Injective dual Banach spaces and operator ideals

Raffaella Cilia and Joaquín M. Gutiérrez

Workshop on Banach spaces and Banach lattices, ICMAT

12 September 2019

2 Operators with an integral representation

Injective biduals

Injective spaces and extension of operators

Definition 1

Given $1 \le \lambda < \infty$, we say that a Banach space X is λ -injective if for every Banach space $Z \supset X$ there is a projection $\pi : Z \to X$ with $\|\pi\| \le \lambda$.

Examples: ℓ_{∞} , $\ell_{\infty}(\Gamma)$, dual $L_{\infty}(\mu)$ -spaces.

Definition 2

Given $1 \leq \lambda < \infty$, we say that a Banach space X has the λ -extension property if for all Banach spaces $Y \subset Z$, every operator $T \in \mathcal{L}(Y, X)$ admits an extension $\widetilde{T} \in \mathcal{L}(Z, X)$ with $\|\widetilde{T}\| \leq \lambda \|T\|$.

Injective spaces and extension of operators

Definition 1

Given $1 \le \lambda < \infty$, we say that a Banach space X is λ -injective if for every Banach space $Z \supset X$ there is a projection $\pi : Z \to X$ with $\|\pi\| \le \lambda$.

Examples: ℓ_{∞} , $\ell_{\infty}(\Gamma)$, dual $L_{\infty}(\mu)$ -spaces.

Definition 2

Given $1 \leq \lambda < \infty$, we say that a Banach space X has the λ -extension property if for all Banach spaces $Y \subset Z$, every operator $T \in \mathcal{L}(Y, X)$ admits an extension $\widetilde{T} \in \mathcal{L}(Z, X)$ with $\|\widetilde{T}\| \leq \lambda \|T\|$.

Proposition 3

X is λ -injective \Leftrightarrow *X* has the λ -extension property

Injective spaces and extension of operators

Definition 1

Given $1 \le \lambda < \infty$, we say that a Banach space X is λ -injective if for every Banach space $Z \supset X$ there is a projection $\pi : Z \to X$ with $\|\pi\| \le \lambda$.

Examples: ℓ_{∞} , $\ell_{\infty}(\Gamma)$, dual $L_{\infty}(\mu)$ -spaces.

Definition 2

Given $1 \leq \lambda < \infty$, we say that a Banach space X has the λ -extension property if for all Banach spaces $Y \subset Z$, every operator $T \in \mathcal{L}(Y, X)$ admits an extension $\widetilde{T} \in \mathcal{L}(Z, X)$ with $\|\widetilde{T}\| \leq \lambda \|T\|$.

Proposition 3

X is λ -injective \Leftrightarrow X has the λ -extension property

Extension properties

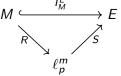
Theorem 4 (Lindenstrauss essentially)

Let X be a Banach space and $1 \le \lambda < \infty$. TFAE: (a) X^{**} is λ -injective. (c) Let $Z \supset X$ and let Y be a dual space. Then every operator $T \in \mathcal{L}(X, Y)$ admits an extension $\widetilde{T} \in \mathcal{L}(Z, Y)$ with $\left\| \widetilde{T} \right\| \leq \lambda \|T\|$. (d) Let $Z \supset Y$ and let $\epsilon > 0$. Then every operator $T \in \mathcal{K}(Y, X)$ admits an extension $\widetilde{T} \in \mathcal{K}(Z, X)$ with $\left\| \widetilde{T} \right\| \leq (\lambda + \epsilon) \|T\|$. (f) If $Z \supset X$, every operator $T \in \mathcal{K}(X, Y)$ admits an extension $\widetilde{T} \in \mathcal{K}(Z, Y)$ with $\left\|\widetilde{T}\right\| \leq \lambda \|T\|$. (g) If $Z \supset X$, every operator $T \in \mathcal{W}(X, Y)$ admits an extension $\widetilde{T} \in \mathcal{W}(Z, Y)$ with $\|\widetilde{T}\| \leq \lambda \|T\|$.

\mathcal{L}_1 and \mathcal{L}_∞ spaces

Definition 5

Let $1 \leq p \leq \infty$ and $1 \leq \lambda < \infty$. We say that E is an $\mathcal{L}_{p,\lambda}^{g}$ -space if for every finite dimensional subspace $M \subset E$ and $\epsilon > 0$ there are operators $R \in \mathcal{L}(M, \ell_{p}^{m})$ and $S \in \mathcal{L}(\ell_{p}^{m}, E)$ for some $m \in \mathbb{N}$ such that I_{M}^{E}



and $\|S\|\|R\| \leq \lambda + \epsilon$.

Examples:

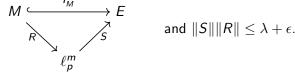
```
\mathcal{L}_1-spaces: \ell_1, \ell_1(\Gamma), L_1(\mu).
```

```
\mathcal{L}_{\infty}-spaces: \ell_{\infty}, \ell_{\infty}(\Gamma), L_{\infty}(\mu), C(K).
```

$\mathcal{L}_1 \text{ and } \mathcal{L}_\infty$ spaces

Definition 5

Let $1 \le p \le \infty$ and $1 \le \lambda < \infty$. We say that E is an $\mathcal{L}_{p,\lambda}^{g}$ -space if for every finite dimensional subspace $M \subset E$ and $\epsilon > 0$ there are operators $R \in \mathcal{L}(M, \ell_{p}^{m})$ and $S \in \mathcal{L}(\ell_{p}^{m}, E)$ for some $m \in \mathbb{N}$ such that



Examples:

```
 \begin{split} \mathcal{L}_1 \text{-spaces: } \ell_1, \ \ell_1(\Gamma), \ L_1(\mu). \\ \mathcal{L}_\infty \text{-spaces: } \ell_\infty, \ \ell_\infty(\Gamma), \ L_\infty(\mu), \ C(K). \end{split}
```

$\mathcal{L}_1 \text{ and } \mathcal{L}_\infty$ spaces

Proposition 6

E is an
$$\mathcal{L}^{g}_{1,\lambda}$$
-space $\Leftrightarrow E^{*}$ is λ -injective.

Proposition 7

E is an
$$\mathcal{L}_{p,\lambda}^g$$
-space $\Leftrightarrow E^*$ is an $\mathcal{L}_{p',\lambda}^g$ -space
ere $1/p + 1/p' = 1$.

$\mathcal{L}_1 \text{ and } \mathcal{L}_\infty \text{ spaces}$

Proposition 6

E is an
$$\mathcal{L}^{g}_{1,\lambda}$$
-space $\Leftrightarrow E^*$ is λ -injective.

Proposition 7

$$E \text{ is an } \mathcal{L}^{g}_{p,\lambda}\text{-space} \Leftrightarrow E^{*} \text{ is an } \mathcal{L}^{g}_{p',\lambda}\text{-space}$$

where 1/p + 1/p' = 1.

Definition 8

An operator $T \in \mathcal{L}(E, F)$ admits an integral representation if

$$k_F \circ T(x) = \int_{B_{E^*}} x^*(x) \,\mathrm{d}\mathfrak{G} \qquad (x \in E)$$

for some weak*-countably additive F^{**} -valued measure \mathcal{G} defined on the Borel sets of B_{E^*} such that the following conditions are satisfied: (a) $\mathcal{G}(\cdot)y^*$ is a regular countably additive Borel measure for each $y^* \in F^*$; (b) the mapping $y^* \mapsto \mathcal{G}(\cdot)y^*$ of F^* into $C(B_{E^*})^*$ is weak*- to weak*-continuous. We denote by $\mathcal{L}_{ir}(E, F)$ the space of all operators $T \in \mathcal{L}(E, F)$ that admit an integral representation. On this space we define the norm

 $\|T\|_{\mathrm{ir}} = \mathrm{inf}\|\mathfrak{G}\|(B_{E^*})$

where $\|\mathcal{G}\|$ denotes the semivariation of \mathcal{G} and the infimum is taken over all measures \mathcal{G} satisfying Definition 8.

$\mathcal{L}_{\mathsf{ir}}$

Proposition 9

An operator $T \in \mathcal{L}(E, F)$ admits an integral representation if and only if it has an extension

$$S \in \mathcal{L}(C(B_{E^*}), F)$$
.

Moreover, $||T||_{ir} = \inf ||S||$ where the infimum is taken over all possible extensions S to $C(B_{E^*})$.



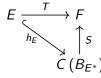
$\mathcal{L}_{\mathsf{ir}}$

Proposition 9

An operator $T \in \mathcal{L}(E, F)$ admits an integral representation if and only if it has an extension

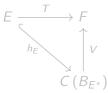
$$S \in \mathcal{L}(C(B_{E^*}), F)$$
.

Moreover, $||T||_{ir} = \inf ||S||$ where the infimum is taken over all possible extensions S to $C(B_{E^*})$.



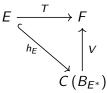
Proposition 10

Let F be a finite dimensional Banach space. If $T \in \mathcal{L}_{ir}(E, F)$, there is $V \in \mathcal{L}(C(B_{E^*}), F)$ such that $||V|| = ||T||_{ir}$ and $T = V \circ h_E$.



Proposition 10

Let F be a finite dimensional Banach space. If $T \in \mathcal{L}_{ir}(E, F)$, there is $V \in \mathcal{L}(C(B_{E^*}), F)$ such that $||V|| = ||T||_{ir}$ and $T = V \circ h_E$.



Main theorem I

Theorem 11

Let X be a Banach space and $1 \leq \lambda < \infty$. TFAE: (1) X is an $\mathcal{L}^{g}_{\infty \lambda}$ -space. (2) X^{**} is λ -injective. (3) $k_X \in \mathcal{L}_{ir}(X, X^{**})$ with $||k_X||_{ir} \leq \lambda$. (5)-(6) For every Banach space Y we have $\mathcal{K}(Y,X) \subseteq \mathcal{L}_{ir}(Y,X)$ (compactly) with (*). (7) For every dual Banach space Y we have $\mathcal{L}(X, Y) = \mathcal{L}_{ir}(X, Y)$ with (*). (8)-(9) For every Banach space Y we have $\mathcal{K}(X, Y) \subseteq \mathcal{L}_{ir}(X, Y)$ (compactly) with (*). (10)-(11) For every Banach space Y we have $\mathcal{W}(X, Y) \subseteq \mathcal{L}_{ir}(X, Y)$ (weakly compactly) with (*).

(*) $||T|| \le ||T||_{ir} \le \lambda ||T||$ for every T in the ideal under consideration.

Main theorem I (continued)

Theorem (Theorem 11 continued)

Let X be a Banach space and $1 \le \lambda < \infty$. TFAE: (1) X is an $\mathcal{L}^{g}_{\infty,\lambda}$ -space. (12) For every Banach space Y, every $T \in \mathcal{K}(X, Y)$ factors compactly through c_0 with $||T|| \le ||T||_{c_0,\mathcal{K}} \le \lambda ||T||$. (13) For every Banach space Y, every $T \in \mathcal{K}(Y, X)$ factors compactly through c_0 with $||T|| \le ||T||_{c_0,\mathcal{K}} \le \lambda ||T||$.

Anthony O'Farrell's question about $\mathcal{L}(X, X) = \mathcal{L}_{ir}(X, X)$

Proposition 12

Given a Banach space X and $1 \le \lambda < \infty$, TFAE: (a) $I_X \in \mathcal{L}_{ir}(X, X)$ with $||I_X||_{ir} \le \lambda$. (b) $\mathcal{L}(X, X) = \mathcal{L}_{ir}(X, X)$ with (*). (c) For every Banach space Y, we have $\mathcal{L}(X, Y) = \mathcal{L}_{ir}(X, Y)$ with (*). (d) For every Banach space Y, we have $\mathcal{L}(Y, X) = \mathcal{L}_{ir}(Y, X)$ with (*). (e) X is isometrically isomorphic to a λ^+ -complemented subspace of $C(B_{X^*})$ (that is, for every $\lambda' > \lambda$ there is a projection with norm $\le \lambda'$). (f) X is isometrically isomorphic to a λ^+ -complemented subspace of a C(K)-space.

(*) $||T|| \le ||T||_{ir} \le \lambda ||T||$ for every T in the space under consideration.

Such a space X is an $\mathcal{L}^{g}_{\infty,\lambda}$ -space.

Anthony O'Farrell's question about $\mathcal{L}(X, X) = \mathcal{L}_{ir}(X, X)$

Proposition 12

Given a Banach space X and $1 \le \lambda < \infty$, TFAE: (a) $I_X \in \mathcal{L}_{ir}(X, X)$ with $||I_X||_{ir} \le \lambda$. (b) $\mathcal{L}(X, X) = \mathcal{L}_{ir}(X, X)$ with (*). (c) For every Banach space Y, we have $\mathcal{L}(X, Y) = \mathcal{L}_{ir}(X, Y)$ with (*). (d) For every Banach space Y, we have $\mathcal{L}(Y, X) = \mathcal{L}_{ir}(Y, X)$ with (*). (e) X is isometrically isomorphic to a λ^+ -complemented subspace of $C(B_{X^*})$ (that is, for every $\lambda' > \lambda$ there is a projection with norm $\le \lambda'$). (f) X is isometrically isomorphic to a λ^+ -complemented subspace of a C(K)-space.

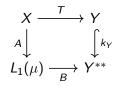
(*) $||T|| \le ||T||_{ir} \le \lambda ||T||$ for every T in the space under consideration.

Such a space X is an $\mathcal{L}^{g}_{\infty,\lambda}$ -space.

Ideal Γ_1

Definition 13

We say that an operator T belongs to $\Gamma_1(X, Y)$ if there are a measure μ and operators $A \in \mathcal{L}(X, L_1(\mu))$ and $B \in \mathcal{L}(L_1(\mu), Y^{**})$ such that $k_Y \circ T = B \circ A$. We endow the space $\Gamma_1(X, Y)$ with the norm $\gamma_1(T) := \inf \|A\| \|B\|$ where the infimum is taken over all such factorizations.



Main theorem II

Theorem 14

Let X be a Banach space and $1 \le \lambda < \infty$. TFAE:

- (a) X is an $\mathcal{L}^{g}_{1,\lambda}$ -space.
- (b) X^* is λ -injective.
- (d) For every Banach space Y, we have $\mathcal{L}(X, Y) = \Gamma_1(X, Y)$ with (*).
- (f) For every Banach space Y, we have $\mathcal{K}(X, Y) \subseteq \Gamma_1(X, Y)$ with (*).
- (g)-(h) For every Banach space Y, every $T \in \mathcal{K}(X, Y)$ factors

(compactly) through ℓ_1 with (*).

(j)-(k) For every Banach space Y, every $T \in \mathcal{K}(Y, X)$ factors (compactly) through ℓ_1 with (*).

(n) For every Banach space Y, we have $\mathcal{L}(Y, X) = \Gamma_1(Y, X)$ with (*). (v) For every Banach space Y, every $T \in \mathcal{W}(X, Y)$ factors through ℓ_1 with a weakly compact second factor and (*).

(*) $||T|| \leq \gamma_1(T) \leq \lambda ||T||$ for every T in the ideal under consideration.