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Disjointness preserving operators - motivation

In Banach lattices:

Theorem (Huijsmans, de Pagter, 1994, Koldunov 1995)

If X is a Banach lattice and T : X → X is a disjointness preserving bijection,
then T−1 is disjointness preserving.

Theorem (Arendt, 1986)

Let X be a Banach lattice and let T : [0,∞)→ L(X ) be a C0-semigroup with
generator A : X ⊇ D(A)→ X such that for every t ∈ [0,∞) the operator T (t)
is disjointness preserving. Then A is band preserving.

In ordered Banach spaces: Only some first (partial) results on
disjointness preserving operators, so far. Active field of research!

Joint work with Onno van Gaans, Universiteit Leiden, Netherlands
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Structures in partially ordered vector spaces

Partially ordered vector spaces

Let X be a (real) vector space. A partial order ≤ on X is called a vector
space order if
(a) x , y , z ∈ X and x ≤ y imply x + z ≤ y + z,
(b) x ∈ X , 0 ≤ x and λ ∈ [0,∞) imply 0 ≤ λx .

The set K := {x ∈ X ; 0 ≤ x} is then a cone in X , i.e. x , y ∈ K ,
λ ∈ [0,∞) imply λx + y ∈ K , and K ∩ (−K ) = {0}.

We denote a partially ordered vector space (povs) by (X ,K ).

(X ,K ) is called Archimedean if for every x , y ∈ X such that nx ≤ y for
all n ∈ N one has that x ≤ 0.
(X ,K ) is directed if and only if K is generating, i.e. X = K − K .

For M ⊆ X , denote by Mu the set of upper bounds of M, and by M l the
set of lower bounds of M.
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Structures in partially ordered vector spaces

Cones in R3 – from lattice to anti-lattice
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Structures in partially ordered vector spaces

Four-ray cone in R3

The supremum of x and y exists, the supremum of x and u does not
exist.
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Structures in partially ordered vector spaces

Disjointness - motivation

If X is a vector lattice, then x , y ∈ X are called disjoint (x ⊥ y ) if
|x | ∧ |y | = 0, which is equivalent to |x + y | = |x − y |.

In function spaces (that are not vector lattices, in general, e.g. C1[0,1]),
we want that two functions are disjoint if and only if they have disjoint
supports.

In the literature there were suggestions for disjointness in povs, e.g.
(for x , y positive) x ⊥ y if [0, x ] ∩ [0, y ] = {0}, but then disjoint
complements are not convex, in general.

We need another idea ..
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Structures in partially ordered vector spaces

Replace modulus |x | by {x ,−x}u
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Structures in partially ordered vector spaces

Structures in partially ordered vector spaces

Let (X ,X+) be a povs.

Disjointness: [van Gaans, K. 2006]

x ⊥ y :⇐⇒ {x + y ,−(x + y)}u = {x − y ,−(x − y)}u

M ⊆ X is called
solid, if ∀x ∈ X , m ∈ M with {x ,−x}u ⊇ {m,−m}u one has x ∈ M
[van Gaans, 1999]
ideal, if M is a solid subspace of X .
band, if M = Mdd.

To prove properties of these structures, one needs an appropriate
embedding of the povs into a vector lattice (and a theory how the
structures in the povs and the ambient vector lattice are related).

Anke Kalauch (TU Dresden) Ordered Banach spaces 2019 9 / 49



Embeddings of partially ordered vector spaces into vector lattices

Embeddings for povs

We discuss two classical embeddings for povs into vector lattices,
the Dedekind completion for Archimedean directed povs, and
the functional representation for order unit spaces,

and the generalized framework
vector lattice cover and Riesz completion for pre-Riesz spaces.
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Embeddings of partially ordered vector spaces into vector lattices

Dedekind completion

Let (X ,K ) be a povs and let

X δ := {A ⊆ X ; Aul = A} \ {∅,X}

be ordered by inclusion.
If (X ,K ) is directed, then X δ is a Dedekind complete lattice. The map

J : X → X δ, x 7→ {x}l

is bipositive and J[X ] is order dense in X δ, i.e.

∀y ∈ X δ : y = inf{J(x); x ∈ X , J(x) ≥ y}.
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Embeddings of partially ordered vector spaces into vector lattices

For A,B ∈ X δ and λ ∈ R define A⊕ B = (A + B)ul, 	A = −Au,

λ ∗ A =


λA, λ > 0,
{0}l, λ = 0,
λAu, λ < 0.

Lemma

For every A ∈ X δ we have

A⊕	A = {0}l

if and only if X is Archimedean.

In this case, X δ endowed with addition ⊕, scalar multiplication ∗ and
partial order ⊆ is a Dedekind complete vector lattice, and the
embedding map J : X → X δ is linear.
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Embeddings of partially ordered vector spaces into vector lattices

For which povs does an order dense embedding into a (not
necessarily Dedekind complete) vector lattice exist?

X ρ :=


m∨

i=1

{ai}l ⊕	
n∨

j=1

{bj}l : a1, . . . ,am,b1, . . . ,bn ∈ X , m,n ∈ N

 .

Proposition (van Haandel, 1993)
Let X be a directed partially ordered vector space. For every
a1, . . . ,am ∈ X and A =

∨m
i=1{ai}l the identity

A⊕	A = {0}l

holds true if and only if X is a pre-Riesz space.
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Embeddings of partially ordered vector spaces into vector lattices

Pre-Riesz spaces

Definition (van Haandel, 1993)
A povs X is called a pre-Riesz space if ∀x , y , z ∈ X with
{x + y , x + z}u ⊆ {y , z}u one has x ≥ 0.

Every vector lattice is a pre-Riesz space.

Proposition
Every Archimedean directed povs is a pre-Riesz space.
Every pre-Riesz space is directed.

Examples of pre-Riesz spaces:
ordered Banach spaces with closed generating cones
order unit spaces
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Embeddings of partially ordered vector spaces into vector lattices

Theorem (van Haandel, 1993)
Let X be a partially ordered vector space. The following statements
are equivalent:

(i) X is a pre-Riesz space.
(ii) There exist a Riesz space Y and a bipositive linear map i : X → Y

such that i[X ] is order dense in Y .
(iii) There exist a Riesz space Y and a bipositive linear map i : X → Y

such that i[X ] is order dense in Y and generates Y as a vector
lattice, i.e.

Y =


m∨

i=1

i(ai)−
n∨

j=1

i(bj) : a1, . . . ,am,b1, . . . ,bn ∈ X , m,n ∈ N

 .

Moreover, all Riesz spaces Y as in (iii) are isomorphic as Riesz
spaces.
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Embeddings of partially ordered vector spaces into vector lattices

Vector lattice covers and the Riesz completion

In van Haandel’s theorem,
a pair (Y , i) as in (ii) is called a vector lattice cover of X , and
a pair (Y , i) as in (iii) the Riesz completion of X .

In particular, if X is Archimedean and directed, then X δ is a vector
lattice cover of X , and X ρ is a representation of the Riesz completion
(but in examples there are usually more convenient ones).
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Embeddings of partially ordered vector spaces into vector lattices

Order unit spaces

An element u > 0 is called an order unit if for every x ∈ X there is a
λ ∈ (0,∞) such that x ∈ [−λu, λu].

If X contains an order unit, then X is directed.

For a fixed order unit u in X , a seminorm on X is introduced by

‖·‖u : X → [0,∞), x 7→ ‖x‖u := inf{λ ∈ (0,∞); −λu ≤ x ≤ λu}.

If (X ,K ) is an Archimedean povs with order unit u, then ‖·‖u is a norm.
Such spaces are called order unit spaces.
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Embeddings of partially ordered vector spaces into vector lattices

Examples of order unit spaces

X = C(Ω) with point-wise order, where Ω is a compact Hausdorff
space.
If X is a finite-dimensional povs with closed generating cone, then
X is an order unit space.
For a directed povs (X ,K ) let L+(X ) := {T ∈ L(X ); T [K ] ⊆ K}.
Then (L(X ),L+(X )) is a povs.
If X is a finite-dimensional order unit space, then L(X ) is an order
unit space as well.
Lorentz cone in R× H, where H is a Hilbert space
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Embeddings of partially ordered vector spaces into vector lattices

Two classical embeddings of a povs into a vector lattice:

1 Dedekind completion:
If (X ,K ) is an Archimedean directed povs, then there is a
Dedekind complete vector lattice Y and a linear bipositive map
J : X → Y such that J[X ] is order dense in Y .

2 Functional representation (Kadison, 1951):
If (X ,K ) is an order unit space, then there is a compact Hausdorff
space Ω and a linear bipositive map Φ: X → C(Ω).

Is the functional representation of X a vector lattice cover?
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Embeddings of partially ordered vector spaces into vector lattices

Construction of the functional representation

Let (X ,K ) be an Archimedean povs with order unit u, equipped with
the u-norm ‖·‖u. X ′ denotes the (norm) dual space of X and
K ′ := {ϕ ∈ X ′; ϕ[K ] ⊆ [0,∞)} the dual cone. The set

Σ = {ϕ ∈ K ′; ϕ(u) = 1}

is a base of K ′ (i.e. Σ is convex and every ψ ∈ K ′ has a unique
representation ψ = λϕ with ϕ ∈ Σ and λ ∈ [0,∞) ).

By the Banach-Alaoglu theorem, the closed unit ball B′ of X ′ is
weakly-∗ compact.
As Σ is a weakly-∗ closed subset of B′, Σ is weakly-∗ compact in
X ′, i.e. Σ equals the weak-∗ closure of the convex hull of the
extreme points of Σ by the Krein-Milman theorem.
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Embeddings of partially ordered vector spaces into vector lattices

Denote the set of all extreme points of Σ by

Λ := ext(Σ).

(In general, Λ need not be weakly-∗ closed, not even if X is finite
dimensional.)
Denote by Λ the weak-∗ closure of Λ in Σ, hence Λ is a compact
Hausdorff space. Define

Φ: X → C(Λ), x 7→ (ϕ 7→ ϕ(x)).

Φ is linear and maps u to the constant-1 function
Let x ∈ X . Then x ∈ K if and only if for every ϕ ∈ Λ one has
ϕ(x) ≥ 0.
Consequently, Φ is bipositive.
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Embeddings of partially ordered vector spaces into vector lattices

Denote by L(X ,K ) the Riesz subspace generated by Φ[X ] inside C(Λ),
i.e.

L(X ,K ) =
{ m∨

j=1

xj −
n∨

j=1

yj ; x1, . . . , xm, y1, . . . , yn ∈ Φ[X ]
}
.

The Stone-Weierstrass theorem yields that L(X ,K ) is norm dense in
C(Λ).
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Embeddings of partially ordered vector spaces into vector lattices

Functional representation as a vector lattice cover

Theorem (Lemmens, van Gaans, K., 2014)

If (X ,K ) is an Archimedean povs with an order unit u, then Φ[X ] is
order dense in C(Λ), i.e. (C(Λ),Φ) is a vector lattice cover of X and
L(X ,K ) is the Riesz completion of (X ,K ).

Note: This is convenient in examples, since the ambient vector lattice
has the standard point-wise order!
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Embeddings of partially ordered vector spaces into vector lattices

Example: Polyhedral cone

Let X = Rn and let x (1), . . . , x (r) ∈ X be such that

K := pos{x (1), . . . , x (r)}

is generating. K is closed and hence Archimedean.
Fix u ∈ int(K ), then u is an order unit.
Σ = {f ∈ K ′; f (u) = 1} has finitely many extreme points f (1), . . . , f (k),
where k ≥ n, i.e.

Λ = Λ = {f (1), . . . , f (k)},

Φ: Rn → Rk , x 7→ (f (1)(x), . . . , f (k)(x))T.

The cone K has the representation

K = {x ∈ Rn; ∀i ∈ {1, . . . , k} : f (i)(x) ≥ 0} .
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Embeddings of partially ordered vector spaces into vector lattices

Example: Lorentz cone

Let H be a Hilbert space with inner product 〈·, ·〉 and let X = R× H be
ordered by means of the Lorentz cone

LH = {(r , z) ∈ R× H; r2 − 〈z, z〉 ≥ 0 and r ≥ 0}

and endowed with the inner product 〈x |y〉 = rs + 〈z, v〉, where
x = (r , z) and y = (s, v), which turns X into a Hilbert space.
The point u = (1,0) is an interior point of LH , i.e. u is an order unit.
As LH is self-dual we get

Σ = {(1, z) ∈ LH},

Λ = Λ = {(1, z) ∈ LH ; ‖z‖ = 1}

and the order dense embedding Φ: (X ,LH)→ C(Λ).
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Embeddings of partially ordered vector spaces into vector lattices

Riesz* homomorphisms

For vector lattices X and Y , Riesz homomorphisms h : X → Y are
considered, i.e. linear maps with h(x ∨ y) = h(x) ∨ h(y) for all
x , y ∈ X . There are two generalizations:

Let X , Y be povs. A linear map h : X → Y is called a
Riesz homomorphism if for every x , y ∈ X one has

h [{x , y}u]l = h[{x , y}]ul

[Buskes, van Rooij, 1993], and a
Riesz* homomorphism, if for every nonempty finite subset F of X
one has

h
[
F ul] ⊆ h[F ]ul

[van Handel, 1993].
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Embeddings of partially ordered vector spaces into vector lattices

Every Riesz homomorphism is a Riesz* homomorphism, and
every Riesz* homomorphism is positive.
If X and Y are Riesz spaces, then the notion of Riesz
homomorphism coincides with that of vector lattice theory, and
also with the notion of Riesz* homomorphism.

Theorem (van Haandel, 1993)

Let X1 and X2 be pre-Riesz spaces, let (Y1, i1) be the Riesz completion
of X1 and let (Y2, i2) be a vector lattice cover of X2. For a linear map
h : X1 → X2, the following statements are equivalent:

(i) h is a Riesz* homomorphism.
(ii) There exists a Riesz homomorphism ĥ : Y1 → Y2 with

i2 ◦ h = ĥ ◦ i1.
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Embeddings of partially ordered vector spaces into vector lattices

We consider again an order unit space X with order unit u and Σ, Λ
defined as above.

Proposition

Let (X ,K ) be an Archimedean povs with order unit u, and let ϕ ∈ Σ.
(i) One has ϕ ∈ Λ if and only if ϕ is a Riesz homomorphism.

[Hayes’s theorem]
(ii) One has ϕ ∈ Λ if and only if ϕ is a Riesz* homomorphism.

[van Haandel, 1993]
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Disjointness, ideals and bands under embedding

Disjointness, ideals and bands under embedding

Under which conditions can disjointness, ideals and bands be
extended or restricted, respectively, between a pre-Riesz space X
and its vector lattice cover Y ?
Which properties do ideals and bands have in povs? What are the
differences to the classical vector lattice theory?

Anke Kalauch (TU Dresden) Ordered Banach spaces 2019 29 / 49



Disjointness, ideals and bands under embedding

Disjointness under embedding

Proposition (van Gaans, K., 2006)

Let X be a pre-Riesz space and (Y , i) a vector lattice cover of X . Then
one has for every x , y ∈ X

x ⊥ y ⇐⇒ i(x) ⊥ i(y).

Order denseness is needed for ‘=⇒’.

Proposition

For M ⊆ X one has Md =
[
i[M]d

]
i
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Disjointness, ideals and bands under embedding

Ideals and bands under embedding

(R) If J ⊆ Y is an ideal (band, . . . ), is then also
[J]i := {x ∈ X ; i(x) ∈ J} an ideal (band, . . . )?

(E) If I ⊆ X is an ideal (band, . . . ), does there exist an
ideal (band, . . . ) J in Y such that I = [J]i?

[van Gaans, K., 2008, 2012] (R) (E)
ideal yes no
order closed ideal yes no
solvex ideal yes yes
band no yes
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Disjointness, ideals and bands under embedding

Extension and restriction for bands

Let (X ,K ) be a pre-Riesz space and (Y , i) its Riesz completion.

Extension: If B ⊆ X is a band, then B̂ := i[B]dd is the smallest
extension band of B, i.e. B̂ is the smallest band in Y with B =

[
B̂
]
i .

Restriction: X is called pervasive if for every y ∈ Y+ \ {0} there is
x ∈ X such that 0 < i(x) ≤ y .

Theorem (van Gaans, K. 2008)

In a pervasive pre-Riesz space (X ,K ) the restriction property (R) for
bands holds, i.e. for every band B̂ in Y the set

[
B̂
]
i is a band in X.
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Disjointness, ideals and bands under embedding

Solvex sets

Let X be a povs. M ⊆ X is called
solvex, if for every x ∈ X , x1, . . . , xn ∈ M and λ1, . . . , λn ∈ (0,1]
with

∑n
k=1 λk = 1 and

{x ,−x}u ⊇

{
n∑

k=1

εkλkxk ; ε1, . . . , εn ∈ {1,−1}

}u

one has x ∈ M [van Gaans, 1999].

Proposition (van Gaans, 1999)
Every solvex set is solid and convex.
If X is a vector lattice, then M ⊆ X is solvex⇐⇒ M is solid and
convex. In particular, every ideal is solvex.
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Disjointness, ideals and bands under embedding

Theorem (van Gaans, K., 2008)

If (X ,K ) is a pre-Riesz space, then every band in X is an order closed
solvex ideal.

Archimedean vector lattice

ideal

solvex idealo-closed ideal

band

pre-Riesz space

band

= o-closed ideal

ideal

= solvex ideal
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Disjointness, ideals and bands under embedding

Bands in C(Ω)

[Zaanen 1997]: For an open set M ⊆ Ω the set

IM := {x ∈ C(Ω); ∀ϕ ∈ Ω \M : x(ϕ) = 0}

is an ideal.

Proposition

IM is a band⇐⇒ M is regularly open, i.e. M = int(M).

Let X be an order unit space with functional representation

Φ: X → C(Ω), where Ω := Λ.

Can bands in X be characterized by subsets of Ω ?
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Disjointness, ideals and bands under embedding

Characterization of bands by means of the
functional representation

We use the embedding Φ: X → C(Ω), as above.
For M ⊆ Ω let Z(M) = {x ∈ X ; ∀ϕ ∈ M : ϕ(x) = 0},
for B ⊆ X let N(B) := {ϕ ∈ Ω; ∀b ∈ B : ϕ(b) = 0}.

Theorem (Lemmens, van Gaans, K., 2015)
Let X be an Archimedean povs with order unit.

If B is a band in X, then B = Z(N(B)).
Assume that for B ⊆ X one has B = Z(N(B)).
B is a band if and only if N(B) is bisaturated.

A subset M ⊆ Ω is called bisaturated, if M = sat(Ω \ sat(Ω \M)),
where sat(M) = N(Z(M)) = Ω ∩ aff(M).

In contrast to vector lattices, in povs there can exist non-directed
bands! Example: Four-ray cone
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Disjointness preserving operators

Structure preserving operators

Let X and Y be pre-Riesz spaces and T : X ⊇→ Y a linear operator.
T is called disjointness preserving if for every x , y ∈ X from x ⊥ y
it follows that Tx ⊥ Ty .
T is called band preserving (or local) if for every band B in X one
has T (B) ⊆ B.
(Equivalent: For every x , y ∈ X with x ⊥ y we have Tx ⊥ y .)
T is called an orthomorphism if T is order bounded and band
preserving.

Every band preserving operator is disjointness preserving.

In the theory of C0-semigroups on a Banach space X , we consider
T : X ⊇ D(T )→ Y and call T local if for every band B in X one has
T (B ∩ D(T )) ⊆ B.
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Disjointness preserving operators

Example of disjointness preserving operators:
Riesz* homomorphisms

A linear operator between vector lattices is a Riesz homomorphism if
and only if it is positive and disjointness preserving.

Considering operators between pre-Riesz spaces, every Riesz*
homomorphism is positive and disjointness preserving.

The converse is not true, in general, see the following example [van
Imhoff, 2018]: The operator T : P[0,1]→ P[0,1], x 7→ (s 7→

∫ s
0 x(t)dt)

is positive and disjointness preserving, but not a Riesz*
homomorphism.
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Disjointness preserving operators

Riesz* homomorphisms on spaces of
continuous functions

Theorem (van Imhoff, 2018)

Let X and Y be order dense subspaces of C(P) and C(Q), respectively, and
T : X → Y linear.

(i) If T is a Riesz* homomorphism, then there exist w : Q → R+ and
α : Q → P such that for every x ∈ X and q ∈ Q we have

(Tx)(q) = w(q)x(α(q)) (∗).

If for every p1,p2 ∈ P with p1 6= p2 there is x ∈ X such that x(p1) = 0
and x(p2) = 1, then w can be taken such that w is continuous on Q, the
map α is uniquely determined on {q ∈ Q; w(q) > 0}, and on this set α is
continuous.

(ii) If for T there exist w ∈ C(Q), w ≥ 0, and α : Q → P continuous on
{q ∈ Q; w(q) > 0} such that (∗) holds for every x ∈ X and q ∈ Q, then T
is a Riesz* homomorphism.
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Disjointness preserving operators

Disjointness preserving inverse in vector lattices

Theorem (Huijsmans, de Pagter, 1994, Koldunov 1995)

If X is a Banach lattice and T : X → X is a disjointness preserving
bijection, then T−1 is disjointness preserving.

There is an example of a disjointness preserving linear bijection on an
Archimedean vector lattice whose inverse is not disjointness
preserving [Abramovich, Kitover, 2000].

How about disjointness preserving operators on pre-Riesz
spaces?
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Disjointness preserving operators

Disjointness preserving inverse

Theorem (Lemmens, van Gaans, K., 2018)

Let (X ,K ) be a finite-dimensional povs with closed generating cone K .
If T : X → X is a disjointness preserving linear bijection, then T−1 is
disjointness preserving.

The combinatorial proof relies on the upper bound for the number of
bands in X .

Theorem (van Imhoff, 2018)
Let X and Y be pre-Riesz spaces with X pervasive. Let T : X → Y be
a bijective Riesz* homomorphism. Then T−1 is a Riesz*
homomorphism (and, hence, T is an order isomorphism).

Anke Kalauch (TU Dresden) Ordered Banach spaces 2019 41 / 49



Disjointness preserving operators

Disjointness preserving inverse

Theorem (Huijsmans, de Pagter, 1994)

Let X be a uniformly complete vector lattice, Y a normed vector lattice,
and T : X → Y an injective and disjointness preserving operator. Then
for every x1, x2 ∈ X we have that Tx1 ⊥ Tx2 implies x1 ⊥ x2.

1. Can we replace Y by a pre-Riesz space?
Idea: Consider the Riesz completion (Y ρ, i) of Y and apply the above
theorem to i ◦ T . How can we get a Riesz norm on Y ρ?

2. Can X be replaced by a pre-Riesz space?
Given the Riesz completion X ρ of X , can T be extended to a
disjointness preserving operator on X ρ? So far, there are a few results
with strong additional conditions.
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Disjointness preserving operators

Extensions of norms

We assume the norm to be monotone, i.e. 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖.

Proposition

Let Y be a pre-Riesz space with a monotone norm ‖·‖ and let (Z , i) be
a vector lattice cover of Y . Define ρ(z) = inf{‖y‖; y ∈ Y , |z| ≤ i(y)}.

(i) ρ is a Riesz seminorm on Z.
(ii) If Y is pervasive, then ρ is a Riesz norm on Z.

Theorem (Gaans, Zhang, K. 2018)

Let X be a uniformly complete vector lattice, Y a pervasive pre-Riesz
space with a monotone norm, and T : X → Y an injective and
disjointness preserving operator. Then for every x1, x2 ∈ X we have
that Tx1 ⊥ Tx2 implies x1 ⊥ x2.
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Disjointness preserving C0-semigroups

We generalize the result of Arendt.

Theorem (van Gaans, K., Zhang, 2018)

Let (X ,X+) be an ordered Banach space with a closed generating
cone and a monotone norm and let T : [0,∞)→ L(X ) be a
C0-semigroup with generator A : X ⊇ D(A)→ X such that for every
t ∈ [0,∞) the operator T (t) is disjointness preserving. Then A is band
preserving.

Idea of the proof:

Let (Z , i) be a vector lattice cover of X .
Extend the norm on X to a Riesz seminorm ρ on Z (as above).
For x , y ∈ X with ρ(i(x) ∧ i(y)) = 0 we show that x ⊥ y .
Then we follow the line of reasoning as in the Arendt theorem.

Anke Kalauch (TU Dresden) Ordered Banach spaces 2019 44 / 49



Disjointness preserving operators

A large part of the theory of disjointness preserving operators and
C0-semigroups in Banach lattices revolves around the following result
[Meyer 1976]:

In Archimedean vector lattices, every order bounded disjointness
preserving operator has a modulus; in particular, it is regular.

This is not true in Archimedean directed povs!
Counterexample in [van Gaans, K., 2019 (book)]; the space there is
not weakly pervasive (and, hence, not pervasive).
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Open problems

Every result on vector lattices or Banach lattices concerning
disjointness, bands, ideals and according structure preserving
operators (or ideal-irreducible operators etc.) can naturally be
translated into (normed) pre-Riesz spaces and yields an open
question!
Structures as solid sets, disjoint complements, and bands appear
in results on spaces of operators. If the space of operators is not a
vector lattice, analogous questions are not investigated, so far:
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Outlook: Spaces of operators

Let (X ,X+), (Y ,Y+) be Archimedean vector lattices.
The space L(X ,Y ) of all linear operators is a povs with the natural
order

S ≤ T :⇐⇒ (T − S)[X+] ⊆ Y+

for S,T ∈ L(X ,Y ), and the cone L+(X ,Y ) := {T ∈ L(X ,Y ) : T ≥ 0}.
The space of all regular operators

Lr (X ,Y ) := L+(X ,Y )− L+(X ,Y )

is Archimedean and directed, hence a pre-Riesz space.
In the literature, subsets of Lr (X ,Y ) are investigated in the case that Y
is, in addition, Dedekind complete, since then Lb(X ,Y ) = Lr (X ,Y ) is a
Dedekind complete vector lattice (Riesz-Kantorovich theorem).
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Some results in the case that Y is Dedekind complete

1. If Y is Dedekind complete, then the space Loc
r (X ,Y ) of all order

continuous operators in Lr (X ,Y ) is a band. [Ogasawara]

2. If Y is Dedekind complete, then the set Ldpo
r (X ,Y ) of all disjointness

preserving regular operators is solid in Lr (X ,Y ), moreover the band
generated by Ldpo

r (X ,Y ) in Lr (X ,Y ) and also the disjoint complement
(Ldpo

r )d can be characterized [Popov, Randrianantoanina, 2013]

3. If Y is Dedekind complete, then the space Orth(Y ) of all
orthomorphisms on Y is the band in Lr (X ,Y ) generated by the identity
operator.

Open problem: Are there similar results in the case that Y is an
arbitrary (Archimedean) vector lattice?
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