Grothendieck inequalities

Ondřej F.K. Kalenda

Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University in Prague

Workshop on Banach spaces and Banach lattices Madrid, September 9 - 13, 2019

< 同 > < 回 > < 回 > <

This talk is based mainly on a recent joint work with Jan Hamhalter, Antonio M. Peralta and Herman Pfitzner contained in the papers:

[HKPP1] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner: *Measures of weak non-compactness in preduals of von Neumann algebras and JBW*-triples*, arXiv:1901.08056, to appear in J. Funct. Anal.

[HKPP2] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner: Grothendieck's inequalities for JB*-triples: Proof of the Barton-Friedman conjecture, arXiv:1903.08931

▲□→ ▲ □ → ▲ □ → □

크

- 1. Grothendieck inequalities historical introduction
- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ → □

1. Grothendieck inequalities - historical introduction

- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ →

Theorem [Grothendieck 1956]

There is $\kappa_G > 0$ such that whenever $V : C(K_1) \times C(K_2) \rightarrow \mathbb{F}$ is a bounded bilinear form, there are probability measures μ_1, μ_2 on K_1, K_2 such that

$$|V(f,g)| \le \kappa_G ||V|| \left(\int_{\mathcal{K}_1} |f|^2 d\mu_1
ight)^{\frac{1}{2}} \left(\int_{\Omega_2} |g|^2 d\mu_2
ight)^{\frac{1}{2}}$$

for $f \in C(K_1)$, $g \in C(K_2)$.

▲□ → ▲ □ → ▲ □ → □ □

Theorem [Grothendieck 1956]

There is $\kappa_G > 0$ such that whenever $V : C(K_1) \times C(K_2) \rightarrow \mathbb{F}$ is a bounded bilinear form, there are probability measures μ_1, μ_2 on K_1, K_2 such that

$$|V(f,g)| \le \kappa_G \|V\| \left(\int_{\mathcal{K}_1} |f|^2 d\mu_1\right)^{\frac{1}{2}} \left(\int_{\Omega_2} |g|^2 d\mu_2\right)^{\frac{1}{2}}$$

for $f \in C(K_1)$, $g \in C(K_2)$.

Remark

The best value of κ_G is called Grothendieck constant. The exact value is not known.

<回>< E> < E> < E> = E

 A_1, A_2 C*-algebras, $V : A_1 \times A_2 \rightarrow \mathbb{C}$ a bounded bilinear form \Rightarrow there are states $\varphi_1 \in A_1^*$, $\varphi_2 \in A_2^*$ such that

$$|V(x,y)| \le 4 ||V|| \varphi_1 \left(\frac{xx^* + x^*x}{2}\right)^{\frac{1}{2}} \varphi_2 \left(\frac{yy^* + y^*y}{2}\right)^{\frac{1}{2}}$$

for $x \in A_1$, $y \in A_2$.

크

 $A_1, A_2 \text{ C}^*$ -algebras, $V : A_1 \times A_2 \rightarrow \mathbb{C}$ a bounded bilinear form \Rightarrow there are states $\varphi_1 \in A_1^*$, $\varphi_2 \in A_2^*$ such that

$$|V(x,y)| \le 4 ||V|| \varphi_1 \left(\frac{xx^* + x^*x}{2}\right)^{\frac{1}{2}} \varphi_2 \left(\frac{yy^* + y^*y}{2}\right)^{\frac{1}{2}}$$

for $x \in A_1$, $y \in A_2$.

Remarks

• $\varphi \in A^*$ is a state if $\varphi \ge 0$ and $\|\varphi\| = 1$.

<回> < 回> < 回> < 回> = □

 $A_1, A_2 \text{ C}^*$ -algebras, $V : A_1 \times A_2 \rightarrow \mathbb{C}$ a bounded bilinear form \Rightarrow there are states $\varphi_1 \in A_1^*$, $\varphi_2 \in A_2^*$ such that

$$|V(x,y)| \le 4 ||V|| \varphi_1 \left(\frac{xx^* + x^*x}{2}\right)^{\frac{1}{2}} \varphi_2 \left(\frac{yy^* + y^*y}{2}\right)^{\frac{1}{2}}$$

for $x \in A_1$, $y \in A_2$.

Remarks

- $\varphi \in A^*$ is a state if $\varphi \ge 0$ and $\|\varphi\| = 1$.
- States on C(K) are exactly probability measures.

<回>< E> < E> < E> = E

Theorem [Grothendieck 1956]

There is $k_G > 0$ such that whenever $T : C(K) \rightarrow H$ is a bounded linear operator (where *H* is a Hilbert space), then there is a probability μ on *K* such that

$$\|Tf\| \leq k_G \|T\| \left(\int |f|^2 \mathrm{d}\mu\right)^{1/2}$$
 for $f \in C(K)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

-

Theorem [Grothendieck 1956]

There is $k_G > 0$ such that whenever $T : C(K) \rightarrow H$ is a bounded linear operator (where *H* is a Hilbert space), then there is a probability μ on *K* such that

$$\|Tf\| \leq k_G \|T\| \left(\int |f|^2 d\mu\right)^{1/2}$$
 for $f \in C(K)$.

The optimal value of k_G is $\sqrt{\frac{\pi}{2}}$ in the real case and $\frac{2}{\sqrt{\pi}}$ in the complex case.

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $||Tx|| \le ||T|| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$.

A (1) < (1) < (2) < (2) </p>

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $||Tx|| \le ||T|| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$. [Haagerup & Itoh 1995] Moreover, this inequality is optimal.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $\|Tx\| \le \|T\| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$.

[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, $T : A \rightarrow H$ bounded linear operator \Rightarrow there is a state $\varphi \in A^*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^*x + xx^*}{2}\right)^{1/2}$$
 for $x \in A$.

▲御▶ ▲ 国▶ ▲ 国▶ …

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $\|Tx\| \le \|T\| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$.

[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, $T : A \rightarrow H$ bounded linear operator \Rightarrow there is a state $\varphi \in A^*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi\left(\frac{x^*x+xx^*}{2}\right)^{1/2}$$
 for $x \in A$.

Proof: Take $\varphi = \frac{1}{2}(\varphi_1 + \varphi_2)$.

< □→ < □→ < □→ = □

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $\|Tx\| \le \|T\| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$.

[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, $T : A \rightarrow H$ bounded linear operator \Rightarrow there is a state $\varphi \in A^*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi\left(rac{x^*x + xx^*}{2}
ight)^{1/2}$$
 for $x \in A$.

Proof: Take $\varphi = \frac{1}{2}(\varphi_1 + \varphi_2)$. **Question:** Is the constant 2 optimal?

< 国 > < 国 > < 国 > -

A C*-algebra, H Hilbert space, $T : A \to H$ bounded linear operator \Rightarrow there are states $\varphi_1, \varphi_2 \in A^*$ such that $||Tx|| \le ||T|| (\varphi_1(x^*x) + \varphi_2(xx^*))^{1/2}$ for $x \in A$.

[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary

A C*-algebra, H Hilbert space, $T : A \rightarrow H$ bounded linear operator \Rightarrow there is a state $\varphi \in A^*$ such that

$$\|\mathsf{T} x\| \leq \mathbf{2} \, \|\mathsf{T}\| \, arphi \left(rac{x^* x + x x^*}{2}
ight)^{1/2} \, ext{ for } x \in \mathsf{A}.$$

Proof: Take $\varphi = \frac{1}{2}(\varphi_1 + \varphi_2)$. **Question:** Is the constant 2 optimal? **Easy:** The optimal constant is from $[\sqrt{2}, 2]$.

過 とう ヨ とう ヨ とう

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

$GT \longleftrightarrow LGT$

$\mathsf{GT} \Rightarrow \mathsf{LGT}$

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

 $\text{LGT} \Rightarrow \text{GT}$

• $V : A \times B \rightarrow \mathbb{F}$ a bounded bilinear form

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

 $\text{LGT} \Rightarrow \text{GT}$

- $V : A \times B \rightarrow \mathbb{F}$ a bounded bilinear form
- $T : a \mapsto (b \mapsto V(a, b))$ is a bounded linear operator $T : A \rightarrow B^*$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

 $\text{LGT} \Rightarrow \text{GT}$

- $V : A \times B \rightarrow \mathbb{F}$ a bounded bilinear form
- $T: a \mapsto (b \mapsto V(a, b))$ is a bounded linear operator $T: A \to B^*$
- ▶ *T* factors through a Hilbert space, i.e. T = UV, $V : A \rightarrow H$, $U : H \rightarrow B^*$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

 $\text{LGT} \Rightarrow \text{GT}$

- $V: A \times B \rightarrow \mathbb{F}$ a bounded bilinear form
- $T : a \mapsto (b \mapsto V(a, b))$ is a bounded linear operator $T : A \to B^*$
- ▶ *T* factors through a Hilbert space, i.e. T = UV, $V : A \rightarrow H$, $U : H \rightarrow B^*$
- apply LGT to V and to $U^*|_B : B \to H^*$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

 $T : A \rightarrow H$ a bounded linear operator $\Rightarrow V(a, b) = \langle Ta, Tb^* \rangle$ is a bounded bilinear form

 $\text{LGT} \Rightarrow \text{GT}$

- $V: A \times B \rightarrow \mathbb{F}$ a bounded bilinear form
- $T : a \mapsto (b \mapsto V(a, b))$ is a bounded linear operator $T : A \to B^*$
- T factors through a Hilbert space, i.e. T = UV, V : A → H, U : H → B*
- apply LGT to V and to $U^*|_B : B \to H^*$

A drawback of the argument The proof of the key step uses GT.

▲母▶▲国▶▲国▶ 国 のQ@

Theorem *M* von Neumann algebra, *H* Hilbert space, $T : M \to H$ w*-to-w continuous linear operator \Rightarrow there is a normal state $\varphi \in M_*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^*x + xx^*}{2}\right)^{1/2}$$
 for $x \in M$.

▲御▶ ▲理▶ ▲理▶

2

Theorem

M von Neumann algebra, *H* Hilbert space, $T : M \to H$ w*-to-w continuous linear operator \Rightarrow there is a normal state $\varphi \in M_*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^*x + xx^*}{2}\right)^{1/2}$$
 for $x \in M$.

Remark

One way of proving LGT is to prove first the dual version and then to apply it to $T^{**}: A^{**} \to H$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

3

Theorem

M von Neumann algebra, *H* Hilbert space, $T : M \to H$ w*-to-w continuous linear operator \Rightarrow there is a normal state $\varphi \in M_*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^*x + xx^*}{2}\right)^{1/2}$$
 for $x \in M$.

Remark

One way of proving LGT is to prove first the dual version and then to apply it to $T^{**}: A^{**} \to H$.

Definition

M von Neumann algebra. The strong* topology on *M* is generated by seminorms $x \mapsto \varphi\left(\frac{x^*x+xx^*}{2}\right)^{1/2}, \varphi \in M_*$ state.

- ▲ 母 ▶ ▲ 国 ▶ ▲ 国 ● の Q @

Theorem

M von Neumann algebra, *H* Hilbert space, $T : M \to H$ w*-to-w continuous linear operator \Rightarrow there is a normal state $\varphi \in M_*$ such that

$$\|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^*x + xx^*}{2}\right)^{1/2}$$
 for $x \in M$.

Remark

One way of proving LGT is to prove first the dual version and then to apply it to $T^{**}: A^{**} \to H$.

Definition

M von Neumann algebra. The strong* topology on *M* is generated by seminorms $x \mapsto \varphi\left(\frac{x^*x+xx^*}{2}\right)^{1/2}, \varphi \in M_*$ state.

Remark

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

A qualitative approach

 $T: M \rightarrow H$ w*-to-w continuous

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

A qualitative approach

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*, S$ weakly compact

伺下 イヨト イヨト

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

A qualitative approach

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*$, S weakly compact
- \Rightarrow T = S^{*} is Mackey-to-norm continuous [Grothendieck 1953]

LGT shows that any w*-to-w continuous linear operator $T: M \rightarrow H$ is strong*-to-norm continuous in a precise way.

A qualitative approach

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*, S$ weakly compact
- \Rightarrow *T* = *S*^{*} is Mackey-to-norm continuous [Grothendieck 1953]
- $\Rightarrow T|_{B_M}$ is strong*-to-norm continuous [Akemann 1967]

▲□ → ▲ □ → ▲ □ → …

- 1. Grothendieck inequalities historical introduction
- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ →

A JB*-triple is a complex Banach space *E* equipped with a continuous triple product $\{\cdot, \cdot, \cdot\} : E^3 \to E$ satisfying the following conditions:

- 1. $\{\cdot, y, \cdot\}$ is a symmetric bilinear mapping,
- 2. $\{x, \cdot, z\}$ is conjugate-linear,
- 3. $\{a, b, \{x, y, z\}\} = \{\{a, b, x\}, y, z\} \{x, \{b, a, y\}, z\} + \{x, y, \{a, b, z\}\},\$
- {*x*, *x*, ·} is a hermitian operator with nonnegative spectrum,
 ||{*x*, *x*, *x*}|| = ||*x*||³.

<回> < 回> < 回> < 回> = □

A JB*-triple is a complex Banach space *E* equipped with a continuous triple product $\{\cdot, \cdot, \cdot\} : E^3 \to E$ satisfying the following conditions:

- 1. $\{\cdot, y, \cdot\}$ is a symmetric bilinear mapping,
- 2. $\{x, \cdot, z\}$ is conjugate-linear,
- **3.** $\{a, b, \{x, y, z\}\} =$

 $\{\{a, b, x\}, y, z\} - \{x, \{b, a, y\}, z\} + \{x, y, \{a, b, z\}\},\$

{*x*, *x*, ·} is a hermitian operator with nonnegative spectrum,
 ||{*x*, *x*, *x*}|| = ||*x*||³.

One of the motivations: Characterization of complex Banach spaces whose unit balls are bounded symmetric domains. [Kaup 1983]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

JB*-triples – examples

• A C*-algebra \Rightarrow A is a JB*-triple with $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x);$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @
- ► A C*-algebra \Rightarrow A is a JB*-triple with $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x); \quad \longleftarrow$
- H, K Hilbert spaces $\Rightarrow B(H, K)$ is a JB*-triple with

▲御▶ ▲臣▶ ▲臣▶ 三臣

- ► A C*-algebra \Rightarrow A is a JB*-triple with $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x); \quad \longleftarrow$
- H, K Hilbert spaces $\Rightarrow B(H, K)$ is a JB*-triple with
- *H* Hilbert space \Rightarrow *H* is a JB*-triple as *H* = *B*(\mathbb{C} , *H*);

◆□→ ◆ □ → ◆ □ → …

크

- A C*-algebra \Rightarrow A is a JB*-triple with $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x);$
- H, K Hilbert spaces $\Rightarrow B(H, K)$ is a JB*-triple with
- *H* Hilbert space \Rightarrow *H* is a JB*-triple as *H* = *B*(\mathbb{C} , *H*);
- a closed subspace of a C*-algebra stable under the above triple product is a JB*-triple;

←_|

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

• $A C^*$ -algebra $\Rightarrow A$ is a JB*-triple with

 $\{x,y,z\}=\frac{1}{2}(xy^*z+zy^*x);\quad\longleftarrow\quad$

- H, K Hilbert spaces $\Rightarrow B(H, K)$ is a JB*-triple with
- *H* Hilbert space \Rightarrow *H* is a JB*-triple as *H* = *B*(\mathbb{C} , *H*);
- a closed subspace of a C*-algebra stable under the above triple product is a JB*-triple;
- C(K, H₃(□)) (and its subtriples);
 (□ = complex octonions, dim □ = 8, H₃(□) = hermitian 3 × 3 matrices over □, dim H₃(□) = 27)

- (日) (三) (三) (三) (三)

• $A C^*$ -algebra $\Rightarrow A$ is a JB*-triple with

 $\{x,y,z\} = \frac{1}{2}(xy^*z + zy^*x); \quad \longleftarrow$

- H, K Hilbert spaces $\Rightarrow B(H, K)$ is a JB*-triple with
- *H* Hilbert space \Rightarrow *H* is a JB*-triple as *H* = *B*(\mathbb{C} , *H*);
- a closed subspace of a C*-algebra stable under the above triple product is a JB*-triple;

C(K, H₃(ℂ)) (and its subtriples);
 (ℂ = complex octonions, dim ℂ = 8,
 H₃(ℂ) = hermitian 3 × 3 matrices over ℂ, dim H₃(ℂ) = 27)

Any JB*-triple is of the form E_s ⊕_∞ E_e, where E_s (special) is a subtriple of a C*-algebra and E_e (exceptional) is a subtriple of C(K, H₃(ℂ)).

(日) (圖) (E) (E) (E)

Theorem [Kaup 1983] E, F JB*-triples, $T : E \rightarrow F$ a linear bijection. T is an isometry $\Leftrightarrow T$ preserves the triple product

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

-

```
Theorem [Kaup 1983]

E, F JB*-triples, T : E \rightarrow F a linear bijection.

T is an isometry \Leftrightarrow T preserves the triple product
```

Definition A JBW*-triple is a JB*-triple which is a dual Banach space.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

```
Theorem [Kaup 1983]

E, F JB*-triples, T : E \rightarrow F a linear bijection.

T is an isometry \Leftrightarrow T preserves the triple product
```

Definition A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]

• *M* JBW*-triple \Rightarrow the predual M_* is unique;

< 回 > < 回 > < 回 > -

```
Theorem [Kaup 1983]

E, F JB*-triples, T : E \rightarrow F a linear bijection.

T is an isometry \Leftrightarrow T preserves the triple product
```

Definition A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]

- *M* JBW*-triple \Rightarrow the predual *M*_{*} is unique;
- *M* JBW*-triple \Rightarrow { \cdot , \cdot , \cdot } is separately w*-to-w* continuous.

▲御▶ ▲理▶ ▲理▶ 二理

Theorem [Kaup 1983]

 $E, F \text{ JB*-triples}, T : E \rightarrow F$ a linear bijection.

T is an isometry \Leftrightarrow T preserves the triple product

Definition

A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]

- *M* JBW*-triple \Rightarrow the predual *M*_{*} is unique;
- *M* JBW*-triple \Rightarrow { \cdot , \cdot , \cdot } is separately w*-to-w* continuous.
- E JB*-triple \Rightarrow E^{**} is a JBW*-triple, the triple product on E^{**} extends that on E.

(日) (圖) (E) (E) (E)

Tripotents and partial isometries

E is a JB*-triple

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Tripotents and partial isometries

E is a JB*-triple

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

• $E_2(u) = p_f(u) V p_i(u);$

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

• *u* is unitary if $E_2(u) = E$;

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

• $E_2(u) = p_f(u) V p_i(u);$

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

• *u* is unitary if $E_2(u) = E$;

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

•
$$E_2(u) = p_f(u) V p_i(u);$$

• *u* is unitary iff
$$p_i(u) = 1$$
 and $p_f(u) = p$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

- *u* is unitary if $E_2(u) = E$;
- *u* is complete if $\{u, u, x\} = 0 \Rightarrow x = 0$.

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

- $E_2(u) = p_f(u) V p_i(u);$
- *u* is unitary iff $p_i(u) = 1$ and $p_f(u) = p$;

|▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

- u is unitary if $E_2(u) = E$;
- *u* is complete if $\{u, u, x\} = 0 \Rightarrow x = 0$.

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

- $E_2(u) = p_f(u) V p_i(u);$
- *u* is unitary iff $p_i(u) = 1$ and $p_f(u) = p$;
- *u* is complete iff there is a central projection $z \in V$ with $p_i(u) \ge z \ge p p_f(u)$.

(日) (圖) (E) (E) (E)

• $u \in E$ is a tripotent if $u = \{u, u, u\}$;

•
$$E_2(u) = \{x \in E; \{u, u, x\} = x\};$$

- u is unitary if $E_2(u) = E$;
- *u* is complete if $\{u, u, x\} = 0 \Rightarrow x = 0$.

E = pV, V a von Neumann algebra, $p \in V$ a projection

•
$$u = uu^*u$$
, u is a partial isometry,
 $p_i(u) = u^*u$, $p_f(u) = uu^* \le p$;

- $E_2(u) = p_f(u) V p_i(u);$
- *u* is unitary iff $p_i(u) = 1$ and $p_f(u) = p$;
- ▶ *u* is complete iff there is a central projection $z \in V$ with $p_i(u) \ge z \ge p p_f(u)$. For example, if $p_f(u) = p$.

白 マイモン イモン 一日

Complete tripotents = extreme points of the unit ball

∃ 990

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

크

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

크

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

► $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Ξ.

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

• $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;

•
$$\|x\|_{\varphi} = \sqrt{\varphi \{x, x, u\}}$$
 is a seminorm on *M*;

▲御▶ ▲理▶ ▲理▶

Ξ.

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

- $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;
- $\|x\|_{\varphi} = \sqrt{\varphi \{x, x, u\}}$ is a seminorm on *M*;
- $\|\cdot\|_{\varphi}$ does not depend on the choice of *u*.

<回> < 回> < 回> < 回> = □

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

- $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;
- $\|x\|_{\varphi} = \sqrt{\varphi \{x, x, u\}}$ is a seminorm on *M*;
- $\|\cdot\|_{\varphi}$ does not depend on the choice of *u*.

Remarks

$$\blacktriangleright M = \rho V \Rightarrow \|x\|_{\varphi} = \sqrt{\varphi(\frac{1}{2}(xx^*u + ux^*x))};$$

<回> < 回> < 回> < 回> = □

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

- $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;
- $\|x\|_{\varphi} = \sqrt{\varphi \{x, x, u\}}$ is a seminorm on *M*;
- $\|\cdot\|_{\varphi}$ does not depend on the choice of *u*.

Remarks

$$\blacktriangleright M = \rho V \Rightarrow ||x||_{\varphi} = \sqrt{\varphi(\frac{1}{2}(xx^*u + ux^*x))};$$

• E a JB*-triple, $\varphi \in E^* \Rightarrow \exists u \in E^{**} \dots$

- Complete tripotents = extreme points of the unit ball
- Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985] *M* a JBW*-triple, $\varphi \in M_*$

- $\exists u \in M$ tripotent with $\varphi(u) = \|\varphi\|$;
- $\|x\|_{\varphi} = \sqrt{\varphi \{x, x, u\}}$ is a seminorm on *M*;
- $\|\cdot\|_{\varphi}$ does not depend on the choice of *u*.

Remarks

$$\blacktriangleright M = \rho V \Rightarrow \|x\|_{\varphi} = \sqrt{\varphi(\frac{1}{2}(xx^*u + ux^*x))};$$

• *E* a JB*-triple, $\varphi \in E^* \Rightarrow \exists u \in E^{**} \dots$

• A a C*-algebra,
$$\varphi \ge 0 \Rightarrow \|x\|_{\varphi} = \sqrt{\varphi(\frac{1}{2}(xx^* + x^*x))}$$

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

Remark [Rodríguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong^{*} topology coincide.

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

Remark [Rodríguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong^{*} topology coincide.

M a JBW*-triple, H a Hilbert space

 $T: M \rightarrow H$ w*-to-w continuous

(本部) (本語) (本語) (語)

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

Remark [Rodríguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong^{*} topology coincide.

M a JBW*-triple, H a Hilbert space

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*$, S weakly compact

· 세례 M 세 문 M 세 문 M / 문

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

Remark [Rodríguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong^{*} topology coincide.

M a JBW*-triple, H a Hilbert space

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*, S$ weakly compact
- \Rightarrow T = S^{*} is Mackey-to-norm continuous [Grothendieck 1953]

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The strong* topology on a JBW*-triple *M* is generated by the seminorms $\|\cdot\|_{\varphi}$, $\varphi \in M_*$.

Remark [Rodríguez-Palacios 1991]

If M is a von Neumann algebra, the two notions of the strong^{*} topology coincide.

M a JBW*-triple, H a Hilbert space

- $T: M \rightarrow H$ w*-to-w continuous
- \Rightarrow $T = S^*$ for some $S : H^* \to M_*, S$ weakly compact
- \Rightarrow T = S^{*} is Mackey-to-norm continuous [Grothendieck 1953]
- $\Rightarrow T|_{B_M}$ is strong*-to-norm continuous

[Rodríguez-Palacios 1991]

▲御▶ ▲理▶ ▲理▶ 二理

- 1. Grothendieck inequalities historical introduction
- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ →

Theorem [Barton & Friedman 1987]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with $\|Tx\| \le \sqrt{2} \|T\| \|x\|_{\varphi}$.

<回> < 回> < 回> < 回> = □
Theorem [Barton & Friedman 1987]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with $\|Tx\| \le \sqrt{2} \|T\| \|x\|_{\varphi}$.

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form. Then there are $\varphi \in E^*$, $\psi \in F^*$, $\|\varphi\| = \|\psi\| = 1$ such that $|V(x, y)| \le (3 + 2\sqrt{2}) \|V\| \|x\|_{\varphi} \|y\|_{\psi}$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Theorem [Barton & Friedman 1987]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with $\|Tx\| \le \sqrt{2} \|T\| \|x\|_{\varphi}$.

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form. Then there are $\varphi \in E^*$, $\psi \in F^*$, $\|\varphi\| = \|\psi\| = 1$ such that $|V(x, y)| \le (3 + 2\sqrt{2}) \|V\| \|x\|_{\varphi} \|y\|_{\psi}$.

Remark

 [Peralta 2001] The proof contains a gap. The proof of (LGT) works only if T^{**} attains its norm. (Similarly for (GT).)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Theorem Conjecture [Barton & Friedman 1987]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with $\|Tx\| \le \sqrt{2} \|T\| \|x\|_{\varphi}$.

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form. Then there are $\varphi \in E^*$, $\psi \in F^*$, $\|\varphi\| = \|\psi\| = 1$ such that $|V(x, y)| \le (3 + 2\sqrt{2}) \|V\| \|x\|_{\varphi} \|y\|_{\psi}$.

Remark

 [Peralta 2001] The proof contains a gap. The proof of (LGT) works only if T^{**} attains its norm. (Similarly for (GT).)

< □→ < □→ < □→ □ □

Theorem Conjecture [Barton & Friedman 1987]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with $\|Tx\| \le \sqrt{2} \|T\| \|x\|_{\varphi}$.

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form. Then there are $\varphi \in E^*$, $\psi \in F^*$, $\|\varphi\| = \|\psi\| = 1$ such that $|V(x, y)| \le (3 + 2\sqrt{2}) \|V\| \|x\|_{\varphi} \|y\|_{\psi}$.

Remark

- [Peralta 2001] The proof contains a gap. The proof of (LGT) works only if T^{**} attains its norm. (Similarly for (GT).)
- No counterexample to the statement itself has been found.

<回>< E> < E> < E> = E

Theorem [Peralta & Rodríguez-Palacios 2001]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator and $\varepsilon > 0$. Then there are $\varphi_1, \varphi_2 \in E^*$, $\|\varphi_1\| = \|\varphi_2\| = 1$ with

$$\|T\mathbf{x}\| \leq (\sqrt{2} + \varepsilon) \|T\| \left(\|\mathbf{x}\|_{\varphi_1}^2 + \varepsilon \|\mathbf{x}\|_{\varphi_2}^2\right)^{1/2}$$

▲御▶ ▲ 国▶ ▲ 国▶ 二 国

Theorem [Peralta & Rodríguez-Palacios 2001]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator and $\varepsilon > 0$. Then there are $\varphi_1, \varphi_2 \in E^*$, $\|\varphi_1\| = \|\varphi_2\| = 1$ with

$$\|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$$

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form and $\varepsilon > 0$. Then there are $\varphi_1, \varphi_2 \in E^*, \psi_1, \psi_2 \in F^*, \|\varphi_1\| = \|\varphi_2\| = \|\psi_2\| = 1$ such that $|V(x, y)| \le (4 + 8\sqrt{2} + \varepsilon) \|V\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2} (\|y\|_{\psi_1}^2 + \varepsilon \|y\|_{\psi_2}^2)^{1/2}.$

Question Can we estimate $(||x||_{\omega_1}^2 + \varepsilon ||x||_{\omega_2}^2)^{1/2}$ by $K ||x||_{\omega}$?

Ondřej F.K. Kalenda Grothendieck inequalities

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Question

Can we estimate $(\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}$ by $K \|x\|_{\varphi}$?

More precisely:

Is there a universal constant *K* such that, given a JBW*-triple *M* and $\varphi_1, \varphi_2 \in M_*$, there is $\varphi \in M_*$ with $\|\varphi\| = 1$ such that

$$\sqrt{\|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2} \le K\sqrt{\|\varphi_1\| + \|\varphi_2\|} \, \|x\|_{\varphi} \qquad ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Question

Can we estimate $(\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}$ by $K \|x\|_{\varphi}$?

More precisely:

Is there a universal constant *K* such that, given a JBW*-triple *M* and $\varphi_1, \varphi_2 \in M_*$, there is $\varphi \in M_*$ with $\|\varphi\| = 1$ such that

$$\sqrt{\|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2} \le K\sqrt{\|\varphi_1\| + \|\varphi_2\|} \, \|x\|_{\varphi} \qquad ?$$

Remark

The positive answer to the previous question is equivalent to the Barton-Friedman conjecture.

Question

Can we estimate $(\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}$ by $K \|x\|_{\varphi}$?

More precisely:

Is there a universal constant *K* such that, given a JBW*-triple *M* and $\varphi_1, \varphi_2 \in M_*$, there is $\varphi \in M_*$ with $\|\varphi\| = 1$ such that

$$\sqrt{\|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2} \le K\sqrt{\|\varphi_1\| + \|\varphi_2\|} \, \|x\|_{\varphi} \qquad ?$$

Remark

The positive answer to the previous question is equivalent to the Barton-Friedman conjecture.

The main result [HKPP2] $K = \sqrt{2}$ works.

◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣

Step 1 – representation of JBW*-triples [Horn 1987], [Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to

$$(\bigoplus_{j\in J}L^{\infty}(\mu_j,C_j)\oplus N\oplus pV\oplus qW)_{\ell^{\infty}}$$

where

Step 1 – representation of JBW*-triples [Horn 1987], [Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to

$$(\bigoplus_{j\in J}L^{\infty}(\mu_j,C_j)\oplus N\oplus pV\oplus qW)_{\ell^{\infty}}$$

where

 C_j is a finite-dimensional JB*-triple, μ_j is a probability measure;

Step 1 – representation of JBW*-triples [Horn 1987], [Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to

$$(\bigoplus_{j\in J}L^{\infty}(\mu_j,C_j)\oplus N\oplus pV\oplus qW)_{\ell^{\infty}}$$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure;
- N is a JBW*-algebra (i.e., a JBW*-triple with a unitary element);

· < @ > < 면 > < 면 > _ 면

Step 1 – representation of JBW*-triples [Horn 1987], [Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to

$$(\bigoplus_{j\in J}L^{\infty}(\mu_j,C_j)\oplus N\oplus pV\oplus qW)_{\ell^{\infty}}$$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure;
- N is a JBW*-algebra (i.e., a JBW*-triple with a unitary element);
- V and W are von Neumann algebras;
- $p \in V$ is a finite projection;
- $q \in W$ is a properly infinite projection.

□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ●

It is enough to provide the proof for the individual summands.

< 回 > < 回 > < 回 > -

르

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001].

< 同 → < 回 → < 回 → .

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

▲□ ▶ ▲ □ ▶ ▲ □ ▶

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$

|▲母▶▲臣▶▲臣▶ | 臣 | のへの

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$
- 3. Lemma: $\varphi \in M_*$, $\|\varphi\| = \varphi(u)$, $u \in M_2(v) \Rightarrow \exists \widetilde{\varphi} \in M_*$, $\widetilde{\varphi}(v) = \|\widetilde{\varphi}\| = \|\varphi\|$ s.t. $\|\cdot\|_{\varphi} \le \sqrt{2} \|\cdot\|_{\widetilde{\varphi}}$.

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$
- 3. Lemma: $\varphi \in M_*$, $\|\varphi\| = \varphi(u)$, $u \in M_2(v) \Rightarrow \exists \widetilde{\varphi} \in M_*$, $\widetilde{\varphi}(v) = \|\widetilde{\varphi}\| = \|\varphi\|$ s.t. $\|\cdot\|_{\varphi} \le \sqrt{2} \|\cdot\|_{\widetilde{\varphi}}$.
- 4. Proof of the statement:

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$
- 3. Lemma: $\varphi \in M_*$, $\|\varphi\| = \varphi(u)$, $u \in M_2(v) \Rightarrow \exists \widetilde{\varphi} \in M_*$, $\widetilde{\varphi}(v) = \|\widetilde{\varphi}\| = \|\varphi\|$ s.t. $\|\cdot\|_{\varphi} \le \sqrt{2} \|\cdot\|_{\widetilde{\varphi}}$.
- 4. Proof of the statement: $\varphi_1 \dots u, \varphi_2 \dots v$;

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$
- 3. Lemma: $\varphi \in M_*$, $\|\varphi\| = \varphi(u)$, $u \in M_2(v) \Rightarrow \exists \widetilde{\varphi} \in M_*$, $\widetilde{\varphi}(v) = \|\widetilde{\varphi}\| = \|\varphi\|$ s.t. $\|\cdot\|_{\varphi} \le \sqrt{2} \|\cdot\|_{\widetilde{\varphi}}$.
- 4. Proof of the statement: $\varphi_1 \dots u, \varphi_2 \dots v; u, v \dots w;$

It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodríguez-Palacios 2001]. **Case 2:** M = qW with q properly infinite

- 1. $u, v \in W$ partial isometries with $p_f(u) = p_f(v) = q \Rightarrow \exists w \in W$ p.i. with $p_f(w) = q$ and $p_i(w) = p_i(u) \lor p_i(v)$.
- 2. $u, v \in M$ tripotents $\Rightarrow \exists w \in M$ tripotent with $M_2(u) \cup M_2(v) \subset M_2(w)$
- 3. Lemma: $\varphi \in M_*$, $\|\varphi\| = \varphi(u)$, $u \in M_2(v) \Rightarrow \exists \widetilde{\varphi} \in M_*$, $\widetilde{\varphi}(v) = \|\widetilde{\varphi}\| = \|\varphi\|$ s.t. $\|\cdot\|_{\varphi} \le \sqrt{2} \|\cdot\|_{\widetilde{\varphi}}$.
- 4. Proof of the statement: $\varphi_1 \dots u, \varphi_2 \dots v; u, v \dots w;$ $\varphi = \frac{\varphi_1 + \varphi_2}{\|\varphi_1\| + \|\varphi_2\|}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works.

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works.

Case 3: $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem.

(本部) (本語) (本語) (二語)

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works.

Case 3: $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem.

Case 4: $M = \rho V$ with ρ finite

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** $M = \rho V$ with ρ finite

1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** $M = \rho V$ with ρ finite

- 1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.
- 2. $p_1 V_1$ covered by Case 3 (due to representation of type I von Neumann algebras).

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** $M = \rho V$ with ρ finite

- 1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.
- p₁ V₁ covered by Case 3 (due to representation of type I von Neumann algebras).
- 3. The case $p_2 V_2$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** $M = \rho V$ with ρ finite

- 1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.
- 2. $p_1 V_1$ covered by Case 3 (due to representation of type I von Neumann algebras).
- 3. The case p_2V_2 : WLOG V_2 is finite and of type *II*.

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** M = pV with *p* finite

1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.

- p₁ V₁ covered by Case 3 (due to representation of type I von Neumann algebras).
- 3. The case p_2V_2 : WLOG V_2 is finite and of type *II*. We use the center-valued trace *T* on V_2

(日) (圖) (E) (E) (E)

The remaining cases: The seminorm $(\|\cdot\|_{\varphi_1}^2 + \|\cdot\|_{\varphi_2}^2)^{1/2}$ attains its maximum on B_M .

Hence the proof of [Barton & Friedman 1987] works. **Case 3:** $L^{\infty}(\mu, C)$, dim $C < \infty$: Use finite-dimensionality of *C* and Kuratowski–Ryll-Nardzewski selection theorem. **Case 4:** M = pV with *p* finite

1. $M = p_1 V_1 \oplus_{\infty} p_2 V_2$, p_1 finite of type I, p_2 finite of type II.

- p₁ V₁ covered by Case 3 (due to representation of type I von Neumann algebras).
- 3. The case p_2V_2 : WLOG V_2 is finite and of type *II*. We use the center-valued trace *T* on V_2 and the claim that the extreme points of

$$\{x \in V_2; 0 \le x \le 1 \& T(x) = T(p_2)\}$$

are only projections.

(日)

Theorem [HKPP2]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator and $\varepsilon > 0$. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with

 $\|T\mathbf{x}\| \leq (2+\varepsilon) \|T\| \|\mathbf{x}\|_{\varphi}.$

Theorem [HKPP2]

(LGT) Let *E* be a JB*-triple, *H* a Hilbert space $T : E \to H$ a bounded linear operator and $\varepsilon > 0$. Then there is $\varphi \in E^*$, $\|\varphi\| = 1$ with

$$\|T\mathbf{x}\| \leq (2+\varepsilon) \|T\| \|\mathbf{x}\|_{\varphi}.$$

(GT) Let E, F be JB*-triples, $V : E \times F \to \mathbb{C}$ a bounded bilinear form and $\varepsilon > 0$. Then there are $\varphi \in E^*$, $\psi \in F^*$, $\|\varphi\| = \|\psi\| = 1$ such that

$$\left| oldsymbol{V}(x,y)
ight| \leq \left(8 + 16 \sqrt{2} + arepsilon
ight) \left\| oldsymbol{V}
ight\| \left\| x
ight\|_arphi \left\| y
ight\|_\psi.$$

▲御▶ ▲臣▶ ▲臣▶ 三臣
- 1. Grothendieck inequalities historical introduction
- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ →

E JB*-triple, $T : E \rightarrow H$ bounded linear operator

1. T^{**} attains norm $\Rightarrow \exists \varphi : ||Tx|| \leq \sqrt{2} ||T|| ||x||_{\varphi}$.

Ondřej F.K. Kalenda Grothendieck inequalities

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

E JB*-triple, $T : E \rightarrow H$ bounded linear operator

1. T^{**} attains norm $\Rightarrow \exists \varphi : ||Tx|| \le \sqrt{2} ||T|| ||x||_{\varphi}$.

2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q @

E JB*-triple, $T : E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}$.

3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

E JB*-triple, $T: E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$
- 3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 3?

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

E JB*-triple, $T : E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$
- 3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 3?

Remarks

• Our proof gives $2 + \varepsilon$, nothing better.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

E JB*-triple, $T: E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$
- 3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 3?

Remarks

- Our proof gives $2 + \varepsilon$, nothing better.
- At least $\sqrt{2}$ is necessary. There is no counterexample that $\sqrt{2}$ is not sufficient.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

E JB*-triple, $T: E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$
- 3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 3?

Remarks

- Our proof gives $2 + \varepsilon$, nothing better.
- At least $\sqrt{2}$ is necessary. There is no counterexample that $\sqrt{2}$ is not sufficient.
- For C*-algebras (or, more generally JB*-algebras) we further proved that $\sqrt{2} + \varepsilon$ suffices. [work in progress]

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

E JB*-triple, $T: E \rightarrow H$ bounded linear operator

- 1. T^{**} attains norm $\Rightarrow \exists \varphi : \|Tx\| \leq \sqrt{2} \|T\| \|x\|_{\varphi}$.
- 2. $\forall \varepsilon \exists \varphi_1, \varphi_2 : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| (\|x\|_{\varphi_1}^2 + \varepsilon \|x\|_{\varphi_2}^2)^{1/2}.$
- 3. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (2 + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 3?

Remarks

- Our proof gives $2 + \varepsilon$, nothing better.
- At least $\sqrt{2}$ is necessary. There is no counterexample that $\sqrt{2}$ is not sufficient.
- For C*-algebras (or, more generally JB*-algebras) we further proved that √2 + ε suffices. [work in progress]
- **Conjecture:** Optimal constant should be $\sqrt{2} + \varepsilon$.

A C*-algebra, $T : A \to H$ bounded linear operator 1. $\exists \varphi$ state: $||Tx|| \leq 2 ||T|| \varphi \left(\frac{x^* x + xx^*}{2}\right)^{1/2} (= 2 ||T|| ||x||_{\varphi})$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ◆ の Q @

1. $\exists \varphi \text{ state: } \|Tx\| \leq 2 \|T\| \varphi \left(\frac{x^* x + xx^*}{2}\right)^{1/2} (= 2 \|T\| \|x\|_{\varphi})$

2. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| \|x\|_{\varphi}$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

- 1. $\exists \varphi$ state: $||Tx|| \le 2 ||T|| \varphi \left(\frac{x^* x + xx^*}{2}\right)^{1/2} (= 2 ||T|| ||x||_{\varphi})$
- 2. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question What is the optimal constant in 1?

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

- 1. $\exists \varphi$ state: $||Tx|| \le 2 ||T|| \varphi \left(\frac{x^* x + xx^*}{2}\right)^{1/2} (= 2 ||T|| ||x||_{\varphi})$
- 2. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question What is the optimal constant in 1?

Remarks

Our approach gives 2 + ε, nothing better. The original proof of Haagerup gives 2.

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

- 1. $\exists \varphi$ state: $||Tx|| \le 2 ||T|| \varphi \left(\frac{x^* x + xx^*}{2}\right)^{1/2} (= 2 ||T|| ||x||_{\varphi})$
- 2. $\forall \varepsilon \exists \varphi : \|Tx\| \leq (\sqrt{2} + \varepsilon) \|T\| \|x\|_{\varphi}$.

Question

What is the optimal constant in 1?

Remarks

- Our approach gives 2 + ε, nothing better. The original proof of Haagerup gives 2.
- At least √2 is necessary. There is (probably) no counterexample that √2 is not sufficient.

▲御▶ ▲注▶ ▲注▶ ―注

- 1. Grothendieck inequalities historical introduction
- 2. JB*-triples definitions, examples, properties
- 3. Grothendieck inequalities for JB*-triples
- 4. Optimal constants in the Little Grothendieck Theorem
- 5. Strong* topology and strongly WCG spaces

▲□ → ▲ □ → ▲ □ →

M a JBW*-triple \Rightarrow the strong*-topology is generated by the seminorms $\|\cdot\|_{\varphi}, \varphi \in M_*$.

(日) (圖) (E) (E) (E)

M a JBW*-triple \Rightarrow the strong*-topology is generated by the seminorms $\|\cdot\|_{\varphi}, \varphi \in M_*$.

Support tripotents

 $\varphi \in M_* \Rightarrow \exists u$ tripotent with $\varphi(u) = \|\varphi\|$. One of them is the smallest one, denoted by $s(\varphi)$.

・< 回 > < 回 > < 回 > < 回

M a JBW*-triple \Rightarrow the strong*-topology is generated by the seminorms $\|\cdot\|_{\varphi}, \varphi \in M_*$.

Support tripotents

 $\varphi \in M_* \Rightarrow \exists u$ tripotent with $\varphi(u) = \|\varphi\|$. One of them is the smallest one, denoted by $s(\varphi)$.

Proposition [HKPP1]

M a JBW*-triple, $\varphi, \psi \in M_*$.

*M*₂(*s*(φ)) ⊂ *M*₂(*s*(ψ)) ⇒ the topology generated by ||·||_φ on *B_M* is weaker than that generated by ||·||_ψ.

(日) (圖) (E) (E) (E)

M a JBW*-triple \Rightarrow the strong*-topology is generated by the seminorms $\|\cdot\|_{\varphi}, \varphi \in M_*$.

Support tripotents

 $\varphi \in M_* \Rightarrow \exists u$ tripotent with $\varphi(u) = \|\varphi\|$. One of them is the smallest one, denoted by $s(\varphi)$.

Proposition [HKPP1]

M a JBW*-triple, $\varphi, \psi \in M_*$.

- *M*₂(*s*(φ)) ⊂ *M*₂(*s*(ψ)) ⇒ the topology generated by ||·||_φ on *B_M* is weaker than that generated by ||·||_ψ.
- $M_2(s(\varphi)) \subsetneq M_2(s(\psi)) \Rightarrow$ the topology generated by $\|\cdot\|_{\varphi}$ on B_M is strictly weaker than that generated by $\|\cdot\|_{\psi}$.

(日) (圖) (E) (E) (E)

Proposition [HKPP1]

Let *M* be a JBW*-triple. The topologies generated by $\|\cdot\|_{\varphi}$, $\varphi \in M_*$, on B_M are upwards σ -directed.

<回><モン<

크

- A Banach space X is
 - WCG if there is $K \subset X$ weakly compact s.t. span K = X;

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

크

- A Banach space X is
 - WCG if there is $K \subset X$ weakly compact s.t. $\overline{\text{span}}K = X$;
 - ▶ strongly WCG if there is $K \subset X$ weakly compact s.t. $\forall L \subset X$ weakly compact $\forall \varepsilon > 0 \exists n : L \subset nK + \varepsilon B_X$.

< 回 > < 回 > < 回 >

- A Banach space X is
 - WCG if there is $K \subset X$ weakly compact s.t. span K = X;
 - ▶ strongly WCG if there is $K \subset X$ weakly compact s.t. $\forall L \subset X$ weakly compact $\forall \varepsilon > 0 \exists n : L \subset nK + \varepsilon B_X$.

Examples

 WCG spaces include separable spaces, reflexive spaces, c₀(Γ), L¹(μ) with μ σ-finite;

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A Banach space X is

- WCG if there is $K \subset X$ weakly compact s.t. span K = X;
- ▶ strongly WCG if there is $K \subset X$ weakly compact s.t. $\forall L \subset X$ weakly compact $\forall \varepsilon > 0 \exists n : L \subset nK + \varepsilon B_X$.

Examples

- WCG spaces include separable spaces, reflexive spaces, c₀(Γ), L¹(μ) with μ σ-finite;
- ► *c*⁰ is separable (hence WCG), not strongly WCG;

<日本

A Banach space X is

- WCG if there is $K \subset X$ weakly compact s.t. span K = X;
- ▶ strongly WCG if there is $K \subset X$ weakly compact s.t. $\forall L \subset X$ weakly compact $\forall \varepsilon > 0 \exists n : L \subset nK + \varepsilon B_X$.

Examples

- ▶ WCG spaces include separable spaces, reflexive spaces, $c_0(\Gamma)$, $L^1(\mu)$ with μ σ-finite;
- ► *c*⁰ is separable (hence WCG), not strongly WCG;
- Strongly WCG spaces include reflexive spaces, $L^1(\mu)$ with $\mu \sigma$ -finite.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let *M* be a JBW*-triple. Then M_* is WCG iff *M* is σ -finite.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

크

Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]

Let *M* be a JBW*-triple. Then M_* is WCG iff *M* is σ -finite.

Fact

Let *M* be a JBW*-triple. M_* is strongly WCG \Leftrightarrow (B_M , *Mackey*) is metrizable [Schlüchtermann & Wheeler 1988]

Let *M* be a JBW*-triple. Then M_* is WCG iff *M* is σ -finite.

Fact Let *M* be a JBW*-triple. M_* is strongly WCG \Leftrightarrow (B_M , *Mackey*) is metrizable [Schlüchtermann & Wheeler 1988] \Leftrightarrow (B_M , *strong**) is metrizable. [Rodríguez-Palacios 1991]

Let *M* be a JBW*-triple. Then M_* is WCG iff *M* is σ -finite.

Fact

Let *M* be a JBW*-triple. M_* is strongly WCG $\Leftrightarrow (B_M, Mackey)$ is metrizable [Schlüchtermann & Wheeler 1988] $\Leftrightarrow (B_M, strong^*)$ is metrizable. [Rodríguez-Palacios 1991]

Corollary

M a σ -finite von Neumann algebra (or, a σ -finite JBW*-algebra) \Rightarrow *M*_{*} strongly WCG.

Let *M* be a JBW*-triple. Then M_* is WCG iff *M* is σ -finite.

Fact

Let *M* be a JBW*-triple. M_* is strongly WCG \Leftrightarrow (B_M , *Mackey*) is metrizable [Schlüchtermann & Wheeler 1988] \Leftrightarrow (B_M , *strong**) is metrizable. [Rodríguez-Palacios 1991]

Corollary

M a σ -finite von Neumann algebra (or, a σ -finite JBW*-algebra) \Rightarrow *M*_{*} strongly WCG.

Example [HKPP1]

Γ uncountable \Rightarrow $M = B(\ell^2, \ell^2(\Gamma))$ is a *σ*-finite JBW* triple, M_* is not strongly WCG (but is WCG).

On preduals of σ -finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]

Any JBW*-triple is isometrically isomorphic to $(\bigoplus_{j\in J} L^{\infty}(\mu_j, C_j) \oplus N \oplus pV \oplus qW)_{\ell^{\infty}}$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure;
- N is a JBW*-algebra;
- V and W are von Neumann algebras;
- $p \in V$ is a finite projection;
- $q \in W$ is a properly infinite projection.

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1] Any σ -finite JBW*-triple is isometrically isomorphic to $(\bigoplus_{j\in J} L^{\infty}(\mu_j, C_j) \oplus N \oplus pV \oplus qW)_{\ell^{\infty}}$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure and J is countable;
- *N* is a σ -finite JBW*-algebra;
- V and W are von Neumann algebras;
- $p \in V$ is a σ -finite finite projection;
- $q \in W$ is a σ -finite properly infinite projection.

▲□ → ▲ □ → ▲ □ → □ □

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1] Any σ -finite JBW*-triple is isometrically isomorphic to $(\bigoplus_{j\in J} L^{\infty}(\mu_j, C_j) \oplus N \oplus \rho V \oplus qW)_{\ell^{\infty}}$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure and J is countable;
- *N* is a σ -finite JBW*-algebra;
- V and W are von Neumann algebras;
- $p \in V$ is a σ -finite finite projection;
- $q \in W$ is a σ -finite properly infinite projection.

Theorem [HKPP1] M_* is strongly WCG \Leftrightarrow W is σ -finite

▲□ → ▲ □ → ▲ □ → □ □

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1] Any σ -finite JBW*-triple is isometrically isomorphic to $(\bigoplus_{j\in J} L^{\infty}(\mu_j, C_j) \oplus N \oplus \rho V \oplus qW)_{\ell^{\infty}}$

where

- C_j is a finite-dimensional JB*-triple, μ_j is a probability measure and J is countable;
- *N* is a σ -finite JBW*-algebra;
- V and W are von Neumann algebras;
- $p \in V$ is a σ -finite finite projection;
- $q \in W$ is a σ -finite properly infinite projection.

Theorem [HKPP1] M_* is strongly WCG \Leftrightarrow *W* is σ -finite (In this case the summand *qW* may be omitted.)

크

Thank you for your attention.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで