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Introduction

Injective spaces and extension of operators

Definition 1

Given 1 ≤ λ < ∞, we say that a Banach space X is λ-injective if for every
Banach space Z ⊃ X there is a projection π : Z → X with ‖π‖ ≤ λ.

Examples: ℓ∞, ℓ∞(Γ), dual L∞(µ)-spaces.

Definition 2

Given 1 ≤ λ < ∞, we say that a Banach space X has the λ-extension
property if for all Banach spaces Y ⊂ Z , every operator T ∈ L(Y ,X )

admits an extension T̃ ∈ L(Z ,X ) with
∥∥∥T̃

∥∥∥ ≤ λ‖T‖.
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Introduction

Extension properties

Theorem 4 (Lindenstrauss essentially)

Let X be a Banach space and 1 ≤ λ < ∞. TFAE:
(a) X ∗∗ is λ-injective.
(c) Let Z ⊃ X and let Y be a dual space. Then every operator

T ∈ L(X ,Y ) admits an extension T̃ ∈ L(Z ,Y ) with
∥∥∥T̃

∥∥∥ ≤ λ‖T‖.

(d) Let Z ⊃ Y and let ǫ > 0. Then every operator T ∈ K(Y ,X ) admits

an extension T̃ ∈ K(Z ,X ) with
∥∥∥T̃

∥∥∥ ≤ (λ+ ǫ)‖T‖.

(f) If Z ⊃ X, every operator T ∈ K(X ,Y ) admits an extension

T̃ ∈ K(Z ,Y ) with
∥∥∥T̃

∥∥∥ ≤ λ‖T‖.

(g) If Z ⊃ X, every operator T ∈ W(X ,Y ) admits an extension

T̃ ∈ W(Z ,Y ) with
∥∥∥T̃

∥∥∥ ≤ λ‖T‖.
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Introduction

L1 and L∞ spaces

Definition 5

Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞. We say that E is an L
g
p,λ-space if for

every finite dimensional subspace M ⊂ E and ǫ > 0 there are operators
R ∈ L

(
M, ℓmp

)
and S ∈ L

(
ℓmp ,E

)
for some m ∈ N such that

M E

ℓmp

R S

IE
M

and ‖S‖‖R‖ ≤ λ+ ǫ.

Examples:

L1-spaces: ℓ1, ℓ1(Γ), L1(µ).

L∞-spaces: ℓ∞, ℓ∞(Γ), L∞(µ), C (K ).
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Introduction

L1 and L∞ spaces

Proposition 6

E is an L
g
1,λ-space ⇔ E ∗ is λ-injective.

Proposition 7

E is an L
g
p,λ-space ⇔ E ∗ is an L

g
p′,λ-space

where 1/p + 1/p′ = 1.
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Operators with an integral representation

Lir

Definition 8

An operator T ∈ L(E ,F ) admits an integral representation if

kF ◦ T (x) =

∫

BE∗

x∗(x)dG (x ∈ E )

for some weak∗-countably additive F ∗∗-valued measure G defined on the
Borel sets of BE∗ such that the following conditions are satisfied:
(a) G( · )y∗ is a regular countably additive Borel measure for each y∗ ∈ F ∗;
(b) the mapping y∗ 7→ G( · )y∗ of F ∗ into C (BE∗)∗ is weak∗- to
weak∗-continuous.
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Operators with an integral representation

Lir

We denote by Lir(E ,F ) the space of all operators T ∈ L(E ,F ) that admit
an integral representation. On this space we define the norm

‖T‖ir = inf‖G‖(BE∗)

where ‖G‖ denotes the semivariation of G and the infimum is taken over
all measures G satisfying Definition 8.
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Operators with an integral representation

Lir

Proposition 9

An operator T ∈ L(E ,F ) admits an integral representation if and only if it
has an extension

S ∈ L (C (BE∗) ,F ) .

Moreover, ‖T‖ir = inf‖S‖ where the infimum is taken over all possible
extensions S to C (BE∗).

E F

C (BE∗)

T

ShE
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Operators with an integral representation

Lir

Proposition 10

Let F be a finite dimensional Banach space. If T ∈ Lir(E ,F ), there is
V ∈ L (C (BE∗) ,F ) such that ‖V ‖ = ‖T‖ir and T = V ◦ hE .

E F

C (BE∗)

T

VhE
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Injective biduals

Main theorem I

Theorem 11

Let X be a Banach space and 1 ≤ λ < ∞. TFAE:
(1) X is an L

g
∞,λ-space.

(2) X ∗∗ is λ-injective.
(3) kX ∈ Lir(X ,X ∗∗) with ‖kX ‖ir ≤ λ.
(5)-(6) For every Banach space Y we have K(Y ,X ) ⊆ Lir(Y ,X )
(compactly) with (*).
(7) For every dual Banach space Y we have L(X ,Y ) = Lir(X ,Y ) with
(*).
(8)-(9) For every Banach space Y we have K(X ,Y ) ⊆ Lir(X ,Y )
(compactly) with (*).
(10)-(11) For every Banach space Y we have W(X ,Y ) ⊆ Lir(X ,Y )
(weakly compactly) with (*).

(*) ‖T‖ ≤ ‖T‖ir ≤ λ‖T‖ for every T in the ideal under consideration.
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Injective biduals

Main theorem I (continued)

Theorem (Theorem 11 continued)

Let X be a Banach space and 1 ≤ λ < ∞. TFAE:
(1) X is an L

g
∞,λ-space.

(12) For every Banach space Y , every T ∈ K(X ,Y ) factors compactly
through c0 with ‖T‖ ≤ ‖T‖c0,K ≤ λ‖T‖.
(13) For every Banach space Y , every T ∈ K(Y ,X ) factors compactly
through c0 with ‖T‖ ≤ ‖T‖c0,K ≤ λ‖T‖.
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Injective biduals

Anthony O’Farrell’s question about L(X ,X ) = Lir(X ,X )

Proposition 12

Given a Banach space X and 1 ≤ λ < ∞, TFAE:
(a) IX ∈ Lir(X ,X ) with ‖IX‖ir ≤ λ.
(b) L(X ,X ) = Lir(X ,X ) with (*).
(c) For every Banach space Y , we have L(X ,Y ) = Lir(X ,Y ) with (*).
(d) For every Banach space Y , we have L(Y ,X ) = Lir(Y ,X ) with (*).
(e) X is isometrically isomorphic to a λ+-complemented subspace of
C (BX∗) (that is, for every λ′ > λ there is a projection with norm ≤ λ′).
(f) X is isometrically isomorphic to a λ+-complemented subspace of a
C (K )-space.

(*) ‖T‖ ≤ ‖T‖ir ≤ λ‖T‖ for every T in the space under consideration.

Such a space X is an L
g
∞,λ-space.
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Injective duals

Ideal Γ1

Definition 13

We say that an operator T belongs to Γ1(X ,Y ) if there are a measure µ
and operators A ∈ L(X , L1(µ)) and B ∈ L(L1(µ),Y

∗∗) such that
kY ◦ T = B ◦ A. We endow the space Γ1(X ,Y ) with the norm
γ1(T ) := inf‖A‖‖B‖ where the infimum is taken over all such
factorizations.

X Y

L1(µ) Y ∗∗

T

A

B

kY
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Injective duals

Main theorem II

Theorem 14

Let X be a Banach space and 1 ≤ λ < ∞. TFAE:
(a) X is an Lg

1,λ-space.
(b) X ∗ is λ-injective.
(d) For every Banach space Y , we have L(X ,Y ) = Γ1(X ,Y ) with (*).
(f) For every Banach space Y , we have K(X ,Y ) ⊆ Γ1(X ,Y ) with (*).
(g)-(h) For every Banach space Y , every T ∈ K(X ,Y ) factors
(compactly) through ℓ1 with (*).
(j)-(k) For every Banach space Y , every T ∈ K(Y ,X ) factors (compactly)
through ℓ1 with (*).
(n) For every Banach space Y , we have L(Y ,X ) = Γ1(Y ,X ) with (*).
(v) For every Banach space Y , every T ∈ W(X ,Y ) factors through ℓ1
with a weakly compact second factor and (*).

(*) ‖T‖ ≤ γ1(T ) ≤ λ‖T‖ for every T in the ideal under consideration.
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