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The quantum harmonic oscillator

It is described by the following spectral problem:

(−∆ + |x |2)ψ = λψ ,

where ψ ∈ H1(R3,C).
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The quantum harmonic oscillator

It is described by the following spectral problem:

(−∆ + |x |2)ψ = λψ ,

where ψ ∈ H1(R3,C).

It is well known that the eigenvalues have the form λ = 2N + 3, with N a
nonnegative integer, and their multiplicity is 1

2 (N + 1)(N + 2). The eigenfunctions
are analytic and also have an explicit expression.
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An object of interest in Physics is the nodal set of the eigenfunctions, which is
defined as:
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An object of interest in Physics is the nodal set of the eigenfunctions, which is
defined as:

{x ∈ R3 : ψ(x) = 0}

Since ψ = ψ1 + iψ2 is complex-valued, the nodal set is typically a union of curves
(not necessarily compact) in R3.
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The quantum harmonic oscillator

It is described by the following spectral problem:

(−∆ + |x |2)ψ = λψ ,

where ψ ∈ H1(R3,C).

It is well known that the eigenvalues have the form λ = 2N + 3, with N a
nonnegative integer, and their multiplicity is 1

2 (N + 1)(N + 2). The eigenfunctions
are analytic and also have an explicit expression.

An object of interest in Physics is the nodal set of the eigenfunctions, which is
defined as:

{x ∈ R3 : ψ(x) = 0}

Since ψ = ψ1 + iψ2 is complex-valued, the nodal set is typically a union of curves
(not necessarily compact) in R3.

These curves can be knotted and linked in many complicated ways.
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Berry’s problem

Figure: Trefoil knot and the Borromean rings.
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Berry’s problem

Figure: Trefoil knot and the Borromean rings.

Berry’s problem (2001)

Given a finite link L in R3, do there exist an eigenfunction ψ of the harmonic
oscillator and a diffeomorphism Φ : R3 → R3 such that Φ(L) is a union of
connected components of the nodal set ψ−1(0)? Is this set structurally stable?
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Berry’s problem (2001)

Given a finite link L in R3, do there exist an eigenfunction ψ of the harmonic
oscillator and a diffeomorphism Φ : R3 → R3 such that Φ(L) is a union of
connected components of the nodal set ψ−1(0)? Is this set structurally stable?

A link is a union of (pairwise disjoint) smooth closed curves in R3.

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 3 / 15



Berry’s problem

Figure: Trefoil knot and the Borromean rings.

Berry’s problem (2001)

Given a finite link L in R3, do there exist an eigenfunction ψ of the harmonic
oscillator and a diffeomorphism Φ : R3 → R3 such that Φ(L) is a union of
connected components of the nodal set ψ−1(0)? Is this set structurally stable?

A link is a union of (pairwise disjoint) smooth closed curves in R3.

The nodal set is structurally stable if any function ϕ such that ‖ϕ− ψ‖C 1(R3) < ε
has a nodal set which is a small deformation of the nodal set of ψ.
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Berry’s problem (II)

The nodal set of ψ is called wave dislocation in the Physics literature. The reason
is that the nodal set is the set of singularities of the phase Im(logψ).

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 4 / 15



Berry’s problem (II)

The nodal set of ψ is called wave dislocation in the Physics literature. The reason
is that the nodal set is the set of singularities of the phase Im(logψ).

In the context of Optics (Helmholtz equation), Mark Dennis and coauthors have
measured experimentally knotted and linked nodal lines:
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Berry’s problem (II)

The nodal set of ψ is called wave dislocation in the Physics literature. The reason
is that the nodal set is the set of singularities of the phase Im(logψ).

In the context of Optics (Helmholtz equation), Mark Dennis and coauthors have
measured experimentally knotted and linked nodal lines:

Figure: Numerical reconstruction from measured optical phase fields.

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 4 / 15



Main theorem

In joint work with Alberto Enciso and David Hartley, we have solved Berry’s
problem:

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 5 / 15



Main theorem

In joint work with Alberto Enciso and David Hartley, we have solved Berry’s
problem:

Theorem (JEMS 2018)

Let L ⊂ R3 be a finite link. Then there exists a diffeomorphism Φ : R3 → R3 such
that Φ(L) is a union of structurally stable connected components of ψ−1(0),
where ψ is an eigenfunction of the harmonic oscillator.
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problem:

Theorem (JEMS 2018)

Let L ⊂ R3 be a finite link. Then there exists a diffeomorphism Φ : R3 → R3 such
that Φ(L) is a union of structurally stable connected components of ψ−1(0),
where ψ is an eigenfunction of the harmonic oscillator.

Remark 1: The eigenfunction realizing L (up to a diffeomorphism) is not unique.
Actually, we prove that for any large enough eigenvalue λ there is an
eigenfunction ψ with the desired property.
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that Φ(L) is a union of structurally stable connected components of ψ−1(0),
where ψ is an eigenfunction of the harmonic oscillator.

Remark 1: The eigenfunction realizing L (up to a diffeomorphism) is not unique.
Actually, we prove that for any large enough eigenvalue λ there is an
eigenfunction ψ with the desired property.

Remark 2: The effect of the diffeomorphism Φ is to shrink L into a ball of radius
λ−1/2. Since the eigenvalue λ of ψ is large, the nodal set ψ−1(0) is small.
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Main theorem

In joint work with Alberto Enciso and David Hartley, we have solved Berry’s
problem:

Theorem (JEMS 2018)

Let L ⊂ R3 be a finite link. Then there exists a diffeomorphism Φ : R3 → R3 such
that Φ(L) is a union of structurally stable connected components of ψ−1(0),
where ψ is an eigenfunction of the harmonic oscillator.

Remark 1: The eigenfunction realizing L (up to a diffeomorphism) is not unique.
Actually, we prove that for any large enough eigenvalue λ there is an
eigenfunction ψ with the desired property.

Remark 2: The effect of the diffeomorphism Φ is to shrink L into a ball of radius
λ−1/2. Since the eigenvalue λ of ψ is large, the nodal set ψ−1(0) is small.

Remark 3: The eigenfunctions have definite parity. Since the link Φ(L) is in the
positive octant by construction, there is another copy of Φ(L) in the negative
octant.
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Main Theorem (II)

Actually, heuristic arguments suggest that the number of compact connected
components of the nodal set of a typical random eigenfunction should grow as
λ3/2 when λ→∞.
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Main Theorem (II)

Actually, heuristic arguments suggest that the number of compact connected
components of the nodal set of a typical random eigenfunction should grow as
λ3/2 when λ→∞.

Recent numerical simulations by Taylor and Dennis confirm that the number of
components grows with λ as well as their topological complexity (i.e. knot type).
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Main Theorem (II)

Actually, heuristic arguments suggest that the number of compact connected
components of the nodal set of a typical random eigenfunction should grow as
λ3/2 when λ→∞.

Recent numerical simulations by Taylor and Dennis confirm that the number of
components grows with λ as well as their topological complexity (i.e. knot type).

Figure: The nodal set of an eigenfunction of the 3D harmonic oscillator with N = 21,
and one of its knotted connected components. Figure courtesy of Mark Dennis.
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An inverse localization lemma

A first observation: let us rescale the space variables as x̃ =
√
λx . The harmonic

oscillator equation then takes the form

∆x̃ϕ+ ϕ =
|x̃ |2

λ2
ϕ ,

where ϕ(x̃) := ψ
(

x̃√
λ

)
.
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√
λx . The harmonic

oscillator equation then takes the form

∆x̃ϕ+ ϕ =
|x̃ |2

λ2
ϕ ,

where ϕ(x̃) := ψ
(

x̃√
λ

)
.

Heuristically: taking x̃ ∈ B (the unit ball), when λ→∞ the eigenfunction ψ
behaves in the ball of radius 1/

√
λ as a solution to the Helmholtz equation in the

unit ball. The following lemma shows that a converse claim holds:

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 7 / 15



An inverse localization lemma

A first observation: let us rescale the space variables as x̃ =
√
λx . The harmonic

oscillator equation then takes the form
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x̃√
λ

)
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Heuristically: taking x̃ ∈ B (the unit ball), when λ→∞ the eigenfunction ψ
behaves in the ball of radius 1/

√
λ as a solution to the Helmholtz equation in the

unit ball. The following lemma shows that a converse claim holds:

Inverse localization lemma for the harmonic oscillator

Let ϕ be an even (or odd) solution of ∆ϕ+ϕ = 0 in R3. Fix ε > 0 and an integer
m. Then for any large enough eigenvalue λ, there is an eigenfunction ψ such that∥∥∥ψ( ·√

λ

)
− ϕ(·)

∥∥∥
Cm(B)

< ε .
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Sketch of the proof of the inverse localization lemma

Using spherical coordinates (r , θ, φ), the solution ϕ of the Helmholtz equation can
be approximated in B by a Fourier-Bessel series:

ϕ ≈
l0∑

l=0

l∑
m=−l

clmjl(r)Ylm(θ, φ) ,

where jl is the spherical Bessel function, Ylm is the spherical harmonic and clm are
complex constants. Since ϕ is even we have that clm = 0 for any odd l .
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Using spherical coordinates (r , θ, φ), the solution ϕ of the Helmholtz equation can
be approximated in B by a Fourier-Bessel series:

ϕ ≈
l0∑

l=0

l∑
m=−l

clmjl(r)Ylm(θ, φ) ,

where jl is the spherical Bessel function, Ylm is the spherical harmonic and clm are
complex constants. Since ϕ is even we have that clm = 0 for any odd l .

On the other hand, an orthogonal basis of harmonic oscillator eigenfunctions is
given by:

ψklm = exp(−r2/2)r lL
l+1/2
k (r2)Ylm(θ, φ) ,

where L denotes the Laguerre polynomial. The eigenvalues have the expression

λkl = 2(2k + l) + 3 .
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Sketch of the proof of the inverse localization lemma (II)

We have the following asymptotic expansion uniformly for r 6 1, as k →∞:

Lemma

ψklm(x) = Akl

[
jl(
√
λkl r) + O( 1

k )
]
Ylm

∇ψklm(x) =
√
λklAkl

[
j ′l (
√
λkl r) + O( 1

k )
]
Ylmer + Akl

[
jl(
√
λkl r) + O( 1

k )
]
∇S2Ylm

r
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λkl r) + O( 1
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]
Ylmer + Akl

[
jl(
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In this lemma, er is the unit vector in the radial direction and Akl is an explicit
constant whose asymptotics is:

Akl =
2√
π
k

l+1
2 + O(k

l−1
2 )
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Ylmer + Akl

[
jl(
√
λkl r) + O( 1

k )
]
∇S2Ylm

r

In this lemma, er is the unit vector in the radial direction and Akl is an explicit
constant whose asymptotics is:

Akl =
2√
π
k

l+1
2 + O(k

l−1
2 )

Now, to prove the localization lemma we proceed as follows. Fix a large constant
k̂ � l0/2, and define for any l 6 l0 the number

k̂l := k̂ − l

2
.
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Sketch of the proof of the inverse localization lemma (III)

With these choices we have that λk̂l l = 4k̂ + 3 =: λ, so it is a fixed number. We
can construct an eigenfunction of the harmonic oscillator for this eigenvalue as

ψ :=
l0∑

l=0

l∑
m=−l

clm
Ak̂l l

ψk̂l lm
.
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can construct an eigenfunction of the harmonic oscillator for this eigenvalue as

ψ :=
l0∑

l=0

l∑
m=−l

clm
Ak̂l l

ψk̂l lm
.

Notice that k̂l is an integer because in the sum defining ψ we only take l even
(indeed clm = 0 for l odd).
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Sketch of the proof of the inverse localization lemma (III)

With these choices we have that λk̂l l = 4k̂ + 3 =: λ, so it is a fixed number. We
can construct an eigenfunction of the harmonic oscillator for this eigenvalue as

ψ :=
l0∑

l=0

l∑
m=−l

clm
Ak̂l l

ψk̂l lm
.

Notice that k̂l is an integer because in the sum defining ψ we only take l even
(indeed clm = 0 for l odd).

Using the lemma for the asymptotic expansion of the eigenfunctions, we can
derive the following estimate:

∥∥∥ψ(
·√
λ

)− ϕ(·)
∥∥∥
C 1(B)

6
l0∑

l=0

l∑
m=−l

|clm|O
( 1

k̂l

)
6

C

k̂ − l0
2

< ε

for any k̂ that is large enough. The localization lemma is then proved.
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Knotted zeros for the Helmholtz equation

Before completing the proof of the solution to Berry’s problem, we need the
following theorem for the nodal set of solutions to the Helmholtz equation:
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Knotted zeros for the Helmholtz equation

Before completing the proof of the solution to Berry’s problem, we need the
following theorem for the nodal set of solutions to the Helmholtz equation:

Theorem

For any link L ⊂ R3, there exists a diffeomorphism Φ̃ : R3 → R3 that is close to
the identity in the Cm(R3) norm, and an even complex-valued solution ϕ to the
equation ∆ϕ+ ϕ = 0 in R3 such that Φ̃(L) is a union of structurally stable
connected components of the nodal set of ϕ.
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Before completing the proof of the solution to Berry’s problem, we need the
following theorem for the nodal set of solutions to the Helmholtz equation:

Theorem

For any link L ⊂ R3, there exists a diffeomorphism Φ̃ : R3 → R3 that is close to
the identity in the Cm(R3) norm, and an even complex-valued solution ϕ to the
equation ∆ϕ+ ϕ = 0 in R3 such that Φ̃(L) is a union of structurally stable
connected components of the nodal set of ϕ.

Remark 1: the link L may contain infinitely many connected components. If L is
finite, then ϕ can be taken to decay as r−1 at infinity (optimal decay for the
Helmholtz equation).
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Knotted zeros for the Helmholtz equation

Before completing the proof of the solution to Berry’s problem, we need the
following theorem for the nodal set of solutions to the Helmholtz equation:

Theorem

For any link L ⊂ R3, there exists a diffeomorphism Φ̃ : R3 → R3 that is close to
the identity in the Cm(R3) norm, and an even complex-valued solution ϕ to the
equation ∆ϕ+ ϕ = 0 in R3 such that Φ̃(L) is a union of structurally stable
connected components of the nodal set of ϕ.

Remark 1: the link L may contain infinitely many connected components. If L is
finite, then ϕ can be taken to decay as r−1 at infinity (optimal decay for the
Helmholtz equation).

Remark 2: the techniques to prove this result are based on previous ideas
developed by Enciso and the speaker to study the level sets of harmonic functions
and the vortex structures in fluid mechanics. To this end, we need to develop a
Runge-type global approximation theorem.
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Knotted zeros for the Helmholtz equation (II)

A global approximation theorem for the Helmholtz equation

Let ϕ̃ be a function that satisfies the equation ∆ϕ̃+ ϕ̃ = 0 in a (possibly
disconnected) compact set K ⊂ R3. Assume that R3\K has no bounded
connected components. Then, there exists a function ϕ satisfying ∆ϕ+ ϕ = 0 in
R3 such that ‖ϕ̃− ϕ‖Cm(K) < δ, for any integer m and positive δ that are fixed a
priori. Moreover, ϕ falls off at infinity as |D jϕ(x)| < Cj |x |−1.
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A global approximation theorem for the Helmholtz equation

Let ϕ̃ be a function that satisfies the equation ∆ϕ̃+ ϕ̃ = 0 in a (possibly
disconnected) compact set K ⊂ R3. Assume that R3\K has no bounded
connected components. Then, there exists a function ϕ satisfying ∆ϕ+ ϕ = 0 in
R3 such that ‖ϕ̃− ϕ‖Cm(K) < δ, for any integer m and positive δ that are fixed a
priori. Moreover, ϕ falls off at infinity as |D jϕ(x)| < Cj |x |−1.

Assuming that this result holds true, the proof of the theorem on the nodal set
reduces to show that there exists a complex-valued solution ϕ̃ =: ϕ̃1 + iϕ̃2 of the
equation ∆ϕ̃+ ϕ̃ = 0 in a neighborhood NL of the link L such that ϕ̃−1(0) = L
and is structurally stable. The structural stability follows if we assume that ϕ̃
satisfies the condition:

rank(∇ϕ̃1(x),∇ϕ̃2(x)) = 2

for any x ∈ L.
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A global approximation theorem for the Helmholtz equation

Let ϕ̃ be a function that satisfies the equation ∆ϕ̃+ ϕ̃ = 0 in a (possibly
disconnected) compact set K ⊂ R3. Assume that R3\K has no bounded
connected components. Then, there exists a function ϕ satisfying ∆ϕ+ ϕ = 0 in
R3 such that ‖ϕ̃− ϕ‖Cm(K) < δ, for any integer m and positive δ that are fixed a
priori. Moreover, ϕ falls off at infinity as |D jϕ(x)| < Cj |x |−1.

Assuming that this result holds true, the proof of the theorem on the nodal set
reduces to show that there exists a complex-valued solution ϕ̃ =: ϕ̃1 + iϕ̃2 of the
equation ∆ϕ̃+ ϕ̃ = 0 in a neighborhood NL of the link L such that ϕ̃−1(0) = L
and is structurally stable. The structural stability follows if we assume that ϕ̃
satisfies the condition:

rank(∇ϕ̃1(x),∇ϕ̃2(x)) = 2

for any x ∈ L.

To construct the local solution ϕ̃ with the aforementioned properties, the key tool
is the Cauchy-Kowalewsky theorem.
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Proof of the main theorem

The main theorem follows from these three observations:
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Proof of the main theorem

The main theorem follows from these three observations:

First: we construct an even solution ϕ to the Helmholtz equation in R3 such that
Φ̃(L) is a union of structurally stable components of ϕ−1(0). There is no loss of
generality in assuming that Φ̃(L) ⊂ B.
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First: we construct an even solution ϕ to the Helmholtz equation in R3 such that
Φ̃(L) is a union of structurally stable components of ϕ−1(0). There is no loss of
generality in assuming that Φ̃(L) ⊂ B.

Second: using the inverse localization lemma we construct an eigenfunction ψ of
the harmonic oscillator (for any large enough eigenvalue) whose localization in the
ball of radius λ−1/2 is C 1-close to ϕ in B.
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Proof of the main theorem

The main theorem follows from these three observations:

First: we construct an even solution ϕ to the Helmholtz equation in R3 such that
Φ̃(L) is a union of structurally stable components of ϕ−1(0). There is no loss of
generality in assuming that Φ̃(L) ⊂ B.

Second: using the inverse localization lemma we construct an eigenfunction ψ of
the harmonic oscillator (for any large enough eigenvalue) whose localization in the
ball of radius λ−1/2 is C 1-close to ϕ in B.

Third: the structural stability of Φ̃(L) implies that ψ−1(0) contains a number of
components diffeomorphic to L. Notice that this diffeomorphism Φ is the
composition of Φ̃ and a rescaling x → λ−1/2x .
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Final remark: the hydrogen atom

An analogous theorem holds for the eigenfunctions ψ ∈ H1(R3,C) of the
hydrogen atom: (

∆ +
2

|x |
+ λ
)
ψ = 0 .

The eigenvalues are λ = −1/n2 with n a positive integer, and their multiplicity is
n2. In this case the highly excited eigenfunctions correspond to eigenvalues that
are close to 0.
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Final remark: the hydrogen atom

An analogous theorem holds for the eigenfunctions ψ ∈ H1(R3,C) of the
hydrogen atom: (

∆ +
2

|x |
+ λ
)
ψ = 0 .

The eigenvalues are λ = −1/n2 with n a positive integer, and their multiplicity is
n2. In this case the highly excited eigenfunctions correspond to eigenvalues that
are close to 0.

Theorem (Enciso, Hartley, P-S, RMI 2018)

Let L ⊂ R3 be a finite link. Then there is a positive constant E0 such that, for any
Coulomb eigenvalue λ > −E0, there exist a complex-valued eigenfunction ψ of
energy λ and a diffeomorphism Φ : R3 → R3 such that Φ(L) is a union of
structurally stable connected components of the nodal set ψ−1(0).

D. Peralta-Salas (ICMAT) A problem of Berry and knotted zeros March 2018 14 / 15



Final remark: the hydrogen atom

An analogous theorem holds for the eigenfunctions ψ ∈ H1(R3,C) of the
hydrogen atom: (

∆ +
2

|x |
+ λ
)
ψ = 0 .

The eigenvalues are λ = −1/n2 with n a positive integer, and their multiplicity is
n2. In this case the highly excited eigenfunctions correspond to eigenvalues that
are close to 0.

Theorem (Enciso, Hartley, P-S, RMI 2018)

Let L ⊂ R3 be a finite link. Then there is a positive constant E0 such that, for any
Coulomb eigenvalue λ > −E0, there exist a complex-valued eigenfunction ψ of
energy λ and a diffeomorphism Φ : R3 → R3 such that Φ(L) is a union of
structurally stable connected components of the nodal set ψ−1(0).

Although the proof of this result goes along the same lines as the proof for the
harmonic oscillator, a key technical difficulty concerns estimates for the Green’s
function of the operator ∆ + 2/|x |.
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Thanks a lot for your attention!
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