# Quantum Control on the Boundary

# Juan Manuel Pérez-Pardo

# uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas



IbortFest 2018 March 2018



IbortFest 2018

Controllability of Quantum Systems

Unbounded operators and self-adjointness

Quantum Control on the boundary

#### **Controllability for Quantum Systems**

Time dependent Schrödinger Equation

 $i\frac{\partial\Psi}{\partial t}=H(t)\Psi$ 

- H(t) is a family of self-adjoint operators
- The solution of the equation is given in terms of a unitary propagator
  - $U: \mathbb{R} \times \mathbb{R} \to \mathcal{U}(\mathcal{H})$
  - $\bullet \quad U(t,t) = \mathbb{I}_{\mathcal{H}}$
  - U(t,s)U(s,r) = U(t,r)
- $\Psi(t) = U(t, t_0)\Psi_0$  is a solution of Schrödinger's Equation with initial value  $\Psi_0$

#### J.M. Pérez-Pardo

# **Controllability of finite Dimensional Quantum Systems**

- Finite dimensional quantum System  $\mathcal{H} = \mathbb{C}^n$
- Simple situation. Linear controls:

$$i\frac{\partial\Psi}{\partial t} = (H_0 + c(t)H_1)\Psi$$

- $H_0$ ,  $H_1$  self-adjoint operators (Hermitean matrices).
- $c: \mathbb{R} \to \mathcal{C}$  Space of controls
- Use the controls to steer the state of the system from  $\Psi_0 \rightarrow \Psi_f$ .

IbortFest 2018

# **Controllability of finite dimensional Quantum systems**

- Ultimate Objective (not today): Find a curve  $c(t) \subset C$  that drives the system from  $\Psi_0 \rightarrow \Psi_f$ .
- Optimal control: The solution  $\Psi(t) = U(t, t_0)\Psi_0$ must minimize some functional.
  - Minimal time
  - Minimal energy
- First of all: Decide wether or not the system is controllable.
  - If there exists  $c(t) \subset C$  such that for some T

$$\Psi_f = \Psi(T) = U(t, t_0)\Psi_0$$

IbortFest 2018

**Controllability of finite dimensional Quantum systems** 

Study the dynamical Lie algebra:

 $\mathfrak{Lie}{iH_0, iH_1}$ 

The reachable set of  $\Psi_0$  is the orbit through  $\Psi_0$  of the exponential map of the dynamical Lie algebra.

The finite dimensional quantum system is controllable if the dynamical Lie algebra is the Lie algebra of U(N).

IbortFest 2018

# Harmonic Oscillator

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\frac{\mathsf{d}^2\Psi}{\mathsf{d}x^2} + \frac{1}{2}x^2\Psi + c(t)x\Psi = \left[\frac{1}{2}(p^2 + q^2) + c(t)q\right]\Psi$$

$$p\Psi = -i\frac{\mathsf{d}\Psi}{\mathsf{d}x}$$

$$q\Psi = x\Psi(x)$$

**IbortFest 2018** 

Harmonic Oscillator algebra:

$$\begin{aligned} a^{\dagger} &= \frac{1}{\sqrt{2}}(q - ip) \\ N|n\rangle &= n|n\rangle \end{aligned} \qquad \begin{aligned} a &= \frac{1}{\sqrt{2}}(q + ip) \\ a^{\dagger}|n\rangle &= \sqrt{n+1}|n+1\rangle \end{aligned} \qquad \begin{aligned} N &= a^{\dagger}a \\ a|n\rangle &= \sqrt{n}|n-1\rangle \end{aligned}$$

$$H_{0} \text{ Harmonic Oscillator}$$

$$i\frac{\partial\Psi}{\partial t} = \begin{bmatrix} -\frac{1}{2}\frac{d^{2}\Psi}{dx^{2}} + \frac{1}{2}x^{2}\Psi + c(t)x\Psi \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(p^{2} + q^{2}) + c(t)q \end{bmatrix} \Psi$$

$$p\Psi = -i\frac{d\Psi}{dx} \qquad q\Psi = x\Psi(x)$$
Harmonic Oscillator algebra:
$$a^{\dagger} = \frac{1}{c}(q - ip) \qquad a = \frac{1}{c}(q + ip) \qquad N = a^{\dagger}a$$

$$\begin{aligned} a^{\dagger} &= \frac{1}{\sqrt{2}}(q - ip) \\ n \rangle &= n|n\rangle \end{aligned} \qquad \begin{aligned} a &= \frac{1}{\sqrt{2}}(q + ip) \\ a^{\dagger}|n\rangle &= \sqrt{n+1}|n+1\rangle \end{aligned} \qquad \begin{aligned} N &= a^{\dagger}a \\ a|n\rangle &= \sqrt{n}|n-1\rangle \end{aligned}$$

Generators of the dynamic: 

$$H_0 = N + \frac{1}{2}$$

$$H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$$

#### J.M. Pérez-Pardo

N

 Finite-dimensional approximation by the first n eigenstates

 $(H_0^n)_{ij} = \langle i | H_0 | j \rangle$ 

 $(H_1^n)_{ij} = \langle i | H_0 | j \rangle$ 



 Finite-dimensional approximation by the first n eigenstates

$$(H_0^n)_{ij} = \langle i | H_0 | j \rangle$$

$$(H_1^n)_{ij} = \langle i | H_0 | j \rangle$$

The finite dimensional approximation is controllable for all n

$$\dim\mathfrak{Lie}\{iH_0,iH_1\}=n^2$$



# **Controllability of the Harmonic Oscillator**

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
  $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$ 

Dynamical Lie Algebra of the Harmonic Oscillator

$$[a, a^{\dagger}] = \mathbb{I}$$
  $[N, a] = -a$   $[N, a^{\dagger}] = a^{\dagger}$ 

$$[iH_0, iH_1] = -\frac{1}{\sqrt{2}}[N, a^{\dagger} + a] = -\frac{1}{\sqrt{2}}(a^{\dagger} - a) = ip = iH_2$$

IbortFest 2018

# **Controllability of the Harmonic Oscillator**

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
  $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$ 

Dynamical Lie Algebra of the Harmonic Oscillator

$$\begin{bmatrix} a, a^{\dagger} \end{bmatrix} = \mathbb{I}$$
  $\begin{bmatrix} N, a \end{bmatrix} = -a$   $\begin{bmatrix} N, a^{\dagger} \end{bmatrix} = a^{\dagger}$   
 $\begin{bmatrix} iH_0, iH_1 \end{bmatrix} = iH_2$   $\begin{bmatrix} iH_0, iH_2 \end{bmatrix} = iH_1$   $\begin{bmatrix} iH_1, iH_2 \end{bmatrix} = i\mathbb{I} = iH_3$ 

J.M. Pérez-Pardo

# **Controllability of the Harmonic Oscillator**

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
  $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$ 

Dynamical Lie Algebra of the Harmonic Oscillator

$$[a, a^{\dagger}] = \mathbb{I}$$
  $[N, a] = -a$   $[N, a^{\dagger}] = a^{\dagger}$ 

 $[iH_0, iH_1] = iH_2$   $[iH_0, iH_2] = iH_1$   $[iH_1, iH_2] = i\mathbb{I} = iH_3$ 

IbortFest 2018

Four dimensional Lie algebra!

The infinite dimensional Harmonic Oscillator is not controllable.

Approximate Controllability: A linear control system is approximately controllable if for every  $\Psi_0$ ,  $\Psi_1 \in S$  and every  $\epsilon > 0$  there exist T > 0 and  $c(t) \subset C$  such that

 $\left\|\Psi_1 - U(T, t_0)\Psi_0\right\| < \epsilon$ 

- Reasonable for infinite dimensions
- Space is defined as equivalence classes of convergent sequences
- Is natural to expect this if one has exact controllability of every finite dimensional subsystem

IbortFest 2018

IbortFest 2018

# Controllability of Quantum Systems

Unbounded operators and self-adjointness

Quantum Control on the boundary

#### **Unbounded operators and self-adjointness**

- Unbounded operators are not continuous
- One needs to define a suitable domain
- There are two major probems
  - The domain of the adjoint operator

$$\langle \Phi, T\Psi \rangle = \langle T^{\dagger}\Phi, \Psi \rangle$$

The sum of operators is not well defined in general

 $T = A + B \qquad \qquad \mathcal{D}(T) = \mathcal{D}(A) \cap \mathcal{D}(B)$ 

IbortFest 2018

Quadratic Form defined by the operator

 $Q(\Phi,\Psi)=\langle\Phi,T\Psi\rangle$ 

- If the operator is lower semibounded, there exists a unique self-adjoint operator that represents it.
- Q.F. Laplace operator

$$Q(\Phi,\Psi) \ = \langle \mathbf{d}\Phi, \mathbf{d}\Psi\rangle - \langle \varphi, \dot{\varphi}\rangle$$

$$= \langle \mathbf{d}\Phi, \mathbf{d}\Psi \rangle - \langle \varphi, A_U \varphi \rangle$$

$$\dot{\varphi} = -i\left(\frac{U-\mathbb{I}}{U+\mathbb{I}}\right)\varphi = A_U\varphi$$

Splitting of the boundary conditions

$$U = -1P + P^{\perp}U$$

$$\begin{aligned} P\varphi &= 0\\ P^{\perp}\dot{\varphi} &= A_U P^{\perp}\varphi \end{aligned}$$

#### J.M. Pérez-Pardo

# Consider the Linear Control System:

$$i\frac{\partial\Psi}{\partial t} = \left(H_0 + c(t)H_1\right)\Psi$$

- $H_0$ ,  $H_1$  are self-adjoint.
- $\{\Phi_n\}_{n\in\mathbb{N}}$  O.N.B of eigenvectors of  $H_0$
- $\Phi_n \in \mathcal{D}(H_1)$  for every  $n \in \mathbb{N}$
- The linear control system is approximately controllable with piecewise constant controls if [Chambrion, Mason, Sigalotti, Boscain 2009]:

IbortFest 2018

- $(\lambda_{n+1} \lambda_n)_{n \in \mathbb{N}}$  are  $\mathbb{Q}$ -linearly independent.
- $\langle B\Phi_n, \Phi_{n+1} \rangle \neq 0$  for any  $n \in \mathbb{N}$

IbortFest 2018

Controllability of Quantum Systems

Unbounded operators and self-adjointness

Quantum Control on the boundary

Time dependent Schrödinger Equation

$$i\frac{\partial\Psi}{\partial t} = H(t)\Psi$$

*H*(*t*) is a family of different self-adjoint extension of the same operator

 $\left(H, \mathcal{D}\left(c(t)\right)\right)$ 

- Advantage. There is no need to apply an external field
- Problem. Even the existence of solutions of the dynamics is compromised.

IbortFest 2018

#### **Quantum Control at the Boundary**

# Assumption:

J.M. Pérez-Pardo

- The spectrum of  $(H, \mathcal{D}(c))$  only contains eigenvalues with finite degeneracy.
- Then  $\{\Phi_n^c\}_{n\in\mathbb{N}}$  forms a complete orthonormal base.
- Fix a reference extension  $(H, \mathcal{D}(c_0))$ 
  - Define the unitary operator

$$V_c: \quad \mathcal{H} \to \mathcal{H} \\ \Phi_n^c \to \Phi_n^0$$

• One needs to require additionally that  $V_c \colon \mathcal{D}(c) \to \mathcal{D}(c_0)$ 

#### **Quantum Control at the boundary**

Write the Schrödinger Equation on the reference domain:

$$\Psi \in \mathcal{D}(c) \qquad \qquad \Psi_0 := V_c \Psi \in \mathcal{D}(c_0)$$

- $V_c H V_c^{\dagger}$  is a self-adjoint operator with domain  $\mathcal{D}(c_0)$
- The Schrödinger Equation becomes

$$i \frac{\partial}{\partial t} \left( V_c^{\dagger} \Psi_0 
ight) = H V_c^{\dagger} \Psi_0$$

$$i\frac{\partial}{\partial t}\Psi_0 = V_c H V_c^{\dagger} \Psi_0 - i V_c \dot{V}_c^{\dagger} \Psi_0$$

Theorem (J. Kisynski '63):

If the family  $(H, \mathcal{D}(c(t)))$  is uniformly semibounded in time and under suitable differentiability conditions of  $V_{c(t)}$  there exists a unitary propagator solving the time dependent Schrödinger equation.

#### J.M. Pérez-Pardo

# **Example: Varying Quasiperiodic Boundary Conditions**

$$i \frac{\mathsf{d}}{\mathsf{d}t} \Psi = [i \frac{\mathsf{d}}{\mathsf{d}\theta} - \alpha]^2 \Psi + \theta \dot{\alpha} \Psi$$

By the theorem [Chambrion, Mason, Sigalotti, Boscain 2009] this system is approximately controllable by piecewise constant controls.



Particle Moving in a circular wire

IbortFest 2018

Magnetic flux of intensity  $\alpha$ 

Quantum Faraday Law

# References

- A. Ibort, F. Lledó, JMPP. Self-Adjoint Extensions of the Laplace-Beltrami Operator and unitaries at the boundary.
   J. Funct. Anal. 268, 634-670, (2015).
- M. Barbero-Liñán, A. Ibort, JMPP. Boundary dynamics and topology change in quantum mechanics. Int. J. Geom. Methods in Modern Phys. **12** 156011, (2015).
- A. Ibort, JMPP. Quantum control and representation theory.
   J. Phys. A: Math. Theor. 42 205301, (2009).
- A.P. Balachandran, G. Bimonte, G. Marmo, A. Simoni. Nucl. Phys. B 446 299-214, (1995).