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Motivation

DFT emerges in string theory when making explicit at the level of the
action functional T -duality invariance of the dynamics [Tseitlyin, Hohm, Hull,

Zwiebach, Blumenhagen...] ;

Generalized geometry was introduced by Hitchin and collaborators [Gualtieri

’04] to describe the geometry of generalized vector bundles with fibers
F ⊕ F ∗;

We first investigate the relation between generalized geometry and double
field theory on a simple mechanical system, the rigid rotator, as a 0+1
field theory;
then generalize to 1+1 dimensions leading to the SU(2) Principal Chiral
Model

The dynamics of the two models possesses Lie-Poisson symmetries, which
can be understood as duality transformations;

We make these symmetries manifest by introducing an alternative action
functional which reduces to the ordinary one once constraints are
implemented;

The new action contains a number of variables which is doubled with
respect to the original one, as in double field theory. Geometric structures
can be understood in terms of generalized geometry
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Geometric formulation of the rigid rotator on configuration space SU(2)

action functional

S0 = −1

4

∫
R
Tr (g−1dg ∧ ∗g−1dg) = −1

4

∫
R
Tr (g−1 dg

dt
)2dt

with g : t ∈ R→ SU(2),

g−1dg a Lie algebra valued one form,∗ the
Hodge star operator on the source space R, ∗dt = 1, Tr the trace over
the Lie algebra.

→ (0 + 1)-dimensional, group valued, field theory

Parametrization: g = y 0σ0 + iy iσi , with (y 0)2 +
∑

i (y
i )2 = 1 and σ0 the

identity matrix, σi Pauli matrices.

y i = − i

2
Tr gσi , y 0 =

1

2
Tr gσ0, i = 1, .., 3
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Geometric formulation of the rigid rotator on configuration space SU(2)

Since g−1ġ = i(y 0ẏ i − y i ẏ 0 + εi jky
j ẏ k)σi = i Q̇ iσi

the Lagrangian reads
L0 = 1

2
(y 0ẏ j − y j ẏ 0 + εj kly

k ẏ l)(y 0ẏ r − y r ẏ 0 + εr pqy
p ẏq)δir = 1

2
Q̇ j Q̇ rδjr

Tangent bundle coordinates: (Q i , Q̇ i )

Equations of motion Q̈ i = 0 or , d
dt

(
g−1 dg

dt

)
= 0
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Geometric formulation of the rigid rotator

Cotangent bundle T ∗SU(2) - Coordinates: (Q i , Ii )

with Ii the conjugate
momenta

Ij =
∂L0

∂Q̇ j
= δjr Q̇

r

Hamiltonian H0 = 1
2
Ii Ijδ

ij

PB’s:

{y i , y j} = 0

{Ii , Ij} = εij
k Ik

{y i , Ij} = −δijy 0 + εi jky
k or {g , Ij} = −iσjg

EOM: İi = 0, g−1ġ = iIiσi

Fiber coordinates Ii are associated to the angular momentum components and
the base space coordinates (y 0, y i ) to the orientation of the rotator.
Ii are constants of the motion, g undergoes a uniform precession.
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The cotangent bundle T ∗SU(2)

Remarks:

As a group T ∗SU(2) ' SU(2) n R3 with Lie algebra

[Li , Lj ] = εkijLk [Ti ,Tj ] = 0 [Li ,Tj ] = εkijTk

The non-trivial Poisson bracket is the Kirillov-Souriau Konstant bracket
on g∗

In [Marmo Simoni Stern ’93] the carrier space of the dynamics has been
generalized to SL(2,C), the Drinfeld double of SU(2).

In [Rajeev ’89 , Rajeev, Sparano P.V. ’93] the same has been done for chiral &
WZW model

Here we introduce a dual dynamical model on the dual group of SU(2)
and generalize to field theory. Only there, the duality transformation will
be a symmetry.
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

The algebra is spanned by ei = σi/2, bi = iei

[ei , ej ] = iεkijek , [ei , bj ] = iεkijbk , [bi , bj ] = −iεkijek

Non-degenerate invariant scalar products:

< u, v >= 2Im( Tr (uv)), ∀u, v ∈ sl(2,C)

and
(u, v) = 2Re( Tr (uv)), ∀u, v ∈ sl(2,C)

w.r.t. the first one (Cartan-Killing) we have two maximal isotropic subspaces

< ei , ej >=< ẽ i , ẽ j >= 0, < ei , ẽ
j >= δji

with ẽ i = bi − εij3ej . {ei}, {ẽ i} both subalgebras with

[ei , ej ] = iεkijek , [ẽ i , ej ] = iεijk ẽ
k + iek f

ki
j , [ẽ i , ẽ j ] = if ijk ẽ

k

{ẽ i} span the Lie algebra of SB(2,C), the dual group of SU(2) with
f ij k = εijlεl3k
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j , [ẽ i , ẽ j ] = if ijk ẽ
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f ij k = εijlεl3k
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

(su(2), sb(2,C)) is a Lie bialgebra

The role of su(2) and its dual algebra can be interchanged

The triple (sl(2,C), su(2), sb(2,C)) is called a Manin triple

Given d = g ./ g∗ , D is the Drinfeld double, G , G∗ are dual groups

For f ijk = 0 D → T ∗G
For ckij = 0 D → T ∗G∗

Therefore D generalizes both the cotangent bundle of SU(2) and of
SB(2,C);

The bi-algebra structure induces Poisson structures on the double group
manifold

[ , ]su(2) → (F(SB(2,C)),Λ); [ , ]sb(2,C) → (F(SU(2)), Λ̃)

which reduce to KSK brackets on coadjoint orbits of G , G∗ when
f ijk = 0, ckij = 0 resp.
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SL(2,C) as a Drinfeld double
Poisson brackets

What are these Poisson brackets?

The double group SL(2,C) can be endowed with PB’s which generalize both
those of T ∗SU(2) and of T ∗SB(2C) [[Semenov-Tyan-Shanskii ’91, Alekseev-Malkin ’94]]

{γ1, γ2} = −γ1γ2r
∗ − rγ1γ2

whith γ1 = γ ⊗ 1, γ2 = 1⊗ γ2;

r = ẽ i ⊗ ei , r∗ = −ei ⊗ ẽ i

is the classical Yang Baxter matrix
The group D equipped with the Poisson bracket is also called the Heisenberg
double
On writing γ as γ = g̃g it can be shown that these brackets are compatible
with

{g̃1, g̃2} = −[r , g̃1g̃2],

{g̃1, g2} = −g̃1rg2, {g1, g̃2} = −g̃2r
∗g1

{g1, g2} = [r∗, g1g2],
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SL(2,C) as a Drinfeld double
Poisson brackets

In the limit λ→ 0, with r = λẽ i ⊗ ei ,

g̃(λ) = 1 + iλIie
i +O(λ2)

g = y 0σ0 + iy iσi we obtain

{Ii , Ij} = εkij Ik

{Ii , y 0} = iy jδij {Ii , y j} = iy 0δji − ε
j
iky

k

{y 0, y j} = {y i , y j} = 0 + O(λ)

which reproduce correctly the canonical Poisson brackets on the cotangent
bundle of SU(2).

Consider now r∗ as an independent solution of the Yang Baxter equation
ρ = µek ⊗ ek and expand g ∈ SU(2) as a function of the parameter µ:

g = 1 + iµĨ ei + O(µ2)

By repeating the same analysis as above we get back the canonical
Poisson structure on T ∗SB(2,C), with position coordinates and momenta
now interchanged. In particular we note

{Ĩ i , Ĩ j} = f ij k Ĩ
k
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k

Patrizia Vitale Generalized Geometry and Double Field Theory: a toy Model



SL(2,C) as a Drinfeld double
Poisson brackets

In the limit λ→ 0, with r = λẽ i ⊗ ei , g̃(λ) = 1 + iλIie
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{Ĩ i , Ĩ j} = f ij k Ĩ
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i +O(λ2)

g = y 0σ0 + iy iσi we obtain

{Ii , Ij} = εkij Ik

{Ii , y 0} = iy jδij {Ii , y j} = iy 0δji − ε
j
iky

k

{y 0, y j} = {y i , y j} = 0 + O(λ)

which reproduce correctly the canonical Poisson brackets on the cotangent
bundle of SU(2).

Consider now r∗ as an independent solution of the Yang Baxter equation
ρ = µek ⊗ ek and expand g ∈ SU(2) as a function of the parameter µ:

g = 1 + iµĨ ei + O(µ2)
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SL(2,C) as a Drinfeld double
Poisson brackets

Last but not least, it is possible to consider a different Poisson structure on the
double [Semenov], given by

{γ1, γ2} = λ
2

[γ1(r∗ − r)γ2 − γ2(r∗ − r)γ1] ;

This is the one that correctly dualizes the bialgebra structure on d when
evaluated at the identity of the group D:

Expand γ ∈ D as γ = 1 + iλIi ẽ
i + iλĨ iei and rescale r , r∗ by the same

parameter λ =⇒

{Ii , Ij} = εij
k Ik ; {Ĩ i , Ĩ j} = f ij k Ĩ

k

{Ii , Ĩ j} = −fi jk Ik − Ĩ kεki
j

which is the Poisson bracket induced by the Lie bi-algebra structure of the
double;

We see that the fiber coordinates Ii and Ĩ j play a symmetric role;

Moreover, since the fiber coordinate Ĩ i appears in the expansion of g , it
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Moreover, since the fiber coordinate Ĩ i appears in the expansion of g , it
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Moreover, since the fiber coordinate Ĩ i appears in the expansion of g , it
can also be thought of as the fiber coordinate of the tangent bundle
TSU(2), so that the couple (Ii , Ĩ
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

Relation to Generalized Geometry:
We can consider TSU(2)⊕ T ∗SU(2) ' T ∗SB(2,C)⊕ T ∗SU(2):

Fiber coordinates are of the form PI = (Ĩ i , Ii ) with Poisson brackets given
by the KSK brackets on the coadjoint orbits of SL(2,C);

They are induced by the bialgebra structure of sl(2,C)
They can be identified with the C -brackets of Generalized Geometry
[C brackets are mixed brackets between vector fields and forms.
They generalize Courant and Dorfmann brackets]

We can also consider SL(2,C) as configuration space for the dynamics
and TSL(2,C) ' SL(2,C)× SL(2,C) as its tangent space;

In this case we have doubled configuration space coordinates =⇒
DFT
PB for the generalized momenta are again C -brackets

Notice that here C -brackets satisfy Jacobi identity because they stem
from a Lie bi-algebra (the generalized tangent bundle is a Lie bi-algebroid)
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

We go back to scalar products on the Lie bi-algebra
w.r.to the second scalar product we have another splitting

(ei , ej) = −(bi , bj) = δij , (ei , bj) = 0

with maximal isotropic subspaces: f ±i = 1√
2
(ei ± bi )

Remark: Both splittings can be related to two different complex structures on
SL(2,C). Some connection with Gualtieri ’04

Introduce the doubled notation

eI =

(
ei
ẽ i

)
, ei ∈ su(2), ẽ i ∈ sb(2,C),

The first scalar product becomes

< eI , eJ >= LIJ =

(
0 δji
δij 0

)
This is a O(3, 3) invariant metric; (O(d , d) metric is a fundamental structure
in DFT)
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

The second scalar product yields

(eI , eJ) = RIJ =

(
δij ε j3i
−εij3 δij − εik3ε

j
l3δ

kl

)

On denoting by C+,C− the two subspaces spanned by {ei}, {bi} respectively,
we notice that the splitting d = C+ ⊕ C− defines a positive definite metric on d
via

G = ( , )C+ − ( , )C−

Indicate the Riemannian metric with double round brackets:

((ei , ej)) := (ei , ej); ((bi , bj)) := −(bi , bj); ((ei , bj)) := (ei , bj) = 0

which satisfies
GTLG = L

G is a pseudo-orthogonal metric -
the sum αL + βG is the generalized metric of DFT
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SL(2,C) as a Drinfeld double
Relation to generalized geometry and DFT

Remark 1: Both scalar products have applications in theoretical physics to
build invariant action functionals; two relevant examples

2+1 gravity with cosmological term as a CS theory of SL(2,C) [Witten ’88]

Palatini action with Holst term [Holst, Barbero, Immirzi..]

Remark 2: While the first product is nothing but the Cartan-Killing metric of
the Lie algebra sl(2,C), the Riemannian structure G can be mathematically
formalized in a way which clarifies its role in the context of generalized complex
geometry [freidel ’17]: it can be related to the structure of para-Hermitian
manifold of SL(2,C) and therefore generalized to even-dimensional real
manifolds which are not Lie groups.
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The dual model

On T ∗SB(2,C) we may define

action functional

S̃0 = −1

4

∫
R
T r(g̃−1dg̃ ∧ ∗g̃−1dg̃)

with g̃ : t ∈ R→ SB(2,C), T r a suitable trace over the Lie algebra

No non-degenerate invariant products on sb(2,C); We choose the
non-degenerate one T r := (( , )) =⇒
the Lagrangian

L̃0 = 1
2

˙̃Q i (δ
ij + εik3ε

j
l3)δkl ˙̃Q j

Tangent bundle coordinates: (Q̃i ,
˙̃Q i ), with g̃−1 ˙̃g = ˙̃Q i ẽ

i

Equations of motion (δij + εik3ε
j
l3δ

kl) ¨̃Q j = 0
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The dual model

Cotangent bundle

T ∗SB(2,C) - Coordinates: (Q̃j , Ĩ
j) with Ĩ j the

conjugate momenta

Ĩ j =
∂L̃0

∂ ˙̃Q j

= (δjr + εjr3) ˙̃Q r = − i

2
((g̃−1 ˙̃g , ẽ j))

with ˙̃Q j = (δjr − 1
2
εjr3)Ĩ r

Hamiltonian

H̃0 = 1
2
Ĩ p(δpq − 1

2
ε k3
p ε l3q δkl)Ĩ

q

PB’s {Ĩ i , Ĩ j} = δibf jbc Ĩ
c

so that EOM ˙̃I j = 0

The two models are dual because they leave on dual groups. Not yet a duality
symmetry between them.
However:
The usual rigid rotator can be equivalently formulated on the whole SL(2,C) [[
Marmo et al ’94] and one could try a similar analysis for the SB(2,C) model.
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conjugate momenta
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Ĩ p(δpq − 1

2
ε k3
p ε l3q δkl)Ĩ
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j) with Ĩ j the

conjugate momenta
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Ĩ p(δpq − 1

2
ε k3
p ε l3q δkl)Ĩ
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with ˙̃Q j = (δjr − 1
2
εjr3)Ĩ r
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c

so that EOM ˙̃I j = 0

The two models are dual because they leave on dual groups. Not yet a duality
symmetry between them.
However:
The usual rigid rotator can be equivalently formulated on the whole SL(2,C) [[
Marmo et al ’94] and one could try a similar analysis for the SB(2,C) model.

Patrizia Vitale Generalized Geometry and Double Field Theory: a toy Model



The doubled action

Scope: Introduce an action functional on SL(2,C) (doubled coordinates) which
reduces to previous models when constrained

The action

S =

∫
α < γ−1dγ ∧ ∗γ−1dγ > +β((γ−1dγ ∧ ∗γ−1dγ))

with γ ∈ SL(2,C), eI = (ei , ẽ
i ),

γ−1γ̇ = Q̇I eI ≡ Aiei + Bi ẽ
i

(Ai ,Bi ) are fiber coordinates of TSL(2,C)

They are obtained from the O(3, 3) metric

Ai = 2Im Tr (γ−1γ̇ẽ i ); Bi = 2Im Tr (γ−1γ̇ei ).
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The doubled action

The Lagrangian

L1 =
1

2
(αLIJ + βRIJ)Q̇I Q̇J

with

αLIJ + βRIJ =

(
βδij αδji + βε j3i

αδij − βεij3 β(δij + εik3ε
j
l3δ

kl)

)

EOM (αLIJ + βKIJ)Q̈J = 0
The matrix EIJ = αLIJ + βKIJ is invertible if (α/β)2 6= 1=⇒
The Hamiltonian

H1 =
1

2
PI [E

−1]IJPJ

with PI ≡ (Ii , Ĩ i ) the conjugate momenta

PB’s They are obtained by Lie Poisson brackets on the Drinfeld double
group [Semenov-Tyan-Shanskii ’91, Alekseev-Malkin ’94]

{Ii , Ij} = εij
kIk , {Ĩ i , Ĩ j} = f ij k Ĩk {Ii , Ĩ j} = −fi jkIk − Ĩkεki j
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The doubled action

Summarizing,

We have obtained a dynamical model with doubled coordinates and
generalized momenta

We have Poisson brackets for the generalized momenta (C-brackets)

We have studied (not shown here) infinitesimal symmetries and their Lie
algebra

In order to get back one of the two models one has to impose constraints.
=⇒ for example gauge either SU(2) or SB(2,C)

with d → D = d + C , C = C iei or C = Ci ẽ
i

and integrate out
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i

and integrate out

Patrizia Vitale Generalized Geometry and Double Field Theory: a toy Model



The doubled action

Summarizing,

We have obtained a dynamical model with doubled coordinates and
generalized momenta

We have Poisson brackets for the generalized momenta (C-brackets)

We have studied (not shown here) infinitesimal symmetries and their Lie
algebra

In order to get back one of the two models one has to impose constraints.
=⇒ for example gauge either SU(2) or SB(2,C)

with d → D = d + C , C = C iei or C = Ci ẽ
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Generalization to field theory:

the SU(2) Principal Chiral Model

The model is described in terms of fields g : (R2, η)→ SU(2) with

action functional S =
∫
R2 Tr g−1dg ∧ ∗g−1dg

with now

g−1dg = g−1ġdt + g−1g ′dσ, ∗ g−1dg = g−1ġdσ − g−1g ′dt

EOM ∂µ(g−1∂µg) = 0

Hamiltonian

H =
1

2

∫
R

dσ Tr (I 2 + J2)

with I = (g−1ġ)iei , J = (g−1g ′)iei

PB’s

{Ii (σ), Ij(σ
′)} =εijk Ik(σ)δ(σ − σ′),

{Ii (σ), Jj(σ
′)} =εijkJk(σ)δ(σ − σ′)− δijδ′(σ − σ′),

{Ji (σ), Jj(σ
′)} =0

with EOM ∂t I = ∂σJ, ∂tJ = ∂σI − [I , J]

We recognize the infinite-d current algebra c1 = su(2)(R)⊕̇a
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EOM ∂µ(g−1∂µg) = 0

Hamiltonian

H =
1

2

∫
R

dσ Tr (I 2 + J2)

with I = (g−1ġ)iei , J = (g−1g ′)iei

PB’s

{Ii (σ), Ij(σ
′)} =εijk Ik(σ)δ(σ − σ′),

{Ii (σ), Jj(σ
′)} =εijkJk(σ)δ(σ − σ′)− δijδ′(σ − σ′),

{Ji (σ), Jj(σ
′)} =0

with EOM ∂t I = ∂σJ, ∂tJ = ∂σI − [I , J]

We recognize the infinite-d current algebra c1 = su(2)(R)⊕̇a
Patrizia Vitale Generalized Geometry and Double Field Theory: a toy Model



Generalization to field theory:

the SU(2) Principal Chiral Model
The model is described in terms of fields g : (R2, η)→ SU(2) with

action functional S =
∫
R2 Tr g−1dg ∧ ∗g−1dg

with now
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Alternative formulation of the SU(2) Principal Chiral
Model
[Rajeev ’89, Rajeev, Sparano, P.V. ’94]

We introduce a parameter τ to define a deformation of the Poisson brackets

{Ii (σ), Ij(σ
′)} =(1− τ 2)εijk Ik(σ)δ(σ − σ′),

{Ii (σ), Jj(σ
′)} =(1− τ 2)

(
εijkJk(σ)δ(σ − σ′)− (1− τ 2)δijδ

′(σ − σ′)
)
,

{Ji (σ), Jj(σ
′)} =− (1− τ 2)τ 2εijk Ik(σ)δ(σ − σ′)

We recognize the infinite-d current algebra c2 = sl(2,C)(R)
For the dynamics to be undeformed, we choose

Hτ =
1

2(1− τ 2)2

∫
R
dσ Tr(I 2 + J2)

In terms of Ki (σ) = Ji (σ)− τεil3Il(σ)
we have

{Ki (σ),Kj(σ
′)} = (1− τ 2)τ 3δ(σ − σ′)f kij Kk(σ′)

and

{Ii (σ),Kj(σ
′)} = (1−τ 2)[εijkδ(σ−σ′)Kk(σ′)−τ f kij δ(σ−σ′)Ik(σ′)−δijδ′(σ−σ′)]
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Alternative formulation of the SU(2) Principal Chiral Model

We recognize
c2 = su(2)(R) on sb(2,C)(R)

with the Hamiltonian

H ′τ =
1

2(1− τ 2)2

∫
R
dσ Tr(I 2 + K 2),

EOM

∂t Ij(σ
′) = ∂σKj(σ

′)− τ

1− τ 2
fkij Ik(σ′)Ki (σ

′)

∂tKj(σ
′) = ∂σIj(σ

′) +
1

1− τ 2
εijkKk(σ′)Ii (σ

′)

These are the same EOM written for new coordinates
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The dual SB(2,C) Principal Chiral Model

The algebra sl(2,C)(R) can be dually obtained from the deformation of the
current algebra c3 = sb(2,C)(R)⊕̇a given by

{Ĩi (σ), Ĩj(σ
′)} =f kij Ĩk(σ)δ(σ − σ′),

{Ĩi (σ), J̃j(σ
′)} =f kij J̃k(σ)δ(σ − σ′)− δijδ′(σ − σ′),

{J̃i (σ), J̃j(σ
′)} =0

Introduce K̃i = J̃i − τ ′εil3 Ĩl :

{Ĩi (σ), Ĩj(σ
′)} = (1− τ 2)f kij Ĩk(σ)δ(σ − σ′),

{Ĩi (σ), K̃j(σ
′)} = (1− τ 2)[εijkδ(σ − σ′)Ĩk(σ′)− δijδ′(σ − σ′)− τ f kij δ(σ − σ′)K̃k(σ′)],

{K̃i (σ), K̃j(σ
′)} = (1− τ 2)τ 3δ(σ − σ′)εijk K̃k(σ′)

This is the algebra
c2 = su(2)(R) on sb(2,C)(R)

=⇒ The Poisson brackets for (I ,K) (Ĩ , K̃) go one into the other under the
exchange I ↔ K̃ and K ↔ Ĩ , τ → 1/τ
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′)} = (1− τ 2)[εijkδ(σ − σ′)Ĩk(σ′)− δijδ′(σ − σ′)− τ f kij δ(σ − σ′)K̃k(σ′)],

{K̃i (σ), K̃j(σ
′)} = (1− τ 2)τ 3δ(σ − σ′)εijk K̃k(σ′)

This is the algebra
c2 = su(2)(R) on sb(2,C)(R)

=⇒ The Poisson brackets for (I ,K) (Ĩ , K̃) go one into the other under the
exchange I ↔ K̃ and K ↔ Ĩ , τ → 1/τ
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′)} = (1− τ 2)[εijkδ(σ − σ′)Ĩk(σ′)− δijδ′(σ − σ′)− τ f kij δ(σ − σ′)K̃k(σ′)],

{K̃i (σ), K̃j(σ
′)} = (1− τ 2)τ 3δ(σ − σ′)εijk K̃k(σ′)

This is the algebra
c2 = su(2)(R) on sb(2,C)(R)
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The SB(2,C) Principal Chiral Model

The duality appears like a symmetry if we consider the Hamiltonian on the dual
group

H̃ ′τ =
1

2(1− τ)2

∫
R
dσ Tr(Ĩ 2 + K̃ 2),

and we compute the canonical equations of motion:

∂t Ĩj(σ
′) = ∂σK̃j(σ

′) +
1

1− τ 2
εijk Ĩk(σ′)K̃i (σ

′),

∂tK̃j(σ
′) = ∂σ Ĩj(σ

′)− τ

1− τ 2
fkij K̃k(σ′)Ĩi (σ

′)

The discrete transformation I → K̃ and K → Ĩ is a symmetry of the dynamics
The two Hamiltonians H ′τ and H̃ ′τ ′ are dual
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The double field formulation of Principal Chiral Model

Is there a double field formulation with the duality a manifest symmetry of the
action?

S =
1

2

∫
R2

(
α < γ−1dγ, γ−1dγ > +β(γ−1dγ, γ−1dγ)

)
,

with

γ−1∂tγ =I iei + Ĩie
i = I I eI ,

γ−1∂σγ =J iei + J̃ie
i = J I eI

The Hodge star exchanges the components and realizes the duality
transformation

∗γ−1dγ = I I eIdσ − J I eIdt

The Lagrangian function is given explicitly by

L =
1

2

∫
R
dσ (αLIJ + βRIJ)(I I I J − J IJJ),

The matrix (αLIJ + βRIJ) is invertible for α/β 6= ±1 and we repeat exactly the
same analysis as for the rigid rotator.
We reduce to the two dual models by gauging the global symmetries.
Preliminary analysis in Sfetsos ’99, Reid-Edwards ’10
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i = I I eI ,

γ−1∂σγ =J iei + J̃ie
i = J I eI

The Hodge star exchanges the components and realizes the duality
transformation

∗γ−1dγ = I I eIdσ − J I eIdt

The Lagrangian function is given explicitly by

L =
1

2

∫
R
dσ (αLIJ + βRIJ)(I I I J − J IJJ),

The matrix (αLIJ + βRIJ) is invertible for α/β 6= ±1 and we repeat exactly the
same analysis as for the rigid rotator.
We reduce to the two dual models by gauging the global symmetries.
Preliminary analysis in Sfetsos ’99, Reid-Edwards ’10

Patrizia Vitale Generalized Geometry and Double Field Theory: a toy Model



Conclusions

We have described the double formulation of a mechanical system in
terms of dual configuration spaces

The model is too simple to exhibit symmetry, but it is readily
generalizable;

Adding one dimension to source space we have a 2-d field theory, modeled
on the rigid rotator, which is duality invariant and has all the richness of
DFT and generalized geometry

Algebraic and geometric structures under control

Poisson-Lie T-duality of non-linear sigma models has been introduced
already in ’96 by [Klimcik, Severa] in “Poisson-Lie T duality and loop groups
of Drinfeld doubles,” Phys. Lett. B 372, 65 (1996)

However the symmetry under duality relies on the generalization
introduced in Rajeev et al in ’89, ’93.

Work in collaboration with Vincenzo Marotta and Franco Pezzella to be
published hopefully soon...
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Happy Birthday Alberto!
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