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Lipschitz spaces

Let (M, d) be a complete metric space.
Fix a base point 0 ∈ M.
The Lipschitz constant of f : M → R is

‖f‖L := sup

{
|f(x)− f(y)|

d(x, y)
: x 6= y ∈ M

}
.

The spaces of Lipschitz functions on M are

Lip(M) = {f : M → R : ‖f‖L <∞}
Lip0(M) = {f : M → R : ‖f‖L <∞, f(0) = 0}

Lip0(M) is a Banach space with norm ‖·‖L.
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Lipschitz-free spaces

For x ∈ M, consider the evaluation operators

δ(x) : f 7→ f(x).

Then δ : M → Lip0(M)∗ is a (nonlinear) isometric embedding.

Lipschitz-free space

F(M) = span δ(M) ⊂ Lip0(M)∗

Theorem (Arens, Eells 1956)

F(M)∗ ∼= Lip0(M)
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Lipschitz-free subspaces

Theorem (Kadets 1985)

If M0 ⊂ M, then F(M0) ⊂ F(M) isometrically:

F(M0) ∼= span δ(M0)

We will assume 0 ∈ M0. Otherwise, we mean

F(M0) ≡ F(M0 ∪ {0}).
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The intersection theorem

Theorem (Aliaga, Pernecká 2019)

Let Ki ⊂ M be closed subsets. Then

⋂
i

F(Ki) = F

(⋂
i

Ki

)

Let m ∈ F(M). We define the support of m as

supp(m) =
⋂
{S ⊂ M closed : m ∈ F(S)}

Theorem (Aliaga, Pernecká 2019)

m ∈ F(supp(m))
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Supports in F(M)

Proposition

Let m ∈ F(M), K ⊂ M closed. TFAE:

supp(m) ⊂ K
m ∈ F(K)
If f , g ∈ Lip0(M) satisfy f |K = g|K, then 〈m, f〉 = 〈m, g〉

Proposition

Let m ∈ F(M), p ∈ M. TFAE:

p ∈ supp(m)

For every neighborhood U of p, there is f ∈ Lip0(M)
supported on U such that 〈m, f〉 6= 0
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Weighting in Lip0(M) and F(M)

Proposition

Let h ∈ Lip(M) with bounded support. If f ∈ Lip0(M) then
f · h ∈ Lip0(M) and

Th : f 7→ f · h

is a w∗-w∗-continuous linear operator on Lip0(M).

Thus Th has a continuous preadjoint (Th)∗ : F(M)→ F(M)
defined by (Th)∗(m) = m ◦ Th:

〈m ◦ Th, f〉 = 〈m,Th(f)〉 = 〈m, f · h〉 for f ∈ Lip0(M)

Moreover
supp(m ◦ Th) ⊂ supp(m) ∩ supp(h)
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Decomposition in F(M)

Proposition

Let m ∈ F(M), supp(m) ⊂ S1 ∪ S2 where S1, S2 are closed and
disjoint, d(S1, S2) > 0, and S1 is bounded. Then there is a
unique decomposition

m = m1 + m2

where supp(m1) ⊂ S1 and supp(m2) ⊂ S2.
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Decomposition in F(M)

Proposition

Let m ∈ F(M), supp(m) ⊂ S1 ∪ S2 where S1, S2 are closed and
disjoint, d(S1, S2) > 0, and S1 is bounded. Then there is a
unique decomposition

m = m1 + m2

where supp(m1) ⊂ S1 and supp(m2) ⊂ S2.

Proof of uniqueness:
Let m = m1 + m2 = m′1 + m′2.
Then m1 −m′1 = m′2 −m2.
But supp(m1 −m′1) ⊂ S1 ∩ S2 = ∅, so m1 −m′1 = 0. �
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Decomposition in F(M)

Proposition

Let m ∈ F(M), supp(m) ⊂ S1 ∪ S2 where S1, S2 are closed and
disjoint, d(S1, S2) > 0, and S1 is bounded. Then there is a
unique decomposition

m = m1 + m2

where supp(m1) ⊂ S1 and supp(m2) ⊂ S2.

Proof of existence:

Let m1 = m ◦ Th where h(x) = max

{
1− d(x, S1)

d(S1, S2)
,0
}

. �

Note: ‖m1‖ ≤ ‖m‖ ·
(

1 +
rad(S1)

d(S1, S2)

)

R. J. Aliaga Workshop on Banach Spaces and Banach Lattices, 11 Sep 2019



Decomposition in F(M)

Proposition

Let m ∈ F(M), supp(m) ⊂ S1 ∪ S2 where S1, S2 are closed and
disjoint, d(S1, S2) > 0, and S1 is bounded. Then there is a
unique decomposition

m = m1 + m2

where supp(m1) ⊂ S1 and supp(m2) ⊂ S2.

Both conditions are needed in general.
If m is positive then they can be removed.
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Measures on M as functionals on Lip0(M)

Given µ ∈M(M), define the functional Lµ on Lip0(M) by

Lµ(f) =
∫

M
f dµ
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Measures on M as functionals on Lip0(M)

Given µ ∈M0(M), define the functional Lµ on Lip0(M) by

Lµ(f) =
∫

M
f dµ

We only considerM0(M) = {µ ∈M(M) : µ({0}) = 0}.
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Measures on M as functionals on Lip0(M)

Given µ ∈M0(M), define the functional Lµ on Lip0(M) by

Lµ(f) =
∫

M
f dµ

Proposition

Let m ∈ F(M) and µ ∈M0(M). Suppose m = Lµ. Then

supp(m) = supp(µ)

m is positive iff µ is positive

In particular, if m = Lµ then µ ∈M0(M) is unique.
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Measures on M as functionals on Lip0(M)

Given µ ∈M0(M), define the functional Lµ on Lip0(M) by

Lµ(f) =
∫

M
f dµ

Proposition

Let µ ∈M0(M). TFAE:

d(·,0) ∈ L1(µ)

Lµ =
∫

M δ(x) dµ(x) as a Bochner integral

Lµ ∈ Lip0(M)∗

Lµ ∈ F(M)

If diam(M) <∞, every measure induces an element of F(M).
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Measures on M as functionals on Lip0(M)

Given µ ∈M0(βM), define the functional Lµ on Lip0(M) by

Lµ(f) =
∫
βM

f dµ

Proposition

Let µ ∈M0(βM). TFAE:
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Measures on βM as functionals on Lip0(M)

Suppose µ ∈M0(βM) and Lµ ∈ Lip0(M)∗.
When does Lµ ∈ F(M)?
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Measures on βM as functionals on Lip0(M)

Suppose µ ∈M0(βM) and Lµ ∈ Lip0(M)∗.
When does Lµ ∈ F(M)?

It is sufficient that µ is concentrated on M.

Proposition

If µ is positive, then Lµ ∈ F(M) iff µ is concentrated on M.

It is not necessary in general:
Let ξ1 6= ξ2 ∈ βM such that f(ξ1) = f(ξ2) for every Lipschitz f .
Take µ = δξ1 − δξ2 .
Then supp(µ) = {ξ1, ξ2} * M, but Lµ = 0 ∈ F(M).
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Measures on βM as functionals on Lip0(M)

Suppose µ ∈M0(βM) and Lµ ∈ Lip0(M)∗.
When does Lµ ∈ F(M)?

It is sufficient that Lµ = L(µ|M), that is∫
βM

f dµ =

∫
M

f dµ for f ∈ Lip0(M)

Proposition

If M is locally compact, then Lµ ∈ F(M) iff Lµ = L(µ|M).
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Elements of F(M) representable as measures

In general, not all elements of F(M) are represented by
measures.

Theorem
Let M be a bounded complete metric space. TFAE:

every m ∈ F(M) is m = Lµ for some µ ∈M(M)

M is uniformly discrete
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Elements of F(M) representable as measures

Theorem
Let m ∈ F(M). If m = Lµ for some µ ∈M(M), then m is the
limit of elements

n∑
k=1

akδ(pk) ∈ F(M)

such that
∑n

k=1 |ak| is uniformly bounded.
If m is positive or M is locally compact, the converse also holds.
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Elements of F(M) representable as measures

Theorem
Let m ∈ F(M) such that 0 /∈ supp(m). TFAE:

m = Lµ for some µ ∈M(M)

m = m+ −m− for some positive m+,m− ∈ F(M)

In particular:

m positive, 0 /∈ supp(m) =⇒ m = Lµ
for some finite positive measure µ on M

If 0 ∈ supp(m) this is no longer true.

Theorem
Every positive element of F(M) is represented by a σ-finite
positive measure on M.
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Extremal structure of F(M)

Research program

Let M be a complete pointed metric space.
What are the extreme points of BF(M)?
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Elementary molecules

An elementary molecule is upq =
δ(p)− δ(q)

d(p, q)
∈ SF(M).
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Elementary molecules

An elementary molecule is upq =
δ(p)− δ(q)

d(p, q)
∈ SF(M).

Properties:

‖f‖L = sup
{〈

upq, f
〉
: p, q ∈ M

}
since

〈
upq, f

〉
=

f(p)− f(q)
d(p, q)

BF(M) = conv
{

upq : p, q ∈ M
}

For every ε > 0, m ∈ F(M) admits an expression

m =

∞∑
n=1

anupnqn where
∞∑

n=1

|an| < ‖m‖+ ε
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Elementary molecules

An elementary molecule is upq =
δ(p)− δ(q)

d(p, q)
∈ SF(M).

Theorem (Weaver 1995)

Every preserved extreme point of BF(M) is an elementary
molecule.

Corollary

Every extreme point of BF(M) with finite support is an
elementary molecule.
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Extreme molecules

Let p, q ∈ M. The metric segment between p and q is

[p, q] = {x ∈ M : d(p, x) + d(x, q) = d(p, q)} .

Proposition

If upq is an extreme point of BF(M), then [p, q] = {p, q}.

Proof: If x ∈ [p, q] then upq ∈ [upx, uxq]:

upq =
δ(p)− δ(q)

d(p, q)
=
δ(p)− δ(x)

d(p, q)
+
δ(x)− δ(q)

d(p, q)

=
d(p, x)
d(p, q)

upx +
d(x, q)
d(p, q)

uxq. �
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Extreme molecules

Theorem (Aliaga, Pernecká 2018)

upq is an extreme point of BF(M) iff [p, q] = {p, q}.

x ∈ SX is exposed ≡ there is f ∈ SX∗ that attains its norm at x and
nowhere else.
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Extreme molecules

Theorem (Petitjean, Procházka 2018)
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Exposed molecules

Theorem (Petitjean, Procházka 2018)

The face of BF(M) determined by fpq is contained in F([p, q]).

The exposing functional for upq is

fpq(x) =
d(p, q)

2
d(x, q)− d(x, p)
d(x, q) + d(x, p)

− constant

with the property:〈
uxy, fpq

〉
≥ 1− ε implies x, y ∈ [p, q]ε

where

[p, q]ε =
{

x ∈ M : d(p, x) + d(x, q) ≤ d(p, q)
1− ε

}
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Exposed molecules

Theorem (Petitjean, Procházka 2018)

If m ∈ BF(M) and
〈
m, fpq

〉
= 1, then supp(m) ⊂ [p, q].

The exposing functional for upq is

fpq(x) =
d(p, q)

2
d(x, q)− d(x, p)
d(x, q) + d(x, p)

− constant

with the property:〈
uxy, fpq

〉
≥ 1− ε implies x, y ∈ [p, q]ε

where

[p, q]ε =
{

x ∈ M : d(p, x) + d(x, q) ≤ d(p, q)
1− ε

}
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Exposed molecules

Theorem (Petitjean, Procházka 2018)

If m ∈ BF(M) and
〈
m, fpq

〉
= 1, then supp(m) ⊂ [p, q].

Proof: Fix δ, ε > 0 and write

m =

∞∑
n=1

anuxnyn where
∞∑

n=1

|an| < 1 + δε .

Let I =
{

n :
〈
uxnyn , fpq

〉
≥ 1− ε

}
. Then

1 =
〈
m, fpq

〉
=

∞∑
n=1

an
〈
uxnyn , fpq

〉
=
∑
n∈I

+
∑
n/∈I

≤
∑
n∈I

|an|+ (1− ε)
∑
n/∈I

|an| < (1 + δε)− ε
∑
n/∈I

|an| .
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∑
n/∈I

|an| .
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Exposed molecules

Theorem (Petitjean, Procházka 2018)

If m ∈ BF(M) and
〈
m, fpq

〉
= 1, then supp(m) ⊂ [p, q].

That is,
∑

n/∈I |an| < δ. So∥∥∥∥∥m−
∑
n∈I

anuxnyn

∥∥∥∥∥ =

∥∥∥∥∥∑
n/∈I

anuxnyn

∥∥∥∥∥ ≤∑
n/∈I

|an| < δ.

Thus m is δ-close to
∑

n∈I anuxnyn , whose supp is in [p, q]ε.
Hence supp(m) ⊂ [p, q]ε. So

supp(m) ⊂
⋂
ε>0

[p, q]ε = [p, q]. �
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Extreme points of the positive ball

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of B+
F(M) are 0 and

δ(p)
‖δ(p)‖

, p ∈ M.

R. J. Aliaga Workshop on Banach Spaces and Banach Lattices, 11 Sep 2019



Extreme points of the positive ball

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of B+
F(M) are 0 and

δ(p)
‖δ(p)‖

, p ∈ M.

Proof of necessity: Let m ∈ S+
F(M) and suppose p 6= q ∈ supp(m).

Let h ∈ Lip(M), 0 ≤ h ≤ 1, h = 1 near p, h = 0 near q.
Then m ◦ Th is positive and 6= 0.
So is m−m ◦ Th = m ◦ T1−h. So

‖m ◦ Th‖+ ‖m ◦ T1−h‖ = ‖m‖ = 1

and

m = ‖m ◦ Th‖
m ◦ Th

‖m ◦ Th‖
+ ‖m ◦ T1−h‖

m ◦ T1−h

‖m ◦ T1−h‖
�
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Extreme points of the positive ball

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of B+
F(M) are 0 and

δ(p)
‖δ(p)‖

, p ∈ M.

Proof of sufficiency:

Lemma

If m,m′ ∈ F(M) and 0 ≤ m ≤ m′ then supp(m) ⊂ supp(m′).

Suppose δ(p)
‖δ(p)‖ =

1
2(m1 + m2) for positive m1,m2.

Since 0 ≤ 1
2mi ≤ δ(p)

‖δ(p)‖ , by the lemma supp(mi) ⊂ {p}. �
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Extreme points of the positive ball

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of B+
F(M) are 0 and

δ(p)
‖δ(p)‖

, p ∈ M.

In fact, all of them are preserved:

Lemma

If m ∈ F(M), φ ∈ F(M)∗∗ and 0 ≤ φ ≤ m then φ ∈ F(M).

Suppose δ(p)
‖δ(p)‖ =

1
2(φ1 + φ2) for positive φ1, φ2 ∈ Lip0(M)∗.

Since 0 ≤ 1
2φi ≤ δ(p)

‖δ(p)‖ , by the lemma φi ∈ F(M).
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Almost positive extreme points

In particular:
If an extreme point of BF(M) is positive, then it is a molecule.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

Let m be an extreme point of BF(M). Suppose

m = λ+ µ

where λ is positive and µ has finite support.
Then m is a molecule.
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Open problem

Main question

Let M be a complete pointed metric space.
Are all extreme points of BF(M) molecules?
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Open problem

Main question

Let M be a complete pointed metric space.
Are all extreme points of BF(M) molecules?

Known to be true when:

M is compact and F(M) = lip0(M)∗ (Weaver 1999)

M is compact Hölder
M is compact and countable (Dalet 2015)
M is compact and ultrametric (Dalet 2015)

lip0(M) =

{
f ∈ Lip0(M) :

|f(p)− f(q)|
d(p, q)

→ 0 unif. as d(p, q)→ 0
}
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Open problem

Main question

Let M be a complete pointed metric space.
Are all extreme points of BF(M) molecules?

Known to be true when:

M is compact and F(M) = lip0(M)∗ (Weaver 1999)

M is compact Hölder
M is compact and countable (Dalet 2015)
M is compact and ultrametric (Dalet 2015)

F(M) has a natural predual that is a subspace of lip0(M)
(Garćıa-Lirola, Petitjean, Procházka, Rueda 2017)

M is a subset of an R-tree
(Aliaga, Petitjean, Procházka 2019)
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Open problem

Main question

Let M be a complete pointed metric space.
Are all extreme points of BF(M) molecules?

Equivalently,

(1) Are all extreme points of BF(M) exposed?
(2) Are all exposed points of BF(M) molecules?
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Thank you for your attention!
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