Measures, supports, and extremality in Lipschitz-free spaces

Ramón J. Aliaga Universitat Politècnica de València

(joint work with Eva Pernecká, Colin Petitjean & Antonín Procházka)

Workshop on Banach Spaces and Banach Lattices Madrid, 11 Sep 2019 Let (M, d) be a complete metric space. Fix a base point $0 \in M$. The *Lipschitz constant* of $f: M \to \mathbb{R}$ is

$$\|f\|_L:=\sup\left\{rac{|f(x)-f(y)|}{d(x,y)}:x
eq y\in M
ight\}.$$

The spaces of Lipschitz functions on M are

$$\begin{split} \operatorname{Lip}(M) &= \{f \colon M \to \mathbb{R} : \|f\|_L < \infty\}\\ \operatorname{Lip}_0(M) &= \{f \colon M \to \mathbb{R} : \|f\|_L < \infty, f(0) = 0\} \end{split}$$

 $\operatorname{Lip}_0(M)$ is a Banach space with norm $\|\cdot\|_L$.

For $x \in M$, consider the evaluation operators

 $\delta(\mathbf{x}): f \mapsto f(\mathbf{x}).$

Then $\delta: M \to \operatorname{Lip}_0(M)^*$ is a (nonlinear) isometric embedding.

For $x \in M$, consider the evaluation operators

$$\delta(x): f \mapsto f(x).$$

Then $\delta \colon M \to \operatorname{Lip}_0(M)^*$ is a (nonlinear) isometric embedding.

Lipschitz-free space

$$\mathcal{F}(M) = \overline{\operatorname{span}}\,\delta(M) \subset \operatorname{Lip}_0(M)^*$$

Theorem (Arens, Eells 1956)

$$\mathcal{F}(M)^* \cong \operatorname{Lip}_0(M)$$

Theorem (Kadets 1985)

If $M_0 \subset M$, then $\mathcal{F}(M_0) \subset \mathcal{F}(M)$ isometrically:

 $\mathcal{F}(M_0) \cong \overline{\operatorname{span}}\,\delta(M_0)$

Theorem (Kadets 1985)

If $M_0 \subset M$, then $\mathcal{F}(M_0) \subset \mathcal{F}(M)$ isometrically:

 $\mathcal{F}(M_0) \cong \overline{\operatorname{span}}\,\delta(M_0)$

We will assume $0 \in M_0$. Otherwise, we mean

 $\mathcal{F}(M_0) \equiv \mathcal{F}(M_0 \cup \{0\}).$

The intersection theorem

Theorem (Aliaga, Pernecká 2019)

Let $K_i \subset M$ be closed subsets. Then

$$\bigcap_{i} \mathcal{F}(K_i) = \mathcal{F}\left(\bigcap_{i} K_i\right)$$

The intersection theorem

Theorem (Aliaga, Pernecká 2019)

Let $K_i \subset M$ be closed subsets. Then

$$\bigcap_{i} \mathcal{F}(K_i) = \mathcal{F}\left(\bigcap_{i} K_i\right)$$

Let $m \in \mathcal{F}(M)$. We define the *support of m* as

$$\operatorname{supp}(m) = \bigcap \{S \subset M \text{ closed} : m \in \mathcal{F}(S)\}$$

The intersection theorem

Theorem (Aliaga, Pernecká 2019)

Let $K_i \subset M$ be closed subsets. Then

$$\bigcap_{i} \mathcal{F}(K_i) = \mathcal{F}\left(\bigcap_{i} K_i\right)$$

Let $m \in \mathcal{F}(M)$. We define the *support of m* as

$$\operatorname{supp}(m) = \bigcap \{S \subset M \text{ closed} : m \in \mathcal{F}(S)\}$$

Theorem (Aliaga, Pernecká 2019)

 $m \in \mathcal{F}(\mathrm{supp}(m))$

Supports in $\mathcal{F}(M)$

Proposition

Let $m \in \mathcal{F}(M)$, $K \subset M$ closed. TFAE:

- $\operatorname{supp}(m) \subset K$
- $m \in \mathcal{F}(K)$
- If $f,g \in \operatorname{Lip}_0(M)$ satisfy $f|_K = g|_K$, then $\langle m,f \rangle = \langle m,g \rangle$

Supports in $\mathcal{F}(M)$

Proposition

Let $m \in \mathcal{F}(M)$, $K \subset M$ closed. TFAE:

- $\operatorname{supp}(m) \subset K$
- $m \in \mathcal{F}(K)$
- If $f,g \in \operatorname{Lip}_0(M)$ satisfy $f|_K = g|_K$, then $\langle m,f \rangle = \langle m,g \rangle$

Proposition

Let $m \in \mathcal{F}(M)$, $p \in M$. TFAE:

- $p \in \operatorname{supp}(m)$
- For every neighborhood *U* of *p*, there is $f \in \text{Lip}_0(M)$ supported on *U* such that $\langle m, f \rangle \neq 0$

Weighting in $\operatorname{Lip}_0(M)$ and $\mathcal{F}(M)$

Proposition

Let $h \in Lip(M)$ with bounded support. If $f \in Lip_0(M)$ then $f \cdot h \in Lip_0(M)$ and

$$T_h: f \mapsto f \cdot h$$

is a w^* - w^* -continuous linear operator on $\operatorname{Lip}_0(M)$.

Weighting in $\operatorname{Lip}_0(M)$ and $\mathcal{F}(M)$

Proposition

Let $h \in Lip(M)$ with bounded support. If $f \in Lip_0(M)$ then $f \cdot h \in Lip_0(M)$ and

$$T_h: f \mapsto f \cdot h$$

is a w^* -w*-continuous linear operator on $\operatorname{Lip}_0(M)$.

Thus T_h has a continuous preadjoint $(T_h)_* : \mathcal{F}(M) \to \mathcal{F}(M)$ defined by $(T_h)_*(m) = m \circ T_h$:

$$\langle m \circ T_h, f \rangle = \langle m, T_h(f) \rangle = \langle m, f \cdot h \rangle \quad \text{for } f \in \text{Lip}_0(M)$$

Let $h \in Lip(M)$ with bounded support. If $f \in Lip_0(M)$ then $f \cdot h \in Lip_0(M)$ and

$$T_h: f \mapsto f \cdot h$$

is a w^* -w*-continuous linear operator on $\operatorname{Lip}_0(M)$.

Thus T_h has a continuous preadjoint $(T_h)_* : \mathcal{F}(M) \to \mathcal{F}(M)$ defined by $(T_h)_*(m) = m \circ T_h$:

$$\langle m \circ T_h, f \rangle = \langle m, T_h(f) \rangle = \langle m, f \cdot h \rangle \quad \text{for } f \in \text{Lip}_0(M)$$

Moreover

$$\operatorname{supp}(m \circ T_h) \subset \operatorname{supp}(m) \cap \operatorname{supp}(h)$$

Let $m \in \mathcal{F}(M)$, $supp(m) \subset S_1 \cup S_2$ where S_1 , S_2 are closed and disjoint, $d(S_1, S_2) > 0$, and S_1 is bounded. Then there is a unique decomposition

 $m = m_1 + m_2$

where $\operatorname{supp}(m_1) \subset S_1$ and $\operatorname{supp}(m_2) \subset S_2$.

Let $m \in \mathcal{F}(M)$, $supp(m) \subset S_1 \cup S_2$ where S_1 , S_2 are closed and disjoint, $d(S_1, S_2) > 0$, and S_1 is bounded. Then there is a unique decomposition

 $m = m_1 + m_2$

where $\operatorname{supp}(m_1) \subset S_1$ and $\operatorname{supp}(m_2) \subset S_2$.

Proof of uniqueness: Let $m = m_1 + m_2 = m'_1 + m'_2$. Then $m_1 - m'_1 = m'_2 - m_2$. But $\operatorname{supp}(m_1 - m'_1) \subset S_1 \cap S_2 = \emptyset$, so $m_1 - m'_1 = 0$. \Box

Let $m \in \mathcal{F}(M)$, $supp(m) \subset S_1 \cup S_2$ where S_1 , S_2 are closed and disjoint, $d(S_1, S_2) > 0$, and S_1 is bounded. Then there is a unique decomposition

 $m = m_1 + m_2$

where $\operatorname{supp}(m_1) \subset S_1$ and $\operatorname{supp}(m_2) \subset S_2$.

Proof of existence:

Let
$$m_1 = m \circ T_h$$
 where $h(x) = \max\left\{1 - \frac{d(x, S_1)}{d(S_1, S_2)}, 0\right\}$.
Note: $||m_1|| \le ||m|| \cdot \left(1 + \frac{\operatorname{rad}(S_1)}{d(S_1, S_2)}\right)$

Let $m \in \mathcal{F}(M)$, $supp(m) \subset S_1 \cup S_2$ where S_1 , S_2 are closed and disjoint, $d(S_1, S_2) > 0$, and S_1 is bounded. Then there is a unique decomposition

 $m = m_1 + m_2$

where $\operatorname{supp}(m_1) \subset S_1$ and $\operatorname{supp}(m_2) \subset S_2$.

Both conditions are needed in general. If m is positive then they can be removed.

Given $\mu \in \mathcal{M}(M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_M f \, d\mu$$

Given $\mu \in \mathcal{M}_0(M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_M f \, d\mu$$

We only consider $\mathcal{M}_0(M) = \{\mu \in \mathcal{M}(M) : \mu(\{0\}) = 0\}.$

Given $\mu \in \mathcal{M}_0(M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_M f \, d\mu$$

Proposition

Let $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_0(M)$. Suppose $m = \mathcal{L}\mu$. Then

•
$$\operatorname{supp}(m) = \operatorname{supp}(\mu)$$

• *m* is positive iff μ is positive

Given $\mu \in \mathcal{M}_0(M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_M f \, d\mu$$

Proposition

Let $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_0(M)$. Suppose $m = \mathcal{L}\mu$. Then

- $\operatorname{supp}(m) = \operatorname{supp}(\mu)$
- *m* is positive iff μ is positive

In particular, if $m = \mathcal{L}\mu$ then $\mu \in \mathcal{M}_0(M)$ is unique.

Given $\mu \in \mathcal{M}_0(M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_M f \, d\mu$$

Proposition

Let $\mu \in \mathcal{M}_0(M)$. TFAE:

•
$$d(\cdot,0) \in L_1(\mu)$$

- $\mathcal{L}\mu = \int_M \delta(x) \, d\mu(x)$ as a Bochner integral
- $\mathcal{L}\mu \in \operatorname{Lip}_0(M)^*$
- $\mathcal{L}\mu \in \mathcal{F}(M)$

If diam(M) < ∞ , every measure induces an element of $\mathcal{F}(M)$.

Given $\mu \in \mathcal{M}_0(\beta M)$, define the functional $\mathcal{L}\mu$ on $\operatorname{Lip}_0(M)$ by

$$\mathcal{L}\mu(f) = \int_{eta M} f \, d\mu$$

Proposition

Let $\mu \in \mathcal{M}_0(\beta M)$. TFAE:

•
$$d(\cdot, 0) \in L_1(\mu)$$

• $\mathcal{L}\mu = \int_{\beta M} \delta(x) d\mu(x)$ as a Bochner integral

•
$$\mathcal{L}\mu \in \operatorname{Lip}_0(M)^*$$

It is sufficient that μ is concentrated on *M*.

It is sufficient that μ is concentrated on M.

Proposition

If μ is positive, then $\mathcal{L}\mu \in \mathcal{F}(M)$ iff μ is concentrated on M.

It is sufficient that μ is concentrated on M.

Proposition

If μ is positive, then $\mathcal{L}\mu \in \mathcal{F}(M)$ iff μ is concentrated on M.

It is not necessary in general: Let $\xi_1 \neq \xi_2 \in \beta M$ such that $f(\xi_1) = f(\xi_2)$ for every Lipschitz f. Take $\mu = \delta_{\xi_1} - \delta_{\xi_2}$. Then $\operatorname{supp}(\mu) = \{\xi_1, \xi_2\} \nsubseteq M$, but $\mathcal{L}\mu = \mathbf{0} \in \mathcal{F}(M)$.

It is sufficient that $\mathcal{L}\mu = \mathcal{L}(\mu|_M)$, that is

$$\int_{\beta M} f \, d\mu = \int_M f \, d\mu \quad \text{for} \, f \in \text{Lip}_0(M)$$

It is sufficient that $\mathcal{L}\mu = \mathcal{L}(\mu|_M)$, that is

$$\int_{\beta M} f d\mu = \int_M f d\mu \quad \text{for } f \in \text{Lip}_0(M)$$

Proposition

If *M* is locally compact, then $\mathcal{L}\mu \in \mathcal{F}(M)$ iff $\mathcal{L}\mu = \mathcal{L}(\mu|_M)$.

In general, not all elements of $\mathcal{F}(M)$ are represented by measures.

Theorem

Let *M* be a bounded complete metric space. TFAE:

• every
$$m \in \mathcal{F}(M)$$
 is $m = \mathcal{L}\mu$ for some $\mu \in \mathcal{M}(M)$

• *M* is uniformly discrete

Theorem

Let $m \in \mathcal{F}(M)$. If $m = \mathcal{L}\mu$ for some $\mu \in \mathcal{M}(M)$, then *m* is the limit of elements

$$\sum_{k=1}^n a_k \delta(p_k) \in \mathcal{F}(M)$$

such that $\sum_{k=1}^{n} |a_k|$ is uniformly bounded. If *m* is positive or *M* is locally compact, the converse also holds.

Elements of $\mathcal{F}(M)$ representable as measures

Theorem

Let $m \in \mathcal{F}(M)$ such that $0 \notin \operatorname{supp}(m)$. TFAE:

•
$$m = \mathcal{L}\mu$$
 for some $\mu \in \mathcal{M}(M)$

• $m = m^+ - m^-$ for some positive $m^+, m^- \in \mathcal{F}(M)$

Elements of $\mathcal{F}(M)$ representable as measures

Theorem

Let $m \in \mathcal{F}(M)$ such that $0 \notin \operatorname{supp}(m)$. TFAE:

•
$$m = \mathcal{L}\mu$$
 for some $\mu \in \mathcal{M}(M)$

• $m = m^+ - m^-$ for some positive $m^+, m^- \in \mathcal{F}(M)$

In particular:

m positive,
$$0 \notin \operatorname{supp}(m) \implies m = \mathcal{L}\mu$$

for some finite positive measure μ on *M*

If $0 \in \operatorname{supp}(m)$ this is no longer true.

Elements of $\mathcal{F}(M)$ representable as measures

Theorem

Let $m \in \mathcal{F}(M)$ such that $0 \notin \operatorname{supp}(m)$. TFAE:

•
$$m = \mathcal{L}\mu$$
 for some $\mu \in \mathcal{M}(M)$

• $m = m^+ - m^-$ for some positive $m^+, m^- \in \mathcal{F}(M)$

In particular:

m positive,
$$0 \notin \operatorname{supp}(m) \implies m = \mathcal{L}\mu$$

for some finite positive measure μ on *M*

If $0 \in \text{supp}(m)$ this is no longer true.

Theorem

Every positive element of $\mathcal{F}(M)$ is represented by a σ -finite positive measure on M.

Extremal structure of $\mathcal{F}(M)$

Research program

Let *M* be a complete pointed metric space. What are the extreme points of $B_{\mathcal{F}(M)}$?
An elementary molecule is
$$u_{pq} = rac{\delta(p) - \delta(q)}{d(p,q)} \in S_{\mathcal{F}(M)}.$$

An elementary molecule is
$$u_{pq} = rac{\delta(p) - \delta(q)}{d(p,q)} \in S_{\mathcal{F}(M)}.$$

Properties:

•
$$||f||_L = \sup \{ \langle u_{pq}, f \rangle : p, q \in M \}$$
 since
 $\langle u_{pq}, f \rangle = \frac{f(p) - f(q)}{d(p,q)}$

$$m = \sum_{n=1}^{\infty} a_n u_{p_n q_n}$$
 where $\sum_{n=1}^{\infty} |a_n| < ||m|| + \varepsilon$

An elementary molecule is
$$u_{pq} = rac{\delta(p) - \delta(q)}{d(p,q)} \in S_{\mathcal{F}(M)}.$$

Theorem (Weaver 1995)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule.

An elementary molecule is
$$u_{pq} = rac{\delta(p) - \delta(q)}{d(p,q)} \in S_{\mathcal{F}(M)}.$$

Theorem (Weaver 1995)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule.

Corollary

Every extreme point of $B_{\mathcal{F}(M)}$ with finite support is an elementary molecule.

Let $p, q \in M$. The *metric segment* between p and q is $[p,q] = \{x \in M : d(p,x) + d(x,q) = d(p,q)\}.$

Let $p, q \in M$. The *metric segment* between p and q is $[p,q] = \{x \in M : d(p,x) + d(x,q) = d(p,q)\}.$

Proposition

If u_{pq} is an extreme point of $B_{\mathcal{F}(M)}$, then $[p,q] = \{p,q\}$.

Let $p, q \in M$. The *metric segment* between p and q is $[p,q] = \{x \in M : d(p,x) + d(x,q) = d(p,q)\}.$

Proposition

If u_{pq} is an extreme point of $B_{\mathcal{F}(M)}$, then $[p,q] = \{p,q\}$.

Proof: If $x \in [p,q]$ then $u_{pq} \in [u_{px}, u_{xq}]$:

$$\begin{split} u_{pq} &= \frac{\delta(p) - \delta(q)}{d(p,q)} = \frac{\delta(p) - \delta(x)}{d(p,q)} + \frac{\delta(x) - \delta(q)}{d(p,q)} \\ &= \frac{d(p,x)}{d(p,q)} u_{px} + \frac{d(x,q)}{d(p,q)} u_{xq}. \quad \Box \end{split}$$

Theorem (Aliaga, Pernecká 2018)

 u_{pq} is an extreme point of $B_{\mathcal{F}(M)}$ iff $[p,q] = \{p,q\}$.

Theorem (Aliaga, Pernecká 2018)

 u_{pq} is an extreme point of $B_{\mathcal{F}(M)}$ iff $[p,q] = \{p,q\}$.

Theorem

The intersection of all faces of $B_{\mathcal{F}(M)}$ that contain u_{pq} is contained in $\mathcal{F}([p,q])$.

Theorem (Petitjean, Procházka 2018)

 u_{pq} is an exposed point of $B_{\mathcal{F}(M)}$ iff $[p,q] = \{p,q\}$.

 $x \in S_X$ is *exposed* \equiv there is $f \in S_{X^*}$ that attains its norm at x and nowhere else.

Theorem

The intersection of all faces of $B_{\mathcal{F}(M)}$ that contain u_{pq} is contained in $\mathcal{F}([p,q])$.

Theorem (Petitjean, Procházka 2018)

 u_{pq} is an exposed point of $B_{\mathcal{F}(M)}$ iff $[p,q] = \{p,q\}$.

 $x \in S_X$ is *exposed* \equiv there is $f \in S_{X^*}$ that attains its norm at x and nowhere else.

Theorem

The face of $B_{\mathcal{F}(M)}$ determined by f_{pq} is contained in $\mathcal{F}([p,q])$.

Theorem (Petitjean, Procházka 2018)

The face of $B_{\mathcal{F}(M)}$ determined by f_{pq} is contained in $\mathcal{F}([p,q])$.

The exposing functional for u_{pq} is

$$f_{pq}(x) = \frac{d(p,q)}{2} \frac{d(x,q) - d(x,p)}{d(x,q) + d(x,p)} - \text{constant}$$

with the property:

$$ig\langle u_{xy}, f_{pq} ig
angle \geq 1 - arepsilon \quad ext{implies} \quad x,y \in [p,q]_arepsilon$$

where

$$[p,q]_arepsilon = \left\{ x \in M : d(p,x) + d(x,q) \leq rac{d(p,q)}{1-arepsilon}
ight\}$$

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\operatorname{supp}(m) \subset [p,q]$.

The exposing functional for u_{pq} is

$$f_{pq}(x) = \frac{d(p,q)}{2} \frac{d(x,q) - d(x,p)}{d(x,q) + d(x,p)} - \text{constant}$$

with the property:

$$ig\langle u_{xy}, f_{pq} ig
angle \geq 1 - arepsilon \quad ext{implies} \quad x,y \in [p,q]_arepsilon$$

where

$$[p,q]_arepsilon = \left\{ x \in M : d(p,x) + d(x,q) \leq rac{d(p,q)}{1-arepsilon}
ight\}$$

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\mathrm{supp}(m) \subset [p,q]$.

Proof: Fix $\delta, \varepsilon > 0$ and write

$$m = \sum_{n=1}^{\infty} a_n u_{x_n y_n} \quad ext{where} \quad \sum_{n=1}^{\infty} |a_n| < 1 + \delta arepsilon \, .$$

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\operatorname{supp}(m) \subset [p,q]$.

Proof: Fix $\delta, \varepsilon > 0$ and write

$$m = \sum_{n=1}^{\infty} a_n u_{x_n y_n}$$
 where $\sum_{n=1}^{\infty} |a_n| < 1 + \delta \varepsilon$

Let $I = \{n : \langle u_{x_n y_n}, f_{pq} \rangle \ge 1 - \varepsilon \}$. Then

$$1 = \langle m, f_{pq} \rangle = \sum_{n=1}^{\infty} a_n \langle u_{x_n y_n}, f_{pq} \rangle = \sum_{n \in I} + \sum_{n \notin I} \\ \leq \sum_{n \in I} |a_n| + (1 - \varepsilon) \sum_{n \notin I} |a_n| < (1 + \delta \varepsilon) - \varepsilon \sum_{n \notin I} |a_n| .$$

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\operatorname{supp}(m) \subset [p,q]$.

That is,
$$\sum_{n \notin I} |a_n| < \delta$$
. So
$$\left\| m - \sum_{n \in I} a_n u_{x_n y_n} \right\| = \left\| \sum_{n \notin I} a_n u_{x_n y_n} \right\| \le \sum_{n \notin I} |a_n| < \delta.$$

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\operatorname{supp}(m) \subset [p,q]$.

That is,
$$\sum_{n \notin I} |a_n| < \delta$$
. So
$$\left\| m - \sum_{n \in I} a_n u_{x_n y_n} \right\| = \left\| \sum_{n \notin I} a_n u_{x_n y_n} \right\| \le \sum_{n \notin I} |a_n| < \delta.$$

Thus *m* is δ -close to $\sum_{n \in I} a_n u_{x_n y_n}$, whose supp is in $[p, q]_{\varepsilon}$. Hence $\operatorname{supp}(m) \subset [p, q]_{\varepsilon}$.

Theorem (Petitjean, Procházka 2018)

If $m \in B_{\mathcal{F}(M)}$ and $\langle m, f_{pq} \rangle = 1$, then $\operatorname{supp}(m) \subset [p,q]$.

That is,
$$\sum_{n \notin I} |a_n| < \delta$$
. So
$$\left\| m - \sum_{n \in I} a_n u_{x_n y_n} \right\| = \left\| \sum_{n \notin I} a_n u_{x_n y_n} \right\| \le \sum_{n \notin I} |a_n| < \delta.$$

Thus *m* is δ -close to $\sum_{n \in I} a_n u_{x_n y_n}$, whose supp is in $[p, q]_{\varepsilon}$. Hence $\operatorname{supp}(m) \subset [p, q]_{\varepsilon}$. So

$$\operatorname{supp}(m) \subset \bigcap_{\varepsilon > 0} [p,q]_{\varepsilon} = [p,q].$$

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of necessity: Let $m \in S^+_{\mathcal{F}(M)}$ and suppose $p \neq q \in \operatorname{supp}(m)$.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of necessity: Let $m \in S^+_{\mathcal{F}(M)}$ and suppose $p \neq q \in \text{supp}(m)$. Let $h \in \text{Lip}(M)$, $0 \leq h \leq 1$, h = 1 near p, h = 0 near q. Then $m \circ T_h$ is positive and $\neq 0$. So is $m - m \circ T_h = m \circ T_{1-h}$.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of necessity: Let $m \in S^+_{\mathcal{F}(M)}$ and suppose $p \neq q \in \text{supp}(m)$. Let $h \in \text{Lip}(M)$, $0 \leq h \leq 1$, h = 1 near p, h = 0 near q. Then $m \circ T_h$ is positive and $\neq 0$. So is $m - m \circ T_h = m \circ T_{1-h}$. So

$$||m \circ T_h|| + ||m \circ T_{1-h}|| = ||m|| = 1$$

and

$$m = \|m \circ T_h\| \, rac{m \circ T_h}{\|m \circ T_h\|} + \|m \circ T_{1-h}\| \, rac{m \circ T_{1-h}}{\|m \circ T_{1-h}\|} \quad \Box$$

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of sufficiency:

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of sufficiency:

Lemma

If $m, m' \in \mathcal{F}(M)$ and $0 \le m \le m'$ then $\mathrm{supp}(m) \subset \mathrm{supp}(m')$.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

Proof of sufficiency:

Lemma

If $m, m' \in \mathcal{F}(M)$ and $0 \le m \le m'$ then $\mathrm{supp}(m) \subset \mathrm{supp}(m')$.

Suppose
$$\frac{\delta(p)}{\|\delta(p)\|} = \frac{1}{2}(m_1 + m_2)$$
 for positive m_1, m_2 .
Since $0 \le \frac{1}{2}m_i \le \frac{\delta(p)}{\|\delta(p)\|}$, by the lemma $\operatorname{supp}(m_i) \subset \{p\}$. \Box

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

In fact, all of them are preserved:

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $\frac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

In fact, all of them are preserved:

Lemma

If $m \in \mathcal{F}(M)$, $\phi \in \mathcal{F}(M)^{**}$ and $0 \le \phi \le m$ then $\phi \in \mathcal{F}(M)$.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

The extreme points of
$$B^+_{\mathcal{F}(M)}$$
 are 0 and $rac{\delta(p)}{\|\delta(p)\|}$, $p \in M$.

In fact, all of them are preserved:

Lemma

If $m \in \mathcal{F}(M)$, $\phi \in \mathcal{F}(M)^{**}$ and $0 \le \phi \le m$ then $\phi \in \mathcal{F}(M)$.

Suppose $\frac{\delta(p)}{\|\delta(p)\|} = \frac{1}{2}(\phi_1 + \phi_2)$ for positive $\phi_1, \phi_2 \in \operatorname{Lip}_0(M)^*$. Since $0 \leq \frac{1}{2}\phi_i \leq \frac{\delta(p)}{\|\delta(p)\|}$, by the lemma $\phi_i \in \mathcal{F}(M)$. In particular: If an extreme point of $B_{\mathcal{F}(M)}$ is positive, then it is a molecule. In particular: If an extreme point of $B_{\mathcal{F}(M)}$ is positive, then it is a molecule.

Theorem (Aliaga, Pernecká, Petitjean, Procházka 2019)

Let *m* be an extreme point of $B_{\mathcal{F}(M)}$. Suppose

 $m = \lambda + \mu$

where λ is positive and μ has finite support. Then *m* is a molecule.

Let *M* be a complete pointed metric space. Are all extreme points of $B_{\mathcal{F}(M)}$ molecules?

Let *M* be a complete pointed metric space. Are all extreme points of $B_{\mathcal{F}(M)}$ molecules?

Known to be true when:

- *M* is compact and $\mathcal{F}(M) = \lim_{ 0 \to 0} (M)^*$ (Weaver 1999)
 - M is compact Hölder
 - *M* is compact and countable (Dalet 2015)
 - *M* is compact and ultrametric (Dalet 2015)

$$\operatorname{lip}_0(M) = \left\{ f \in \operatorname{Lip}_0(M) : \frac{|f(p) - f(q)|}{d(p,q)} \to 0 \text{ unif. as } d(p,q) \to 0 \right\}$$

Let *M* be a complete pointed metric space. Are all extreme points of $B_{\mathcal{F}(M)}$ molecules?

Known to be true when:

- *M* is compact and $\mathcal{F}(M) = \lim_{ 0 \to 0} (M)^*$ (Weaver 1999)
 - M is compact Hölder
 - *M* is compact and countable (Dalet 2015)
 - *M* is compact and ultrametric (Dalet 2015)
- $\mathcal{F}(M)$ has a natural predual that is a subspace of $\lim_{0 \to \infty} (M)$ (García-Lirola, Petitjean, Procházka, Rueda 2017)

Let *M* be a complete pointed metric space. Are all extreme points of $B_{\mathcal{F}(M)}$ molecules?

Known to be true when:

- *M* is compact and $\mathcal{F}(M) = \lim_{ 0 \to 0} (M)^*$ (Weaver 1999)
 - M is compact Hölder
 - *M* is compact and countable (Dalet 2015)
 - *M* is compact and ultrametric (Dalet 2015)
- $\mathcal{F}(M)$ has a natural predual that is a subspace of $lip_0(M)$ (García-Lirola, Petitjean, Procházka, Rueda 2017)
- *M* is a subset of an \mathbb{R} -tree

(Aliaga, Petitjean, Procházka 2019)

Let *M* be a complete pointed metric space. Are all extreme points of $B_{\mathcal{F}(M)}$ molecules?

Equivalently,

(1) Are all extreme points of B_{F(M)} exposed?
(2) Are all exposed points of B_{F(M)} molecules?

Thank you for your attention!

References:

R. J. Aliaga and E. Pernecká, *Supports and extreme points in Lipschitz-free spaces*, arXiv:1810.11278, to appear in Rev. Mat. Iberoam.

R. J. Aliaga, E. Pernecká, C. Petitjean and A. Procházka, *Supports in Lipschitz-free spaces and applications to extremal structure*, arXiv:1909.xxxxx

N. Weaver, Lipschitz algebras, 2nd ed., 2018.