Quantum Suprematism with Triadas of Malevich's Squares identifying spin (qubit) states; new entropic inequalities

Margarita A. Man'ko¹, Vladimir I. Man'ko^{1,2}

1 - Lebedev Physical Institute

2 - Moscow Institute of Physics and Technology

60 Years Alberto Ibort Fest Classical and Quantum Physics: Geometry, Dynamics and Control

Madrid, 5-9 March, 2018

Abstract

For arbitrary N-level atom states, the density matrix elements are expressed in terms of a set of probability distributions describing the set of "classical coin" positions. For one qubit, the states are identified with three probability distributions ¹ and illustrated by three squares on the plane called "Triada of Malevich's Squares" ².

Using this approach, called the quantum suprematism picture, new entropic inequalities are obtained for density matrix elements of qudits and N-level atom states. Arbitrary quantum observables are bijectively mapped on the set of classical random variables, and formulas for quantum statistics of the observables are expressed in terms of classical-like statistics of random variables.

¹V.I. Man'ko, G. Marmo, F. Ventriglia, and Vitale, *J. Phys A: Math Theor.*, **50**, 335302 (2017)

²V.N.Chernega, O.V.Man'ko, and V.I.Man'ko, *J. Russ. Laser Res.* **38**, 141-149, 234-333, 416-425 (2017)

The aim of the talk is to discuss the possibility to describe the quantum states by the fair probability distributions and quantum observables by classiacal-like random variables. This aim is coherent with tomographic description of quantum states ³ ⁴.

³A. Ibort, V.I. Man'ko, G. Marmo, A. Simoni, and F. Ventriglia, "An introduction to the tomographic picture of quantum mechanics." *Phys. Scr.* **79**, 065013 (2009).

⁴M. Asorey, A. Ibort, G. Marmo, and F Ventriglia, "Quantum Tomography twenty years later." *Phys. Scr. 90*, 074031 (2015).

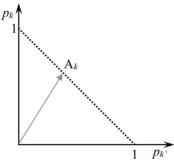
Quantum suprematism and Malevich squares⁵

$$\sum_{j=1}^{3} (p_j - 1/2)^2 \le 1/4$$

$$w(m, \mathbf{n}) = (u\rho u^{\dagger})_{mm}$$

⁵A. Shatskikh, *Black Square: Malevich and the Origin of Suprematism.* Yale University Press, New Haven (2012).

Probability distribution for three classical coins



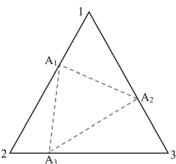
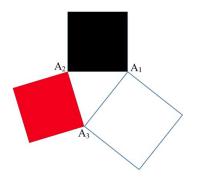


Fig. 1. The probability vector \mathbf{p}_k with Fig. 2. The equilateral triangle with the end at point A_k on the simplex line vertices 1, 2, and 3 and side length $\sqrt{2}$ determined by the equality $p_k + p_{k'} = 1$. and vertices A_1 , A_2 , and A_3 determining the qubit state.

Triada of Malevich's squares determined by the triangle $A_1A_2A_3$ 6



$$y_1 = (2 + 2p_1^2 - 4p_1 - 2p_2 + 2p_2^2 + 2p_1p_2)^{1/2}$$

$$y_2 = (2 + 2p_2^2 - 4p_2 - 2p_3 + 2p_3^2 + 2p_2p_3)^{1/2}$$

$$y_3 = (2 + 2p_3^1 - 4p_3 - 2p_1 + 2p_1^2 + 2p_3p_1)^{1/2}$$

⁶V. N. Chernega, O. V. Man'ko, and V. I. Man'ko *J. Russ. Laser Res.* **38**, 141 (2017)

Density matrix for spin-1/2 state

$$\rho = \begin{pmatrix} p_3 & p_1 - ip_2 - (1/2) + (i/2) \\ p_1 + ip_2 - (1/2) - (i/2) & 1 - p_3 \end{pmatrix}$$

$$S = 2\left[3\left(1 - p_1 - p_2 - p_3\right) + 2p_1^2 + 2p_2^2 + 2p_3^2 + p_1p_2 + p_2p_3 + p_3p_1\right]$$

$$S_{min} \leq S \leq S_{max} \label{eq:special}$$
 $S = 3/2$ — for maximally mixed state

Triangle area in terms of probabilities p_1 , p_2 , p_3

$$y_k = (2 + 2p_k^2 - 4p_k - 2p_{k+1} + 2p_{k+1}^2 + 2p_k p_{k+1})^{1/2}$$

$$S_{\text{tr}} = \frac{1}{4} \left[(y_1 + y_2 + y_3) (y_1 + y_2 - y_3) (y_2 + y_3 - y_1) (y_3 + y_1 - y_2) \right]^{1/2}$$

$$S_{tr}=\sqrt{3}/2$$
 for classical case $S_{tr}=\sqrt{3}/8$ for maximally mixed case

Qutrit as two ququarts

$$\rho = \left(\begin{array}{ccc} \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{31} & \rho_{32} & \rho_{33} \end{array}\right)$$

$$\rho(1) = \begin{pmatrix} \rho_{11} & \rho_{12} & \rho_{13} & 0 \\ \rho_{21} & \rho_{22} & \rho_{23} & 0 \\ \rho_{31} & \rho_{32} & \rho_{33} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \rho(2) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \rho_{11} & \rho_{12} & \rho_{13} \\ 0 & \rho_{21} & \rho_{22} & \rho_{23} \\ 0 & \rho_{31} & \rho_{32} & \rho_{33} \end{pmatrix}$$

$$R(1) = \left(\begin{array}{cc} \rho_{11} + \rho_{22} & \rho_{13} \\ \rho_{31} & \rho_{33} \end{array} \right), \quad R(2) = \left(\begin{array}{cc} \rho_{11} + \rho_{33} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{array} \right),$$

$$R(3) = \left(\begin{array}{cc} \rho_{11} & \rho_{13} \\ \rho_{31} & \rho_{33} + \rho_{22} \end{array} \right), \quad R(4) = \left(\begin{array}{cc} \rho_{22} & \rho_{23} \\ \rho_{32} & \rho_{11} + \rho_{33} \end{array} \right).$$

$$R(k) = \begin{pmatrix} p_3^{(k)} & (p_1^{(k)} - \frac{1}{2}) - i(p_2^{(k)} - \frac{1}{2}) \\ (p_1^{(k)} - \frac{1}{2}) + i(p_2^{(k)} - \frac{1}{2}) & 1 - p_3^{(k)} \end{pmatrix},$$

k = 1, 2, 3, 4

$$\begin{split} \rho_{33} &= 1 - \rho_3^{(1)}, \\ \rho_{22} &= 1 - \rho_3^{(2)} = \rho_3^{(4)}, \\ \rho_{11} &= \rho_3^{(1)} + \rho_3^{(2)} - 1, \\ \rho_{21} &= (\rho_1^{(2)} - \frac{1}{2}) + i(\rho_2^{(2)} - \frac{1}{2}), \\ \rho_{31} &= (\rho_1^{(1)} - \frac{1}{2}) + i(\rho_2^{(1)} - \frac{1}{2}), \\ \rho_{32} &= (\rho_1^{(4)} - \frac{1}{2}) + i(\rho_2^{(4)} - \frac{1}{2}). \end{split}$$

Coin probabilities for qutrit

$$p_1^{(1)} = p_1^{(3)}, \ p_2^{(1)} = p_2^{(3)}, \ p_3^{(4)} = 1 - p_3^{(2)}, \ p_3^{(1)} = p_3^{(3)} + p_3^{(4)}$$

$$\rho = \left(\begin{array}{ccc} \rho_3^{(1)} + \rho_3^{(2)} - 1 & (\rho_1^{(2)} - \frac{1}{2}) - i(\rho_2^{(2)} - \frac{1}{2}) & (\rho_1^{(1)} - \frac{1}{2}) - i(\rho_2^{(1)} - \frac{1}{2}) \\ (\rho_1^{(2)} - \frac{1}{2}) + i(\rho_2^{(2)} - \frac{1}{2}) & 1 - \rho_3^{(2)} & (\rho_1^{(4)} - \frac{1}{2}) - i(\rho_2^{(4)} - \frac{1}{2}) \\ (\rho_1^{(1)} - \frac{1}{2}) + i(\rho_2^{(1)} - \frac{1}{2}) & (\rho_1^{(4)} - \frac{1}{2}) + i(\rho_2^{(4)} - \frac{1}{2}) & 1 - \rho_3^{(1)} \end{array} \right)$$

Probabilities $ho_j^{(k)}$, j=1,2,3, k=1,2,3,4 satisfy the inequalities $\sum_{j=1}^3 \left(\rho_j^{(k)} - \frac{1}{2} \right)^2 \leq \frac{1}{4}, \quad k=1,2,3,4.$

$$\begin{split} \rho_3^{(1)} &= \rho_3^{(33)}, \quad \rho_3^{(2)} = \rho_3^{(22)}, \quad \rho_1^{(1)} = \rho_1^{(31)}, \quad \rho_2^{(1)} = \rho_2^{(31)}, \\ \rho_1^{(2)} &= \rho_1^{(21)}, \quad \rho_2^{(2)} = \rho_2^{(21)}, \quad \rho_1^{(4)} = \rho_1^{(32)}, \quad \rho_2^{(4)} = \rho_2^{(32)}. \\ \rho_{jk} &= (\rho_1^{(jk)} - \frac{1}{2}) + i(\rho_2^{(jk)} - \frac{1}{2}), \quad j > k \\ \rho_{jj} &= 1 - \rho_3^{(jj)}, \quad j \geq 2, \\ \rho_{11} &= 1 - \sum_{j=2}^3 \rho_{jj}. \end{split}$$

Density matrix of qutrit in terms of coin probabilities

$$\begin{split} \rho = \begin{pmatrix} \rho_3^{(33)} + \rho_3^{(22)} - 1 & (\rho_1^{(21)} - \frac{1}{2}) - i(\rho_2^{(21)} - \frac{1}{2}) & (\rho_1^{(31)} - \frac{1}{2}) - i(\rho_2^{(31)} - \frac{1}{2}) \\ (\rho_1^{(21)} - \frac{1}{2}) + i(\rho_2^{(21)} - \frac{1}{2}) & 1 - \rho_3^{(22)} & (\rho_1^{(32)} - \frac{1}{2}) - i(\rho_2^{(32)} - \frac{1}{2}) \\ (\rho_1^{(31)} - \frac{1}{2}) + i(\rho_2^{(31)} - \frac{1}{2}) & (\rho_1^{(32)} - \frac{1}{2}) + i(\rho_2^{(32)} - \frac{1}{2}) & 1 - \rho_3^{(33)} \end{pmatrix} \\ \rho(1) = \begin{pmatrix} \rho & 0 \\ 0 & 0 \end{pmatrix}, \quad \rho(2) = \begin{pmatrix} 0 & 0 \\ 0 & \rho \end{pmatrix}. \end{split}$$

Density matrix of ququart in terms of coin probabilities

$$\rho = \begin{pmatrix} \rho_3^{(44)} + \rho_3^{(22)} + \rho_3^{(33)} - 2 & (\rho_1^{(21)} - \frac{1}{2}) - i(\rho_2^{(21)} - \frac{1}{2}) & (\rho_1^{(31)} - \frac{1}{2}) - i(\rho_2^{(31)} - \frac{1}{2}) & (\rho_1^{(41)} - \frac{1}{2}) - i(\rho_2^{(41)} - \frac{1}{2}) \\ (\rho_1^{(21)} - \frac{1}{2}) + i(\rho_2^{(21)} - \frac{1}{2}) & 1 - \rho_3^{(22)} & (\rho_1^{(32)} - \frac{1}{2}) - i(\rho_2^{(32)} - \frac{1}{2}) & (\rho_1^{(42)} - \frac{1}{2}) - i(\rho_2^{(42)} - \frac{1}{2}) \\ (\rho_1^{(31)} - \frac{1}{2}) + i(\rho_2^{(31)} - \frac{1}{2}) & (\rho_1^{(32)} - \frac{1}{2}) + i(\rho_2^{(32)} - \frac{1}{2}) & 1 - \rho_3^{(33)} & (\rho_1^{(43)} - \frac{1}{2}) - i(\rho_2^{(43)} - \frac{1}{2}) \\ (\rho_1^{(41)} - \frac{1}{2}) + i(\rho_2^{(41)} - \frac{1}{2}) & (\rho_1^{(42)} - \frac{1}{2}) + i(\rho_2^{(42)} - \frac{1}{2}) & (\rho_1^{(43)} - \frac{1}{2}) + i(\rho_2^{(43)} - \frac{1}{2}) & 1 - \rho_3^{(43)} \end{pmatrix}$$

New entropic inequalities

$$\operatorname{\mathsf{Re}}
ho_{jk} + rac{1}{2} \geq \mathsf{0}$$
 , $\operatorname{\mathsf{Im}}
ho_{jk} \leq rac{1}{2}$

$$\begin{split} \left(\frac{1}{2}-\operatorname{Im}\rho_{jk}\right) \ln \left[\frac{\left(\frac{1}{2}-\operatorname{Im}\rho_{jk}\right)}{\left(\frac{1}{2}-\operatorname{Im}\rho_{j'k'}\right)}\right] + \left(\frac{1}{2}+\operatorname{Im}\rho_{jk}\right) \ln \left[\frac{\left(\frac{1}{2}+\operatorname{Im}\rho_{jk}\right)}{\left(\frac{1}{2}+\operatorname{Im}\rho_{j'k'}\right)}\right] \geq 0 \\ \rho_{jj} \ln \left[\frac{\rho_{jj}}{\left(\frac{1}{2}+\operatorname{Im}\rho_{j'k}\right)}\right] + \left(1-\rho_{jj}\right) \ln \left[\frac{\left(1-\rho_{jj}\right)}{\left(\frac{1}{2}\pm\operatorname{Im}\rho_{j'k}\right)}\right] \geq 0. \end{split}$$

$$\ln 2 \geq -\left(\frac{1}{2} \mp \mathrm{Im} \rho_{jk}\right) \ln \left(\frac{1}{2} \mp \mathrm{Im} \rho_{jk}\right) - \left(\frac{1}{2} \pm \mathrm{Im} \rho_{jk}\right) \ln \left(\frac{1}{2} \pm \mathrm{Im} \rho_{jk}\right) \geq 0$$

Quantum observables as set of classical random variables

$$H = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}, \qquad H^{\dagger} = H$$
 $H_{11} = z_1, \qquad \qquad H_{22} = z_2$
 $H_{12} = x - iy, \qquad \qquad H_{21} = x + iy$

Dichotomic random variables and coin probabilities

$$\vec{X} = \begin{pmatrix} x \\ -x \end{pmatrix}$$
, $\vec{Y} = \begin{pmatrix} y \\ -y \end{pmatrix}$, $\vec{Z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$

$$\vec{Y} = \begin{pmatrix} y \\ -y \end{pmatrix}$$
 ,

$$\vec{Z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$ec{\mathcal{P}}_1 = \left(egin{array}{c} p_1 \ 1-p_1 \end{array}
ight), \qquad ec{\mathcal{P}}_2 = \left(egin{array}{c} p_2 \ 1-p_2 \end{array}
ight), \qquad ec{\mathcal{P}}_3 = \left(egin{array}{c} p_3 \ 1-p_3 \end{array}
ight)$$

$$ec{\mathcal{P}}_2 = \left(egin{array}{c} p_2 \ 1 - p_2 \end{array}
ight)$$
 ,

$$\vec{\mathcal{P}}_3 = \left(\begin{array}{c} p_3 \\ 1 - p_3 \end{array} \right)$$

Dichotomic random variables and coin probabilities in quantum mechanics

$$H = \begin{pmatrix} z_1 & x - iy \\ x + iy & z_2 \end{pmatrix}$$

$$\rho = \begin{pmatrix} p_3 & p_1 - \frac{1}{2} - i(p_2 \frac{1}{2}) \\ p_1 - \frac{1}{2} + i(p_2 \frac{1}{2}) & 1 - p_3 \end{pmatrix}$$

Quanum means in terms of classical means

$$\langle H \rangle = Tr(H\rho) =$$

$$= p_1 x + (1 - p_1)(-x) + p_2 y + (1 - p_2)(-y) + p_3 z_1 + (1 - p_3) z_2 =$$

$$= \langle \vec{X} \rangle + \langle \vec{Y} \rangle + \langle \vec{Z} \rangle$$

Superposition principle of two states

$$|\psi_1\rangle = \begin{pmatrix} \sqrt{\rho_3} \\ \frac{\rho_1 - \frac{1}{2}}{\sqrt{\rho_3}} + \frac{i(\rho_2 - \frac{1}{2})}{\sqrt{\rho_3}} \end{pmatrix}$$

$$|\psi_2\rangle = \begin{pmatrix} \sqrt{\mathcal{P}_3} \\ \frac{\rho_1 - \frac{1}{2}}{\sqrt{\mathcal{P}_3}} + \frac{i(\mathcal{P}_2 - \frac{1}{2})}{\sqrt{\mathcal{P}_3}} \end{pmatrix}$$

$$\langle \psi_1 | \psi_2 \rangle = 0$$

State vector of superposed state

$$\begin{split} |\psi\rangle &= \sqrt{\Pi_3} \, |\psi_1\rangle + \sqrt{1-\Pi_3} \, e^{i\alpha} \, |\psi_2\rangle = \begin{pmatrix} \sqrt{\pi_3} \\ \frac{\pi_1 - \frac{1}{2}}{\sqrt{\pi_3}} + \frac{i(\pi_2 - \frac{1}{2})}{\sqrt{\pi_3}} \end{pmatrix} \\ \cos(\alpha) &= \frac{\Pi_1 - \frac{1}{2}}{\sqrt{\Pi_3(1-\Pi_3)}}, \qquad \sin(\alpha) = \frac{\Pi_2 - \frac{1}{2}}{\sqrt{\Pi_3(1-\Pi_3)}} \end{split}$$

Classical coins "interference"

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \underset{\vec{\Pi}}{\oplus} \begin{pmatrix} \mathcal{P}_1 \\ \mathcal{P}_2 \\ \mathcal{P}_3 \end{pmatrix} = \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

Born rule:

$$Tr \rho_1 \rho_2 = 2 + 2[p_3 \mathcal{P}_3 + p_1 \mathcal{P}_1 + p_2 \mathcal{P}_2] - p_1 - \mathcal{P}_1 - p_2 - \mathcal{P}_2 - p_3 - \mathcal{P}_3$$

$$\begin{split} \pi_3 &= \frac{1}{\mathcal{T}} \left\{ \Pi_3 \rho_3 + (1 - \Pi_3) \mathcal{P}_3 + 2 \sqrt{\rho_3 \mathcal{P}_3} \left(\Pi_1 - 1/2 \right) \right\} \\ \pi_1 - 1/2 &= \frac{1}{\mathcal{T}} \left\{ \Pi_3 (\rho_1 - 1/2) + (\mathcal{P}_1 - 1/2) (1 - \Pi_3) + \right. \\ &+ \left[(\Pi_1 - 1/2) (\rho_1 - 1/2) + (\Pi_2 - 1/2) (\rho_2 - 1/2) \right] \sqrt{\frac{\mathcal{P}_3}{\rho_3}} + \\ &+ \left[(\Pi_1 - 1/2) (\mathcal{P}_1 - 1/2) - (\Pi_2 - 1/2) (\mathcal{P}_2 - 1/2) \right] \sqrt{\frac{\mathcal{P}_3}{\rho_3}} \right\} \\ \pi_2 - 1/2 &= \frac{1}{\mathcal{T}} \left\{ \left[(\rho_2 - 1/2) \Pi_3 + (\mathcal{P}_2 - 1/2) (1 - \Pi_3) \right] + \right. \\ &+ \sqrt{\frac{\mathcal{P}_3}{\rho_3}} \left[(\Pi_1 - 1/2) (\rho_2 - 1/2) - (\Pi_2 - 1/2) (\rho_1 - 1/2) \right] + \\ \sqrt{\frac{\rho_3}{\rho_3}} \left[(\Pi_2 - 1/2) (\mathcal{P}_1 - 1/2) + (\Pi_1 - 1/2) (\mathcal{P}_2 - 1/2) \right] \right\} \\ \mathcal{T} &= 1 + \frac{2}{\sqrt{\rho_3 \mathcal{P}_3}} \left\{ (\Pi_1 - 1/2) \left[(\rho_1 - 1/2) (\mathcal{P}_1 - 1/2) + (\mathcal{P}_2 - 1/2) (\rho_2 - 1/2) + \rho_3 \mathcal{P}_3 \right] + \\ &+ (\Pi_2 - 1/2) \left[(\rho_2 - 1/2) (\mathcal{P}_1 - 1/2) - (\rho_1 - 1/2) (\mathcal{P}_2 - 1/2) \right] \right\} \end{split}$$

Conclusion

- 1. States (density matrices) are interpreted as set of probability distributions describing positions of coins.
- 2. Observables matrix elements, e.g. of Hamiltonians can be interpreted as classical dichotomic random variables corresponding to playing coins.
- 3. Quantum statistics means of quantum observables, other moments can be expressed in terms of the coin probabilities and dichotomic random variables.
- 4. Superposition principle for quantum states is formulated as nonlinear addition rule of coin probability distributions.
- 5. Born rule also is formulated as another addition rule of coin probabilities which provides the transition probability between the states.
- 6. The qubit states can be mapped on triada of Malevich's squares and any qudit states can be mapped onto set of such triadas.
- We illustrate obtained relations by the statement connected with the discussion of Bohr and Einstein "God does not play dice God plays coins"

Happy Birthday!