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This talk is based mainly on a recent joint work with Jan
Hamhalter, Antonio M. Peralta and Herman Pfitzner contained
in the papers:

[HKPP1] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner:
Measures of weak non-compactness in preduals of von
Neumann algebras and JBW*-triples, arXiv:1901.08056, to
appear in J. Funct. Anal.

[HKPP2] J.Hamhalter, O.Kalenda, A.Peralta and H.Pfitzner:
Grothendieck’s inequalities for JB*-triples: Proof of the
Barton-Friedman conjecture, arXiv:1903.08931
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Grothendieck inequalities – the origin

Theorem [Grothendieck 1956]
There is κG > 0 such that whenever V : C(K1)× C(K2)→ F is
a bounded bilinear form, there are probability measures µ1, µ2
on K1, K2 such that

|V (f ,g)| ≤ κG‖V‖
(∫

K1

|f |2dµ1

) 1
2
(∫

Ω2

|g|2dµ2

) 1
2

for f ∈ C(K1), g ∈ C(K2).

Remark
The best value of κG is called Grothendieck constant. The
exact value is not known.
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The case of C*-algebras

Theorem [Pisier 1978 & Haagerup 1985]
A1,A2 C*-algebras, V : A1 ×A2 → C a bounded bilinear form⇒
there are states ϕ1 ∈ A∗1, ϕ2 ∈ A∗2 such that

|V (x , y)| ≤ 4 ‖V‖ ϕ1

(
xx∗ + x∗x

2

) 1
2

ϕ2

(
yy∗ + y∗y

2

) 1
2

for x ∈ A1, y ∈ A2.

Remarks
I ϕ ∈ A∗ is a state if ϕ ≥ 0 and ‖ϕ‖ = 1.
I States on C(K ) are exactly probability measures.
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Ondřej F.K. Kalenda Grothendieck inequalities



The case of C*-algebras

Theorem [Pisier 1978 & Haagerup 1985]
A1,A2 C*-algebras, V : A1 ×A2 → C a bounded bilinear form⇒
there are states ϕ1 ∈ A∗1, ϕ2 ∈ A∗2 such that

|V (x , y)| ≤ 4 ‖V‖ ϕ1

(
xx∗ + x∗x

2

) 1
2

ϕ2

(
yy∗ + y∗y

2

) 1
2

for x ∈ A1, y ∈ A2.

Remarks
I ϕ ∈ A∗ is a state if ϕ ≥ 0 and ‖ϕ‖ = 1.
I States on C(K ) are exactly probability measures.
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An easier version - Little Grothedieck Theorem

Theorem [Grothendieck 1956]
There is kG > 0 such that whenever T : C(K )→ H is a
bounded linear operator (where H is a Hilbert space), then
there is a probability µ on K such that

‖Tf‖ ≤ kG ‖T‖
(∫
|f |2 dµ

)1/2

for f ∈ C(K ).

The optimal value of kG is
√

π
2 in the real case and 2√

π
in the

complex case.
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Noncommutative Little Grothendieck Theorem

Theorem [Pisier 1978], [Haagerup 1983]
A C*-algebra, H Hilbert space, T : A→ H bounded linear
operator⇒ there are states ϕ1, ϕ2 ∈ A∗ such that

‖Tx‖ ≤ ‖T‖ (ϕ1(x∗x) + ϕ2(xx∗))1/2 for x ∈ A.

[Haagerup & Itoh 1995] Moreover, this inequality is optimal.

Corollary
A C*-algebra, H Hilbert space, T : A→ H bounded linear
operator⇒ there is a state ϕ ∈ A∗ such that

‖Tx‖ ≤ 2 ‖T‖ϕ
( x∗x+xx∗

2

)1/2 for x ∈ A.

Proof: Take ϕ = 1
2(ϕ1 + ϕ2).

Question: Is the constant 2 optimal?
Easy: The optimal constant is from [

√
2,2].
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GT←→ LGT

GT⇒ LGT
T : A→ H a bounded linear operator⇒ V (a,b) = 〈Ta,Tb∗〉 is a
bounded bilinear form

LGT⇒ GT
I V : A× B → F a bounded bilinear form
I T : a 7→ (b 7→ V (a,b)) is a bounded linear operator

T : A→ B∗

I T factors through a Hilbert space, i.e. T = UV , V : A→ H,
U : H → B∗

I apply LGT to V and to U∗|B : B → H∗

A drawback of the argument
The proof of the key step uses GT.
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LGT – a dual version

Theorem
M von Neumann algebra, H Hilbert space, T : M → H w*-to-w
continuous linear operator⇒ there is a normal state ϕ ∈ M∗
such that

‖Tx‖ ≤ 2 ‖T‖ϕ
( x∗x+xx∗

2

)1/2 for x ∈ M.

Remark
One way of proving LGT is to prove first the dual version and
then to apply it to T ∗∗ : A∗∗ → H.

Definition
M von Neumann algebra. The strong* topology on M is
generated by seminorms x 7→ ϕ

(x∗x+xx∗
2

)1/2
, ϕ ∈ M∗ state.

Remark
LGT shows that any w*-to-w continuous linear operator
T : M → H is strong*-to-norm continuous in a precise way.
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LGT once more

Remark
LGT shows that any w*-to-w continuous linear operator
T : M → H is strong*-to-norm continuous in a precise way.

A qualitative approach
T : M → H w*-to-w continuous
⇒ T = S∗ for some S : H∗ → M∗, S weakly compact
⇒ T = S∗ is Mackey-to-norm continuous [Grothendieck 1953]
⇒ T |BM is strong*-to-norm continuous [Akemann 1967]
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JB*-triples – definition

A JB*-triple is a complex Banach space E equipped with a
continuous triple product {·, ·, ·} : E3 → E satisfying the
following conditions:

1. {·, y , ·} is a symmetric bilinear mapping,
2. {x , ·, z} is conjugate-linear,
3. {a,b, {x , y , z}} =
{{a,b, x} , y , z} − {x , {b,a, y} , z}+ {x , y , {a,b, z}},

4. {x , x , ·} is a hermitian operator with nonnegative spectrum,
5. ‖{x , x , x}‖ = ‖x‖3.

One of the motivations: Characterization of complex Banach
spaces whose unit balls are bounded symmetric domains.
[Kaup 1983]
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JB*-triples – examples

I A C*-algebra⇒ A is a JB*-triple with
{x , y , z} = 1

2(xy∗z + zy∗x);

←−
I H,K Hilbert spaces⇒ B(H,K ) is a JB*-triple with

∣∣∣
I H Hilbert space⇒ H is a JB*-triple as H = B(C,H);
I a closed subspace of a C*-algebra stable under the above

triple product is a JB*-triple;
I C(K ,H3(O)) (and its subtriples);

(O = complex octonions, dimO = 8,
H3(O) = hermitian 3×3 matrices over O, dim H3(O) = 27)

I any JB*-triple is of the form Es ⊕∞ Ee, where
Es (special) is a subtriple of a C*-algebra
and Ee (exceptional) is a subtriple of C(K ,H3(O)).
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∣∣∣
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JB*-triples and JBW*-triples – properties

Theorem [Kaup 1983]
E ,F JB*-triples, T : E → F a linear bijection.

T is an isometry⇔ T preserves the triple product

Definition
A JBW*-triple is a JB*-triple which is a dual Banach space.

Theorem [Barton & Timoney 1986]
I M JBW*-triple⇒ the predual M∗ is unique;
I M JBW*-triple⇒ {·, ·, ·} is separately w*-to-w* continuous.
I E JB*-triple⇒ E∗∗ is a JBW*-triple, the triple product on

E∗∗ extends that on E .
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Tripotents and partial isometries

E is a JB*-triple
I u ∈ E is a tripotent if u = {u,u,u};

I E2(u) = {x ∈ E ; {u,u, x} = x};
I u is unitary if E2(u) = E ;
I u is complete if {u,u, x} = 0⇒ x = 0.

E = pV , V a von Neumann algebra, p ∈ V a projection
I u = uu∗u, u is a partial isometry,

pi(u) = u∗u, pf (u) = uu∗ ≤ p;
I E2(u) = pf (u)Vpi(u);
I u is unitary iff pi(u) = 1 and pf (u) = p;
I u is complete iff there is a central projection z ∈ V with

pi(u) ≥ z ≥ p − pf (u). For example, if pf (u) = p.
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Tripotents continued

I Complete tripotents = extreme points of the unit ball

I Hence, in a JBW*-triple there is a lot of tripotents.

Hilbertian seminorms on triples [Friedman & Russo 1985]
M a JBW*-triple, ϕ ∈ M∗
I ∃u ∈ M tripotent with ϕ(u) = ‖ϕ‖;
I ‖x‖ϕ =

√
ϕ {x , x ,u} is a seminorm on M;

I ‖·‖ϕ does not depend on the choice of u.

Remarks
I M = pV ⇒ ‖x‖ϕ =

√
ϕ(1

2(xx∗u + ux∗x));
I E a JB*-triple, ϕ ∈ E∗ ⇒ ∃u ∈ E∗∗ . . .

I A a C*-algebra, ϕ ≥ 0⇒ ‖x‖ϕ =
√
ϕ(1

2(xx∗ + x∗x))
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Strong* topology on JBW*-triples

Definition [Barton & Friedman 1990]
The strong* topology on a JBW*-triple M is generated by the
seminorms ‖·‖ϕ, ϕ ∈ M∗.

Remark [Rodrı́guez-Palacios 1991]
If M is a von Neumann algebra, the two notions of the strong*
topology coincide.

M a JBW*-triple, H a Hilbert space
T : M → H w*-to-w continuous
⇒ T = S∗ for some S : H∗ → M∗, S weakly compact
⇒ T = S∗ is Mackey-to-norm continuous [Grothendieck 1953]
⇒ T |BM is strong*-to-norm continuous

[Rodrı́guez-Palacios 1991]
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Plan

1. Grothendieck inequalities – historical introduction

2. JB*-triples – definitions, examples, properties

3. Grothendieck inequalities for JB*-triples

4. Optimal constants in the Little Grothendieck Theorem

5. Strong* topology and strongly WCG spaces
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Barton-Friedman conjecture

Theorem [Barton & Friedman 1987]
(LGT) Let E be a JB*-triple, H a Hilbert space T : E → H a
bounded linear operator. Then there is ϕ ∈ E∗, ‖ϕ‖ = 1 with

‖Tx‖ ≤
√

2 ‖T‖ ‖x‖ϕ .

(GT) Let E ,F be JB*-triples, V : E × F → C a bounded bilinear
form. Then there are ϕ ∈ E∗, ψ ∈ F ∗, ‖ϕ‖ = ‖ψ‖ = 1 such that

|V (x , y)| ≤ (3 + 2
√

2) ‖V‖ ‖x‖ϕ ‖y‖ψ .

Remark
I [Peralta 2001] The proof contains a gap. The proof of

(LGT) works only if T ∗∗ attains its norm. (Similarly
for (GT).)

I No counterexample to the statement itself has been found.
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A try to fix it – approximate version

Theorem [Peralta & Rodrı́guez-Palacios 2001]
(LGT) Let E be a JB*-triple, H a Hilbert space T : E → H a
bounded linear operator and ε > 0. Then there are ϕ1, ϕ2 ∈ E∗,
‖ϕ1‖ = ‖ϕ2‖ = 1 with

‖Tx‖ ≤ (
√

2 + ε) ‖T‖ (‖x‖2ϕ1
+ ε ‖x‖2ϕ2

)1/2.

(GT) Let E ,F be JB*-triples, V : E × F → C a bounded bilinear
form and ε > 0. Then there are ϕ1, ϕ2 ∈ E∗, ψ1, ψ2 ∈ F ∗,
‖ϕ1‖ = ‖ϕ2‖ = ‖ψ1‖ = ‖ψ2‖ = 1 such that
|V (x , y)| ≤

(4 + 8
√

2 + ε) ‖V‖ (‖x‖2ϕ1
+ ε ‖x‖2ϕ2

)1/2(‖y‖2ψ1
+ ε ‖y‖2ψ2

)1/2.
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Ondřej F.K. Kalenda Grothendieck inequalities



The problem

Question
Can we estimate (‖x‖2ϕ1

+ ε ‖x‖2ϕ2
)1/2 by K ‖x‖ϕ?

More precisely:
Is there a universal constant K such that, given a JBW*-triple M
and ϕ1, ϕ2 ∈ M∗, there is ϕ ∈ M∗ with ‖ϕ‖ = 1 such that√

‖x‖2ϕ1
+ ‖x‖2ϕ2

≤ K
√
‖ϕ1‖+ ‖ϕ2‖ ‖x‖ϕ ?

Remark
The positive answer to the previous question is equivalent to
the Barton-Friedman conjecture.

The main result [HKPP2]
K =

√
2 works.
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Ingredients of the proof

Step 1 – representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(
⊕
j∈J

L∞(µj ,Cj)⊕ N ⊕ pV ⊕ qW )`∞

where

I Cj is a finite-dimensional JB*-triple, µj is a probability
measure;

I N is a JBW*-algebra (i.e., a JBW*-triple with a unitary
element);

I V and W are von Neumann algebras;
I p ∈ V is a finite projection;
I q ∈W is a properly infinite projection.
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Ondřej F.K. Kalenda Grothendieck inequalities



Ingredients of the proof

Step 1 – representation of JBW*-triples [Horn 1987],
[Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(
⊕
j∈J

L∞(µj ,Cj)⊕ N ⊕ pV ⊕ qW )`∞

where
I Cj is a finite-dimensional JB*-triple, µj is a probability

measure;
I N is a JBW*-algebra (i.e., a JBW*-triple with a unitary

element);
I V and W are von Neumann algebras;
I p ∈ V is a finite projection;
I q ∈W is a properly infinite projection.

Ondřej F.K. Kalenda Grothendieck inequalities



Ingredients of the proof II

Step 2
It is enough to provide the proof for the individual summands.

Case 1: JBW*-algebra: [Peralta & Rodrı́guez-Palacios 2001].
Case 2: M = qW with q properly infinite

1. u, v ∈W partial isometries with pf (u) = pf (v) = q ⇒
∃w ∈W p.i. with pf (w) = q and pi(w) = pi(u) ∨ pi(v).

2. u, v ∈ M tripotents⇒ ∃w ∈ M tripotent with
M2(u) ∪M2(v) ⊂ M2(w)

3. Lemma: ϕ ∈ M∗, ‖ϕ‖ = ϕ(u), u ∈ M2(v)⇒ ∃ϕ̃ ∈ M∗,
ϕ̃(v) = ‖ϕ̃‖ = ‖ϕ‖ s.t. ‖·‖ϕ ≤

√
2 ‖·‖ϕ̃.

4. Proof of the statement: ϕ1 . . . u, ϕ2 . . . v ; u, v . . .w ;
ϕ = ϕ̃1+ϕ̃2

‖ϕ1‖+‖ϕ2‖ .
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Ondřej F.K. Kalenda Grothendieck inequalities



Ingredients of the proof II

Step 2
It is enough to provide the proof for the individual summands.
Case 1: JBW*-algebra: [Peralta & Rodrı́guez-Palacios 2001].
Case 2: M = qW with q properly infinite

1. u, v ∈W partial isometries with pf (u) = pf (v) = q ⇒
∃w ∈W p.i. with pf (w) = q and pi(w) = pi(u) ∨ pi(v).

2. u, v ∈ M tripotents⇒ ∃w ∈ M tripotent with
M2(u) ∪M2(v) ⊂ M2(w)

3. Lemma: ϕ ∈ M∗, ‖ϕ‖ = ϕ(u), u ∈ M2(v)⇒ ∃ϕ̃ ∈ M∗,
ϕ̃(v) = ‖ϕ̃‖ = ‖ϕ‖ s.t. ‖·‖ϕ ≤

√
2 ‖·‖ϕ̃.

4. Proof of the statement: ϕ1 . . . u, ϕ2 . . . v ; u, v . . .w ;
ϕ = ϕ̃1+ϕ̃2

‖ϕ1‖+‖ϕ2‖ .
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Ingredients of the proof III

The remaining cases: The seminorm (‖·‖2ϕ1
+ ‖·‖2ϕ2

)1/2 attains
its maximum on BM .

Hence the proof of [Barton & Friedman 1987] works.
Case 3: L∞(µ,C), dim C <∞: Use finite-dimensionality of C
and Kuratowski–Ryll-Nardzewski selection theorem.
Case 4: M = pV with p finite

1. M = p1V1 ⊕∞ p2V2, p1 finite of type I, p2 finite of type II.
2. p1V1 covered by Case 3 (due to representation of type I

von Neumann algebras).
3. The case p2V2: WLOG V2 is finite and of type II. We use

the center-valued trace T on V2 and the claim that the
extreme points of

{x ∈ V2; 0 ≤ x ≤ 1&T (x) = T (p2)}

are only projections.
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Case 4: M = pV with p finite

1. M = p1V1 ⊕∞ p2V2, p1 finite of type I, p2 finite of type II.

2. p1V1 covered by Case 3 (due to representation of type I
von Neumann algebras).

3. The case p2V2: WLOG V2 is finite and of type II. We use
the center-valued trace T on V2 and the claim that the
extreme points of

{x ∈ V2; 0 ≤ x ≤ 1&T (x) = T (p2)}

are only projections.
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Conclusion

Theorem [HKPP2]
(LGT) Let E be a JB*-triple, H a Hilbert space T : E → H a
bounded linear operator and ε > 0. Then there is ϕ ∈ E∗,
‖ϕ‖ = 1 with

‖Tx‖ ≤ (2 + ε) ‖T‖ ‖x‖ϕ .

(GT) Let E ,F be JB*-triples, V : E × F → C a bounded bilinear
form and ε > 0. Then there are ϕ ∈ E∗, ψ ∈ F ∗, ‖ϕ‖ = ‖ψ‖ = 1
such that

|V (x , y)| ≤ (8 + 16
√

2 + ε) ‖V‖ ‖x‖ϕ ‖y‖ψ .
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Constants in LGT

E JB*-triple, T : E → H bounded linear operator
1. T ∗∗ attains norm⇒ ∃ϕ : ‖Tx‖ ≤

√
2 ‖T‖ ‖x‖ϕ.

2. ∀ε ∃ϕ1, ϕ2 : ‖Tx‖ ≤ (
√

2 + ε) ‖T‖ (‖x‖2ϕ1
+ ε ‖x‖2ϕ2

)1/2.

3. ∀ε ∃ϕ : ‖Tx‖ ≤ (2 + ε) ‖T‖ ‖x‖ϕ .

Question
What is the optimal constant in 3?

Remarks
I Our proof gives 2 + ε, nothing better.
I At least

√
2 is necessary. There is no counterexample that√

2 is not sufficient.
I For C*-algebras (or, more generally JB*-algebras) we

further proved that
√

2 + ε suffices. [work in progress]
I Conjecture: Optimal constant should be

√
2 + ε.
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LGT for C*-algebras

A C*-algebra, T : A→ H bounded linear operator

1. ∃ϕ state: ‖Tx‖ ≤ 2 ‖T‖ϕ
(x∗x+xx∗

2

)1/2 (= 2 ‖T‖ ‖x‖ϕ)

2. ∀ε ∃ϕ : ‖Tx‖ ≤ (
√

2 + ε) ‖T‖ ‖x‖ϕ .

Question
What is the optimal constant in 1?

Remarks
I Our approach gives 2 + ε, nothing better. The original

proof of Haagerup gives 2.
I At least

√
2 is necessary. There is (probably) no

counterexample that
√

2 is not sufficient.
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Ondřej F.K. Kalenda Grothendieck inequalities



LGT for C*-algebras

A C*-algebra, T : A→ H bounded linear operator

1. ∃ϕ state: ‖Tx‖ ≤ 2 ‖T‖ϕ
(x∗x+xx∗

2

)1/2 (= 2 ‖T‖ ‖x‖ϕ)

2. ∀ε ∃ϕ : ‖Tx‖ ≤ (
√

2 + ε) ‖T‖ ‖x‖ϕ .

Question
What is the optimal constant in 1?

Remarks
I Our approach gives 2 + ε, nothing better. The original

proof of Haagerup gives 2.
I At least

√
2 is necessary. There is (probably) no

counterexample that
√

2 is not sufficient.
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On seminorms generating the strong* topology

Recall
M a JBW*-triple⇒ the strong*-topology is generated by the
seminorms ‖·‖ϕ, ϕ ∈ M∗.

Support tripotents
ϕ ∈ M∗ ⇒ ∃u tripotent with ϕ(u) = ‖ϕ‖. One of them is the
smallest one, denoted by s(ϕ).

Proposition [HKPP1]
M a JBW*-triple, ϕ,ψ ∈ M∗.
I M2(s(ϕ)) ⊂ M2(s(ψ))⇒ the topology generated by ‖·‖ϕ on

BM is weaker than that generated by ‖·‖ψ.
I M2(s(ϕ)) $ M2(s(ψ))⇒ the topology generated by ‖·‖ϕ on

BM is strictly weaker than that generated by ‖·‖ψ.
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Ondřej F.K. Kalenda Grothendieck inequalities



On seminorms generating the strong* topology

Recall
M a JBW*-triple⇒ the strong*-topology is generated by the
seminorms ‖·‖ϕ, ϕ ∈ M∗.

Support tripotents
ϕ ∈ M∗ ⇒ ∃u tripotent with ϕ(u) = ‖ϕ‖. One of them is the
smallest one, denoted by s(ϕ).

Proposition [HKPP1]
M a JBW*-triple, ϕ,ψ ∈ M∗.
I M2(s(ϕ)) ⊂ M2(s(ψ))⇒ the topology generated by ‖·‖ϕ on

BM is weaker than that generated by ‖·‖ψ.

I M2(s(ϕ)) $ M2(s(ψ))⇒ the topology generated by ‖·‖ϕ on
BM is strictly weaker than that generated by ‖·‖ψ.
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On seminorms generating the strong* topology II

Proposition [HKPP1]
Let M be a JBW*-triple.
The topologies generated by ‖·‖ϕ, ϕ ∈ M∗, on BM are upwards
σ-directed.
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WCG and strongly WCG spaces

Recall

[Schlüchtermann & Wheeler 1988]

A Banach space X is
I WCG if there is K ⊂ X weakly compact s.t. spanK = X ;

I strongly WCG if there is K ⊂ X weakly compact s.t.
∀L ⊂ X weakly compact ∀ε > 0 ∃n : L ⊂ nK + εBX .

Examples
I WCG spaces include separable spaces, reflexive spaces,

c0(Γ), L1(µ) with µ σ-finite;
I c0 is separable (hence WCG), not strongly WCG;
I strongly WCG spaces include reflexive spaces, L1(µ) with
µ σ-finite.
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Relations to preduals of JBW*-triples

Theorem [Bohata & HKPP 2018]
Let M be a JBW*-triple. Then M∗ is WCG iff M is σ-finite.

Fact
Let M be a JBW*-triple.
M∗ is strongly WCG⇔ (BM ,Mackey) is metrizable

[Schlüchtermann & Wheeler 1988]
⇔ (BM , strong∗) is metrizable. [Rodrı́guez-Palacios 1991]

Corollary
M a σ-finite von Neumann algebra (or, a σ-finite JBW*-algebra)
⇒ M∗ strongly WCG.

Example [HKPP1]
Γ uncountable⇒ M = B(`2, `2(Γ)) is a σ-finite JBW* triple,
M∗ is not strongly WCG (but is WCG).
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[Schlüchtermann & Wheeler 1988]
⇔ (BM , strong∗) is metrizable. [Rodrı́guez-Palacios 1991]

Corollary
M a σ-finite von Neumann algebra (or, a σ-finite JBW*-algebra)
⇒ M∗ strongly WCG.

Example [HKPP1]
Γ uncountable⇒ M = B(`2, `2(Γ)) is a σ-finite JBW* triple,
M∗ is not strongly WCG (but is WCG).
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On preduals of σ-finite JBW*-triples

Theorem [Horn 1987], [Horn & Neher 1988], [HKPP1]
Any JBW*-triple is isometrically isomorphic to

(
⊕

j∈J L∞(µj ,Cj)⊕ N ⊕ pV ⊕ qW )`∞

where
I Cj is a finite-dimensional JB*-triple, µj is a probability

measure;
I N is a JBW*-algebra;
I V and W are von Neumann algebras;
I p ∈ V is a finite projection;
I q ∈W is a properly infinite projection.

Theorem [HKPP1]
M∗ is strongly WCG⇔W is σ-finite

(In this case the summand qW may be omitted.)
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Thank you for your attention.

Ondřej F.K. Kalenda Grothendieck inequalities
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