-} is separately w*-to-w* continuous.
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JB*-triples and JBW*-triples — properties

Theorem [Kaup 1983]
E, F JB*-triples, T : E — F a linear bijection.

T is an isometry < T preserves the triple product
Definition
A JBW*-triple is a JB*-triple which is a dual Banach space.
Theorem [Barton & Timoney 1986]
» M JBW*-triple = the predual M. is unique;
» M JBW*-triple = {-,-,-} is separately w*-to-w* continuous.

» E JB*-triple = E** is a JBW*-triple, the triple product on
E** extends that on E.
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Tripotents and partial isometries

E is a JB*-triple
» u e Eisatripotent if u = {u, u, u};
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Tripotents and partial isometries

E is a JB*-triple
» u e Eisatripotent if u = {u, u, u};

E = pV, V avon Neumann algebra, p € V a projection

> u = uu*u, uis a partial isometry,
pi(u) = u*u, ps(u) = uu* < p;
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Tripotents and partial isometries

E is a JB*-triple
» u e Eisatripotentif u={u,u,u};
> Ex(u)={x€ E;{u,ux}=x};

E = pV, V avon Neumann algebra, p € V a projection

> u = uu*u, uis a partial isometry,
pi(u) = u*u, ps(u) = uu* < p;
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Tripotents and partial isometries

E is a JB*-triple
» u e Eisatripotentif u={u,u,u};
> Ex(u)={x€ E;{u,ux}=x};

E = pV, V avon Neumann algebra, p € V a projection

> u = uu*u, uis a partial isometry,
pi(u) = u*u, ps(u) = uu* < p;
> Ex(u) = pr(u) Vpi(u);
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Tripotents and partial isometries

E is a JB*-triple
» uc Eisatripotentif u = {u,u,u};
> Ex(u)={x € E;{u,u,x} = x};
» uis unitary if Ex(u) = E;

E = pV, V avon Neumann algebra, p € V a projection

> u = uu*u, uis a partial isometry,
pi(u) = u*u, ps(u) = uu* < p;
> Ex(u) = pr(u) Vpi(u);
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Tripotents and partial isometries

E is a JB*-triple
» uc Eisatripotentif u = {u,u,u};
> Ex(u)={x € E;{u,u,x} = x};
» uis unitary if Ex(u) = E;

E = pV, V avon Neumann algebra, p € V a projection
> u = uu*u, uis a partial isometry,
pi(u) = uu, pr(u) = uu™ < p;
> Ex(u) = pr(u) Vpi(u);
» uis unitary iff p;(u) =1 and ps(u) = p;
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Tripotents and partial isometries

E is a JB*-triple
» uc Eisatripotentif u = {u,u,u};
> Ex(u)={x € E;{u,u,x} = x};
» uis unitary if Ex(u) = E;
» uis completeif {u,u,x} =0= x=0.

E = pV, V avon Neumann algebra, p € V a projection
> u = uu*u, uis a partial isometry,
pi(u) = uu, pr(u) = uu™ < p;
> Ex(u) = pr(u) Vpi(u);
» uis unitary iff p;(u) =1 and ps(u) = p;
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Tripotents and partial isometries

E is a JB*-triple
» uc Eisatripotentif u = {u,u,u};
> Ex(u)={x € E;{u,u,x} = x};
» uis unitary if Ex(u) = E;
» uis completeif {u,u,x} =0= x=0.

E = pV, V avon Neumann algebra, p € V a projection
> u = uu*u, uis a partial isometry,
pi(u) = u*u, pr(u) = uu* < p;
> Ex(u) = pr(u) Vpi(u);
» uis unitary iff p;(u) =1 and ps(u) = p;
» uis complete iff there is a central projection z € V with
pi(u) = z = p — pr(u).

Ondrej F.K. Kalenda Grothendieck inequalities



Tripotents and partial isometries

E is a JB*-triple
» uc Eisatripotentif u = {u,u,u};
> Ex(u)={x € E;{u,u,x} = x};
» uis unitary if Ex(u) = E;
» uis completeif {u,u,x} =0=x=0.

E = pV, V avon Neumann algebra, p € V a projection
> u = uu*u, uis a partial isometry,
pi(u) = uu, pr(u) = uu™ < p;
> Ex(u) = pr(u) Vpi(u);
» uis unitary iff p;(u) =1 and ps(u) = p;
» uis complete iff there is a central projection z € V with
pi(u) >z > p— ps(u). Forexample, if ps(u) = p.
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Tripotents continued

» Complete tripotents = extreme points of the unit ball

Ondrej F.K. Kalenda Grothendieck inequalities



Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]
M a JBW*-triple, ¢ € M,
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]
M a JBW*-triple, ¢ € M,
» Ju € M tripotent with o(u) = ||¢||;

Ondrej F.K. Kalenda Grothendieck inequalities



Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]
M a JBW*-triple, ¢ € M,
» Ju € M tripotent with o(u) = ||¢||;

> |ix]l, = Vo {x, X, u} is a seminorm on M;
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]
M a JBW*-triple, ¢ € M,
» Ju e M tripotent with o(u) = ||¢||;

> |ix]l, = Vo {x, X, u} is a seminorm on M;

> ||-[|,, does not depend on the choice of u.
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]

M a JBW*-triple, ¢ € M,
» Ju e M tripotent with o(u) = ||¢||;

> |ix]l, = Vo {x, X, u} is a seminorm on M;

> ||-[|,, does not depend on the choice of u.

Remarks
> M=pV=|x|, = \/(p(%(XX*U-i- ux*x));
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]

M a JBW*-triple, ¢ € M,
» Ju e M tripotent with o(u) = ||¢||;

> |ix]l, = Vo {x, X, u} is a seminorm on M;

> ||-[|,, does not depend on the choice of u.

Remarks
> M=pV=|x|, = \/(p(%(XX*U-i- ux*x));
» E aJB*triple,p € E¥* = duc E™ ...
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Tripotents continued

» Complete tripotents = extreme points of the unit ball
» Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]

M a JBW*-triple, ¢ € M,
» Ju e M tripotent with o(u) = ||¢||;

> |ix]l, = Vo {x, X, u} is a seminorm on M;

> ||-[|,, does not depend on the choice of u.

Remarks
> M=pV=|x|, = \/(p(%(XX*U-i- ux*x));
» E aJB*triple,p € E¥* = duc E™ ...

> AaC*algebra, ¢ > 0 = x|, = \/e((xx + x*x))
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]

The strong* topology on a JBW*-triple M is generated by the
seminorms ||-|| ,, ¢ € M.
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]
The strong™ topology on a JBW*-triple M is generated by the
seminorms ||-|| ,, ¢ € M.

Remark [Rodriguez-Palacios 1991]
If M is a von Neumann algebra, the two notions of the strong*
topology coincide.
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]
The strong* topology on a JBW*-triple M is generated by the

seminorms ||-|| ,, ¢ € M.

Remark [Rodriguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong
topology coincide.

M a JBW*-triple, H a Hilbert space
T : M — H w*-to-w continuous

*
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Definition [Barton & Friedman 1990]

The strong* topology on a JBW*-triple M is generated by the
seminorms ||-|| ,, ¢ € M.

Remark [Rodriguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong
topology coincide.

M a JBW*-triple, H a Hilbert space

T : M — H w*-to-w continuous
= T = §* forsome S: H* — M,, S weakly compact

*
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]

The strong* topology on a JBW*-triple M is generated by the
seminorms ||-|| ,, ¢ € M.

Remark [Rodriguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong*
topology coincide.

M a JBW*-triple, H a Hilbert space

T : M — H w*-to-w continuous
= T = S* forsome S: H* — M,, S weakly compact
= T = §* is Mackey-to-norm continuous [Grothendieck 1953]
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]
The strong™ topology on a JBW*-triple M is generated by the
seminorms ||-|| ,, ¢ € M.

Remark [Rodriguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong*
topology coincide.

M a JBW*-triple, H a Hilbert space
T : M — H w*-to-w continuous
= T = S* forsome S: H* — M,, S weakly compact
= T = S* is Mackey-to-norm continuous [Grothendieck 1953]
= T|p,, is strong*-to-norm continuous
[Rodriguez-Palacios 1991]
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3. Grothendieck inequalities for JB*-triples
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Barton-Friedman conjecture

Theorem [Barton & Friedman 1987]

(LGT) Let E be a JB*-triple, H a Hilbert space T : E — H a
bounded linear operator. Then there is ¢ € E*, ||¢|| = 1 with
ITx| < V2| T| ],
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Barton-Friedman conjecture

Theorem [Barton & Friedman 1987]
(LGT) Let E be a JB*-triple, H a Hilbert space T : E — H a
bounded linear operator. Then there is ¢ € E*, ||¢|| = 1 with
ITx| < V2T |Ix]l,-
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear
form. Then there are ¢ € E*, ¢ € F*, ||¢|| = ||| = 1 such that
VO y) < (B+2V2) [|VIHIXIL, 1yl -
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Barton-Friedman conjecture

Theorem [Barton & Friedman 1987]
(LGT) Let E be a JB*-triple, H a Hilbert space T : E — H a
bounded linear operator. Then there is ¢ € E*, ||¢|| = 1 with
ITx| < V2T |Ix]l,-
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear
form. Then there are ¢ € E*, ¢ € F*, ||¢|| = ||| = 1 such that
VO y) < (B+2V2) [|VIHIXIL, 1yl -

Remark

» [Peralta 2001] The proof contains a gap. The proof of
(LGT) works only if T** attains its norm. (Similarly
for (GT).)
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Barton-Friedman conjecture

Theorem Conjecture [Barton & Friedman 1987]

(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha
bounded linear operator. Then there is ¢ € E*, ||¢|| = 1 with
ITx|| < V2 TIl|x]], -
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear
form. Then there are ¢ € E*, ¢» € F*, ||| = ||¢|| = 1 such that
VO, )l < @+2v2)[IVIHxI, Iyl -

Remark

» [Peralta 2001] The proof contains a gap. The proof of

(LGT) works only if T** attains its norm. (Similarly
for (GT).)
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Barton-Friedman conjecture

Theorem Conjecture [Barton & Friedman 1987]

(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha
bounded linear operator. Then there is ¢ € E*, ||| = 1 with

ITx|| < V2 TIl|x]], -
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear
form. Then there are ¢ € E*, ¢» € F*, ||| = ||¢|| = 1 such that
VOGy) < (B +2V2) [[VIHIXI, 1yl -

Remark

» [Peralta 2001] The proof contains a gap. The proof of

(LGT) works only if T** attains its norm. (Similarly
for (GT).)

» No counterexample to the statement itself has been found.
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A try to fix it — approximate version

Theorem [Peralta & Rodriguez-Palacios 2001]

(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha

bounded linear operator and € > 0. Then there are ¢1, 2 € E*,
1]l = llez|l = 1 with

ITxll < (V2+ ) ITIHIXIZ, +<l1x12,)"2.
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A try to fix it — approximate version

Theorem [Peralta & Rodriguez-Palacios 2001]
(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha
bounded linear operator and € > 0. Then there are ¢1, 2 € E*,
o1l = llpall = 1 with

1T < (V24 ) TN (IxIZ, + = [1x]12,)"72.
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear
form and € > 0. Then there are ¢1, po € E*, 1,10 € F*,

o1l = llezll = [l1]] = llv2]] = 1 such that
[V(x,y)| < , . . )
(4+8V2+ o) IV (IxII5, + < IXII2,) 2yl + < lyli,) 2.
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The problem

Question
Can we estimate (||x[2, +||x||2,)"/2 by K ||x||,,?
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The problem

Question

Can we estimate (||x|2, +||x|[2,)"/2 by K ||x||,,?

More precisely:

Is there a universal constant K such that, given a JBW*-triple M
and @1, p2 € M,, there is ¢ € M, with ||¢|| = 1 such that

2 2 Vel +Tzall 2
VXIS, X, < KvIllerl + llealllIx]l, 7
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The problem

Question
Can we estimate (||x|2, +||x|[2,)"/2 by K ||x||,,?

More precisely:
Is there a universal constant K such that, given a JBW*-triple M
and @1, p2 € M,, there is ¢ € M, with ||¢|| = 1 such that

2 2 Vel +Tzall 2
VXIS, X, < KvIllerl + llealllIx]l, 7

Remark
The positive answer to the previous question is equivalent to
the Barton-Friedman conjecture.
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The problem

Question
Can we estimate (||x|2, +||x|[2,)"/2 by K ||x||,,?

More precisely:
Is there a universal constant K such that, given a JBW*-triple M
and @1, p2 € M,, there is ¢ € M, with ||¢|| = 1 such that

2 2 Vel +Tzall 2
VXIS, X, < KvIllerl + llealllIx]l, 7

Remark
The positive answer to the previous question is equivalent to
the Barton-Friedman conjecture.

The main result [HKPP2]
K = v/2 works.
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Ingredients of the proof

Step 1 — representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(P Ly, C) & N pV & gW)e
jed
where
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Ingredients of the proof

Step 1 — representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(P Ly, C) & N pV & gW)e
jed
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure;
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Step 1 — representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(P Ly, C) & N pV & gW)e
jed
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure;
» Nis a JBW*-algebra (i.e., a JBW*-triple with a unitary
element);
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Ingredients of the proof

Step 1 — representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to

(P L=, G) e NepV e qW)e
jed
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure;

» Nis a JBW*-algebra (i.e., a JBW*-triple with a unitary
element);

» V and W are von Neumann algebras;
» p < Vis afinite projection;
> g € W is a properly infinite projection.
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite

Ondrej F.K. Kalenda Grothendieck inequalities



Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = p;(u) v pi(v).
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = p;(u) v pi(v).
2. u,v € M tripotents = dw € M tripotent with
Ma(u) U Ma(v) C Mo(w)
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = pi(u) Vv pi(v).
2. u,v € M tripotents = dw € M tripotent with
MQ(U) U MZ(V) - MQ(W)
3. Lemma: ¢ € M, ||¢|| = p(u), u € Mo(v) = 3o € M,,
2(v) = Il = llell st [, < V2]l
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = pi(u) Vv pi(v).
2. u,v € M tripotents = dw € M tripotent with
MQ(U) U MZ(V) - MQ(W)
3. Lemma: ¢ € M, ||¢|| = p(u), u € Mo(v) = 3o € M,,
e(v) = Il = llell st. [, < V2]l
4. Proof of the statement:
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = pi(u) Vv pi(v).
2. u,v € M tripotents = dw € M tripotent with
MQ(U) U MZ(V) - MQ(W)
3. Lemma: ¢ € M, ||¢|| = p(u), u € Mo(v) = 3o € M,,
o(v) = l12ll = llell st I, < V2]l
4. Proof of the statement: o1 ... u, po...V;
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = pi(u) Vv pi(v).
2. u,v € M tripotents = 3w € M tripotent with
Ma(u) U Ma(v) C Mo(w)
3. Lemma: ¢ € M, ||¢|| = p(u), u € Mo(v) = 3o € M,,
o(v) = l12ll = llell st I, < V2]l
4. Proof of the statement: ... u, po...V; U, V... W;
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Ingredients of the proof Il

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodriguez-Palacios 2001].
Case 2: M = gW with g properly infinite
1. u,v € W partial isometries with ps(v) = ps(v) = g =
dw € W p.i. with ps(w) = g and p;(w) = pi(u) Vv pi(v).
2. u,v € M tripotents = dw € M tripotent with
MQ(U) U MZ(V) - MQ(W)
3. Lemma: ¢ € M,, ||¢|| = p(u), u € Ma(v) = Jp € M,,
2(v) = Il = llell st. [1l, < V2]l
4. Proof of the statement: o1 ...u, p2...v;u, V... W,
S P1tpo
Y= Mol
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.

Hence the proof of [Barton & Friedman 1987] works.

Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
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The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.

Hence the proof of [Barton & Friedman 1987] works.

Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.

Case 4: M = pV with p finite
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.

Hence the proof of [Barton & Friedman 1987] works.

Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.

Case 4: M = pV with p finite

1. M =p1 Vi & p2 Vo, py finite of type |, p> finite of type II.
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite

1. M =p1 Vi & p2 Vo, py finite of type |, p> finite of type II.

2. py V4 covered by Case 3 (due to representation of type |

von Neumann algebras).
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite

1. M = py1 Vi & p2 Vo, p1 finite of type |, po finite of type II.

2. py V4 covered by Case 3 (due to representation of type |
von Neumann algebras).

3. The case p, Vs:
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite

1. M = py1 Vi & p2 Vo, p1 finite of type |, po finite of type II.

2. py V4 covered by Case 3 (due to representation of type |
von Neumann algebras).

3. The case p> Vo: WLOG Vs is finite and of type /1.
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite

1. M = py1 Vi & p2 Vo, p1 finite of type |, po finite of type II.

2. py V4 covered by Case 3 (due to representation of type |
von Neumann algebras).

3. The case p> Vo: WLOG Vs is finite and of type /I. We use
the center-valued trace T on V>
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Ingredients of the proof Il

The remaining cases: The seminorm (||-|2 +||-[|?,)"/? attains
its maximum on By.
Hence the proof of [Barton & Friedman 1987] works.
Case 3: L>°(u, C), dim C < oco: Use finite-dimensionality of C
and Kuratowski—Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite
1. M =p1 Vi & p2 Vo, py finite of type |, p> finite of type II.
2. py V4 covered by Case 3 (due to representation of type |
von Neumann algebras).
3. The case p> Vo: WLOG Vs is finite and of type /I. We use
the center-valued trace T on V, and the claim that the
extreme points of

{x € V2,0 < x <1&T(x) = T(p2)}

are only projections.
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Conclusion

Theorem [HKPP2]

(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha
bounded linear operator and € > 0. Then there is ¢ € E¥,
llol| = 1 with

1Tl < +) [ TIIx]], -
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Conclusion

Theorem [HKPP2]

(LGT) Let E be a JB*-triple, H a Hilbertspace T : E — Ha
bounded linear operator and € > 0. Then there is ¢ € E¥,
llol| = 1 with

ITx| < (2+e) [ITIHIxIl, -
(GT) Let E, F be JB*-triples, V : E x F — C a bounded bilinear

formand e > 0. Thenthereare p € E*, ¢ € F*, ||| = ||¢] = 1
such that

V)l < (8+18V2+ ) [IVIxI, 1y, -
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4. Optimal constants in the Little Grothendieck Theorem
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-

2. Ve 3pr, 2 | Tx|) < (V2 + o) ITI (IXIZ, +ellx|2,) "2
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-

2. Ve 3pr, 2 | Tx|) < (V2 + o) ITI (IXIZ, +ellx|2,) "2
3. Vedp [Tx[[ < (2 +2) [T [IxIl, -
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-

2. Ve 3pr, 2 | Tx|) < (V2 + o) ITI (IXIZ, +ellx|2,) "2
3. Vedp [Tx[[ < (2 +2) [T [IxIl, -

Question
What is the optimal constant in 37

Ondrej F.K. Kalenda Grothendieck inequalities



Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-
2. Ve o1, 02 ¢ | Tx| < (V2+2) [ TI(IXIZ, + = lIx]13,) 2.
3. VeI - || Tx|| < (2 + &) ([T, -

Question
What is the optimal constant in 37

Remarks
» Our proof gives 2 + ¢, nothing better.
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-

2. Ve 3pr, 2 | Tx|) < (V2 + o) ITI (IXIZ, +ellx|2,) "2
3. Vedp [Tx[[ < (2 +2) [T [IxIl, -

Question
What is the optimal constant in 37

Remarks
» Our proof gives 2 + ¢, nothing better.

> At least v/2 is necessary. There is no counterexample that
V2 is not sufficient.
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-
2. Ve o1, 02 ¢ | Tx| < (V2+2) [ TI(IXIZ, + = lIx]13,) 2.
3. VeI - || Tx|| < (2 + &) ([T, -

Question
What is the optimal constant in 37

Remarks
» Our proof gives 2 + ¢, nothing better.

> At least v/2 is necessary. There is no counterexample that
V2 is not sufficient.

» For C*-algebras (or, more generally JB*-algebras) we
further proved that /2 + ¢ suffices. [work in progress]
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Constants in LGT

E JB*-triple, T : E — H bounded linear operator
1. T attains norm = 3 - || Tx|| < V2T [|x]|.-

2. Ve 3pr, 2 | Tx|) < (V2 + o) ITI (IXIZ, +ellx|2,) "2
3. Vedp [Tx[[ < (2 +2) [T [IxIl, -

Question
What is the optimal constant in 37

Remarks
» Our proof gives 2 + ¢, nothing better.

> At least v/2 is necessary. There is no counterexample that
V2 is not sufficient.

» For C*-algebras (or, more generally JB*-algebras) we
further proved that /2 + ¢ suffices. [work in progress]

» Conjecture: Optimal constant should be v/2 + «.
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LGT for C*-algebras

A C*-algebra, T : A— H bounded linear operator
* * 1 2
1. Jp state: | Tx|| < 2| Tl (252°) "2 (= 2| | [1xl,)
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LGT for C*-algebras

A C*-algebra, T : A— H bounded linear operator
* * 1 2
1. Jp state: | Tx|| < 2| Tl (252°) "2 (= 2| | [1xl,)
2. YeJp: | Tx|| < (V2 + ) I Ix]], -
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LGT for C*-algebras

A C*-algebra, T : A— H bounded linear operator
* * 1 2
1. Jp state: | Tx|| < 2| Tl (252°) "2 (= 2| | [1xl,)
2. YeJp: | Tx|| < (V2 + ) I Ix]], -

Question
What is the optimal constant in 17
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LGT for C*-algebras

A C*-algebra, T : A— H bounded linear operator
* * 1 2
1. Jp state: | Tx|| < 2| Tl (252°) "2 (= 2| | [1xl,)
2. YeJp: | Tx|| < (V2 + ) I Ix]], -

Question
What is the optimal constant in 17

Remarks

» Our approach gives 2 + ¢, nothing better. The original
proof of Haagerup gives 2.
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LGT for C*-algebras

A C*-algebra, T : A— H bounded linear operator
* * 1 2
1. Jp state: | Tx|| < 2| T (X252°) "2 (= 2| ) |1x,)
2. YeJp: | Tx|| < (V2 + ) I Ix]], -

Question
What is the optimal constant in 17

Remarks

» Our approach gives 2 + ¢, nothing better. The original
proof of Haagerup gives 2.

> At least v/2 is necessary. There is (probably) no
counterexample that v/2 is not sufficient.
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5. Strong* topology and strongly WCG spaces
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On seminorms generating the strong* topology

Recall
M a JBW*-triple = the strong*-topology is generated by the
seminorms ||-|| ,, ¢ € M..
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On seminorms generating the strong* topology

Recall
M a JBW*-triple = the strong*-topology is generated by the
seminorms ||-|| ,, ¢ € M..

Support tripotents
v € M, = Fu tripotent with p(u) = ||¢||. One of them is the
smallest one, denoted by s(y).
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On seminorms generating the strong* topology

Recall
M a JBW*-triple = the strong*-topology is generated by the
seminorms ||-|| ,, ¢ € M..

Support tripotents
v € M, = Fu tripotent with p(u) = ||¢||. One of them is the
smallest one, denoted by s(y).

Proposition [HKPP1]
M a JBW*-triple, ¢, v € M,.

> Ma(s(p)) C Mz(s(v)) = the topology generated by ||-||, on
Bu is weaker than that generated by ||-|,,.
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On seminorms generating the strong* topology

Recall
M a JBW*-triple = the strong*-topology is generated by the
seminorms ||-|| ,, ¢ € M..

Support tripotents
v € M, = Fu tripotent with p(u) = ||¢||. One of them is the
smallest one, denoted by s(y).

Proposition [HKPP1]
M a JBW*-triple, ¢, v € M,.

> Ma(s(p)) C Mz(s(v)) = the topology generated by ||-||, on
Bu is weaker than that generated by ||-|,,.

> Ma(s(v)) & Ma(s(v)) = the topology generated by [[[l, on
By is strictly weaker than that generated by ||-|,;.
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On seminorms generating the strong* topology Il

Proposition [HKPP1]

Let M be a JBW*-triple.
The topologies generated by ||-|| ,, ¢ € M., on By are upwards
o-directed.
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WCG and strongly WCG spaces

Recall
A Banach space X is
» WCG if there is K C X weakly compact s.t. spanK = X;
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WCG and strongly WCG spaces

Recall [Schliichtermann & Wheeler 1988]
A Banach space X is
» WCG if there is K C X weakly compact s.t. spanK = X;

» strongly WCG if there is K € X weakly compact s.t.
VL C X weakly compact Ve > 0 dn: L C nK + Bx.
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WCG and strongly WCG spaces

Recall [Schliichtermann & Wheeler 1988]
A Banach space X is
» WCG if there is K C X weakly compact s.t. spanK = X;

» strongly WCG if there is K € X weakly compact s.t.
VL C X weakly compact Ve > 0 dn: L C nK + Bx.

Examples

» WCG spaces include separable spaces, reflexive spaces,
co(T), L' (1) with p o-finite;
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WCG and strongly WCG spaces

Recall [Schliichtermann & Wheeler 1988]
A Banach space X is
» WCG if there is K C X weakly compact s.t. spanK = X;

» strongly WCG if there is K € X weakly compact s.t.
VL C X weakly compact Ve > 0 dn: L C nK + Bx.

Examples

» WCG spaces include separable spaces, reflexive spaces,
co(T), L' (1) with p o-finite;
> Cy is separable (hence WCG), not strongly WCG;
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WCG and strongly WCG spaces

Recall [Schliichtermann & Wheeler 1988]
A Banach space X is
» WCG if there is K C X weakly compact s.t. spanK = X;

» strongly WCG if there is K € X weakly compact s.t.
VL C X weakly compact Ve > 0 dn: L C nK + Bx.

Examples

» WCG spaces include separable spaces, reflexive spaces,
co(T), L' (1) with p o-finite;
> Cy is separable (hence WCG), not strongly WCG;

» strongly WCG spaces include reflexive spaces, L'(x) with
u o-finite.
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Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M, is WCG iff M is o-finite.
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Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M, is WCG iff M is o-finite.

Fact

Let M be a JBW*-triple.

M., is strongly WCG < (B, Mackey) is metrizable
[Schltichtermann & Wheeler 1988]
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Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M, is WCG iff M is o-finite.

Fact
Let M be a JBW*-triple.
M., is strongly WCG < (B, Mackey) is metrizable

[Schliichtermann & Wheeler 1988]
< (B, strong*) is metrizable. [Rodriguez-Palacios 1991]

Ondrej F.K. Kalenda Grothendieck inequalities



Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M, is WCG iff M is o-finite.

Fact

Let M be a JBW*-triple.

M., is strongly WCG < (B, Mackey) is metrizable
[Schltichtermann & Wheeler 1988]

< (B, strong*) is metrizable. [Rodriguez-Palacios 1991]

Corollary

M a o-finite von Neumann algebra (or, a o-finite JBW*-algebra)
= M., strongly WCG.
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Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M, is WCG iff M is o-finite.

Fact

Let M be a JBW*-triple.

M., is strongly WCG < (B, Mackey) is metrizable
[Schllichtermann & Wheeler 1988]

< (B, strong*) is metrizable. [Rodriguez-Palacios 1991]

Corollary

M a o-finite von Neumann algebra (or, a o-finite JBW*-algebra)
= M., strongly WCG.

Example [HKPP1]
I uncountable = M = B(¢2,¢?(I")) is a o-finite JBW* triple,
M, is not strongly WCG (but is WCG).
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On preduals of o-finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to
(Bjey L(1) G) @ N @ pV & gW)peo

where

» C, is a finite-dimensional JB*-triple, 1, is a probability

measure;

> Nis a JBW*-algebra;

» V and W are von Neumann algebras;

» p < Vis afinite projection;

> g c W is a properly infinite projection.
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On preduals of o-finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]
Any o-finite JBW*-triple is isometrically isomorphic to
(DBjes L= (1, ) @ N pV & gW)e~
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure and J is countable;
> Nis a o-finite JBW*-algebra;
» V and W are von Neumann algebras;
» p e Vis a o-finite finite projection;
» g € W is a o-finite properly infinite projection.
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On preduals of o-finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]
Any o-finite JBW*-triple is isometrically isomorphic to
(DBjey L= (1, ) @ N pV & gW)ee
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure and J is countable;
> Nis a o-finite JBW*-algebra;
» V and W are von Neumann algebras;
» p e Vis a o-finite finite projection;
» g € W is a o-finite properly infinite projection.

Theorem [HKPP1]
M, is strongly WCG < W is o-finite
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On preduals of o-finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]
Any o-finite JBW*-triple is isometrically isomorphic to
(DBjey L= (1, ) @ N pV & gW)ee
where
» C, is a finite-dimensional JB*-triple, 1, is a probability
measure and J is countable;
> Nis a o-finite JBW*-algebra;
» V and W are von Neumann algebras;
» p e Vis a o-finite finite projection;
» g € W is a o-finite properly infinite projection.

Theorem [HKPP1]
M, is strongly WCG < W is o-finite
(In this case the summand gW may be omitted.)
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Thank you for your attention.

inequalities
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