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Motivation

Theorem: Let (X , ‖·‖) be a Banach space.

(i) ‖·‖ is C 1-smooth whenever it is Fréchet differentiable.

(ii) If the dual norm is Fréchet differentiable, then X is reflexive.

(iii) If the dual norm on X ∗ is LUR, then ‖·‖ is Fréchet differentiable.
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Motivation

There is a stronger result:

Theorem (M. Fabian, 1987) If a Banach space X admits a C 1-
smooth bump, then it is Asplund.

Question Does every Asplund Banach space admit a C 1-smooth
bump function?
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Motivation

(V.Z. Meshkov, 1978) A Banach space X is isomorphic to a
Hilbert space, whenever both X and X ∗ admit a C 2-smooth
bump.

(M. Fabian, J.H.M. Whitfield, and V. Zizler, 1983) If a Ba-
nach space X admits a C 2-smooth bump, then X contains an
isomorphic copy of c0 or X is superreflexive of type 2.

(R. Deville, 1989) The existence of a C∞-smooth bump on a
Banach space X that contain no copy of c0 implies that X is
of cotype 2k, for some k, and it contain a copy of `2k .

(J. Vanderwerff, 1992) If X is a separable Banach space and L is
a subspace of dimensional ℵ0, then X admits an equivalent LUR
norm which is Fréchet differentiable on L\{0}. In particular, any
normed space of dimension ℵ0 admits a Fréchet differentiable
norm.
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Our problem

(A. Guirao, V. Montesinos, and V. Zizler, 2016)

Let Γ be an uncountable set and F be a normed space of all finitely
supported vectors in `1(Γ) endowed with the `1-norm. Does F admit
a Fréchet smooth norm?

Q1. If a dense subspace Y admits a C k -smooth norm, then the
whole space X also does?

Q2. If a dense subspace Y admits a C k -smooth norm, then X is
Asplund?

Q3. What can one says about the whole space X if there exists a
dense subspace Y which admits a C k -smooth norm?
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a Fréchet smooth norm?

Q1. If a dense subspace Y admits a C k -smooth norm, then the
whole space X also does?

Q2. If a dense subspace Y admits a C k -smooth norm, then X is
Asplund?

Q3. What can one says about the whole space X if there exists a
dense subspace Y which admits a C k -smooth norm?

Sheldon Dantas Dense subspaces which admit smooth norms



Our problem

(A. Guirao, V. Montesinos, and V. Zizler, 2016)

Let Γ be an uncountable set and F be a normed space of all finitely
supported vectors in `1(Γ) endowed with the `1-norm. Does F admit
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The results

Given a normed space (X , ‖·‖) and ε > 0, we say that a new norm
|||·||| approximates the original one ‖·‖ if

|||x ||| ≤ ‖x‖ ≤ (1 + ε)|||x |||

for all x ∈ X .
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The results

Implicit functional theorem for Minkowski functionals
(P. Hájek and M. Johanis, Smooth Analysis in Banach spaces)

Let (X , ‖·‖) be a normed space and D be a nonempty, open, convex,
symmetric subset of X . Let f : D −→ R be even, convex, and
continuous. Suppose that there is a > f (0) such that the level set
B := {f ≤ a} is bounded and closed in X . Assume further that
there is an open set O with {f = a} ⊂ O such that f is C k -smooth
on O, where k ∈ N ∪ {∞, ω}.

Then, the Minkowski functional µ on B is an equivalent C k -smooth
norm on X .
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The results

Let `F∞ denote the dense linear subspace of `∞ consisting of finitely-
valued sequences.

Theorem 1: The space `F∞ admits an analytic norm which approxi-
mates the original one.
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The results

Two consequences:

Corollary 2: Let X be a separable Banach space. Then, there is a
dense subspace Y of X which admits an analytic norm and approx-
imates the original one.

Corollary 3: The normed space F of all finitely supported vectors in
`1(c), where c denotes a set of cardinality continuum, endowed with
the `1-norm, admits an equivalent analytic norm which approximates
the original one.
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The results

Theorem 4: Let X be a Banach space with a suppression 1-unconditional
Schauder basis {eγ}γ∈Γ and set Y := span{eγ}γ∈Γ. Then, Y is a
dense subspace of X which admits a C∞-smooth norm and approx-
imates the original one.
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Our problem

Q1. If a dense subspace Y admits a C k -smooth norm, then X is
Asplund?

Q2. Is there a Banach space X in which no dense subspace have a
smooth norm?
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Our problem

GENERAL QUESTION
How different can two dense subspaces of a Banach space be?
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Thank you
for your attention
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