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1. Introduction: Amenability in discrete groups

Paradoxical decompo-
sition of an “orange” B:

 

Reasons: Pic: B.D. Esham

I The free group on two generators acts on B: F2 ≤ SO(3) y B

I F2 = 〈a, b, a−1, b−1〉 is itself paradoxical.
Denote W (a) are reduced words beginning with a. Then

I F2 = {e} tW (a) tW (b) tW (a−1) tW (b−1).

F2 = W (a) t aW (a−1) = W (b) t bW (b−1).

I The paradoxicality of F2 induces (+axiom of choice) the paradoxical
decomposition of B.

I The resolution of this apparent paradox is the theorem by Tarski:
There is no finitely additive probability measure which is
F2-invariant.



Amenability for discrete finitely generated groups:

Von Neumann (’29) realized that F2 lacks to have the property of
amenability!

I Recall: discrete group Γ is amenable if `∞(Γ) has a Γ-invariant
state (i.e., a positive, normalized, Γ-invariant functional ψ : `∞(Γ)→ C).

An alternative approach to this circle of ideas:

A Følner net for Γ is a net of non-empty finite subsets Γi ⊂ Γ such that

lim
i

|(γΓi )4Γi |
|Γi |

= 0 for all γ ∈ Γ ,

where 4 is the symmetric difference and |Γi | is the cardinality of Γi .
If the net is increasing and Γ = ∪iΓi it is called a proper Følner net.

I Every finite group F has a Følner sequence !
I Just take the constant sequence Γn = F , n ∈ N.

Theorem

Γ is amenable iff Γ is NOT paradoxical iff Γ has a Følner net.



Summary:

What properties do Følner nets have ?

I Følner nets provide an “inner” approximation of the group Γ via
finite subsets Γi .

I The finite sets Γi grow “moderately” with respect to multiplication.
Asymptotically

|γΓi | is “small“ compared with |Γi |

The dynamics (group multiplication) is central to the analysis.

I In the context of groups given a Følner sequence one can construct
another proper Følner sequence.

Følner nets are the “bridge” to address amenability issues beyond groups!

I Amenable structures are “reasonable” (i.e., not paradoxical)
extensions of finite structures.



2. Amenability for metric spaces

Let (X , d) be a discrete metric space with bounded geometry:

I Uniformly discrete: inf{d(x , y) | x , y ∈ X} ≥ d > 0.

I Uniformly locally finite: for any radius R > 0, supx∈X |BR(x)| <∞.

Example: Γ a finitely generated discrete group with the word length
metric is a metric space with bounded geometry.



Definition (Block-Weinberger ’92)

(X , d) is amenable if there exists a Følner sequence {Fn} ⊂ X of
finite, non-empty subsets of X such that

lim
n→∞

|∂RFn|
|Fn|

= 0 , R > 0 ,

where ∂RF is the “double collar” around the boundary of F .
The Følner sequence is proper if it is increasing and X = ∪nFn. In this
case we call the space properly amenable.



Examples:

I If |X | <∞, then (X , d) is amenable. Take Fn = X so that

|∂RFn|
|Fn|

=
|∂RX |
|X |

= 0 .

I Γ is amenable as a group iff Γ is amenable as a metric space (with
the word length metric).

I As in the group case: (X , d) is amenable iff it is properly amenable.

I To see a difference between amenable and proper amenable
generalize to extended metric spaces (i.e., d : X × X → R ∪ {∞})
and analyze the structure of coarse connected components.

Example: Consider X = Y1 t Y2, with |Y1| <∞, Y2 non-amenable
and d(Y1,Y2) =∞. Then X is amenable (take the constant
sequence Fn = Y1), but not properly amenable.



What is a paradoxical in this context ? What dynamics ?

Definition

Let (X , d) a metric space with bounded geometry. A partial translation
on X is a triple (A,B, t), where A,B ⊂ X, t : A→ B is a bijection with

sup
a∈A
{d(a, t(a))} <∞ .

X is paradoxical if there exists a partition X = X1 t X2 and partial
translations ti : X → Xi , i = 1, 2. The set of all partial translations is an
inverse semigroup.

Theorem (Grigorchuk, Ceccherini et al., ’99)

Let (X , d) a metric space with bounded geometry. TFAE

I (X , d) is amenable.

I X has NO paradoxical decompositions.

I There exists a finitely additive probability measure µ on P(X )
invariant under partial translations (i.e., µ(A) = µ(B).)



3. Amenability and paradoxical decompositions in algebra

To address questions of amenability in the context of algebra:

I Need to give up the cardinality | · | to measure sizes.

I Take finite-dimensional subspaces as approximation and dim(·) to
measure the size of the subspaces.

I For today: A is a unital C-algebra, but everything works also for any
commutative field K.

Definition (Gromov ’99)

A unital algebra A is amenable if there is a Følner net {Wi}i∈I of
non-zero finite dimensional subspaces such that

lim
i

dim(aWi + Wi )

dim(Wi )
= 1 , a ∈ A .

If the Wi are exhausting, then A is properly algebraically amenable .

I The presence of a linear structure makes the difference amenable vs.
proper amenable an essential point.



Examples:

I Any matrix algebra A = Mk(C) is amenable. Take a constant
sequence Wn = A and note that A ⊂ aA+A ⊂ A, a ∈ A, hence

dim(aA+A)

dim(A)
= 1 .

I Γ is a discrete group and CΓ is its group algebra.
Then Γ is amenable iff CΓ is algebraically amenable. [Bartholdi ’08]

Algebraic amenable vs. proper algebraic amenable:

I If I CL A is a left ideal with dim I <∞, then A is always
algebraically amenable. Take a constant sequence Wn = I.

I Note that if A is NON algebraically amenable, then Ã = I ⊕ A is
amenable but NOT properly amenable.



What is a paradoxical decomposition in this context ?

Definition (Elek ’03)

A countalby dimensional algebra A is paradoxical if for any basis
B = {fn}n of A one has:

I ∃ partitions of the basis: B = L1 t · · · t Ln = R1 t · · · t Rk

I ∃ elements of the alg. A: a1, . . . , an and b1, . . . , bk ∈ A,

such that a1L1 ∪ · · · ∪ anLn ∪ b1R1 ∪ · · · ∪ bkRk are linearly independent in A.

Theorem (Elek ’03, Ara,Li,Ll.,Wu ’17)

A is algebraically amenable iff it is NOT paradoxical.

I Elek proved the equivalence in the context of countably generated
algebras A without zero-divisors.

I He used as definition proper algebraic amenability.
I Having operators and Roe algebras in mind this is too restricitve.

I One has to work with algebraic amenability.
I Countable generation is also not needed.

I In this more general context algebraic amenability is also equivalent to the
existence of a dimension measure on the lattice of subspaces of A:

µ : W → [0, 1] , W ≤ A , suitable normalization, additivity and invariance.



4. Følner nets for operators and Følner C*-algebras

Standing assumptions and notation in this talk:

I Spaces:

I H denotes a complex (typically ∞-dimensional) separable Hilbert
space.

I Operators:

I B(H) set of all linear, bounded operators on H.
I Projections in B(H): P2 = P = P∗ and Pfin(H) is set of non-zero

finite rank projections.



Quasidiagonality and Følner sequences for families of operators:

Definition (Connes ’76, Halmos ’68)

I Let T ⊂ B(H). A net {Pi}i∈N ⊂ Pfin(H) of finite-rank projections
is called a Følner net for T if

lim
i

‖TPi − PiT‖2

‖Pi‖2
= 0, for all T ∈ T , (∗)

where ‖ · ‖2 is the Hilbert-Schmidt norm.
I If the sequence satisfying (*) is increasing and Pi converges strongly

to 1, then we say that it is a proper Følner net for T .
I T ⊂ B(H) (countable) is a quasidiagonal set of operators, if

there exists an increasing sequence of finite-rank projections
{Pn}n∈N, Pn ↗ 1 strongly, s.t. limn ‖TPn − PnT‖ = 0 , T ∈ T .

Remarks:

I Quasidiagonality ⇒ Følner.

I T can be a single operator (T = {T}) or a concrete C*-algebra.

I Any matrix has a Følner sequence. Take Pn = 1n×n.

I Which operators have/have not Følner sequences? (Yakubovich, Ll. ’13).



First consequences:

Proposition

If {Pn}n∈N is a Følner sequence for a unital C*-algebra A ⊂ B(H) iff
A has an amenable trace τ , i.e. the trace τ on A extends to a state
ψ on B(H) that is centralised by A, i.e.

ψ � A = τ and ψ(XA) = ψ(AX ) , X ∈ B(H) , A ∈ A .

Remark

I The state ψ (called hypertrace) is the alg. analogue of the invariant
mean used in the context of groups. Take the net of states

ψi (X ) :=
Tr(PiX )

Tr(Pi )
, X ∈ B(H)

whose cluster points define amenable traces. ({Pi}i Følner net.)
I Useful notion as an obstruction to the existence of Følner sequences!

It is the property to approach an abstract characterization of these
algebras.



What is the intrinsic characterization of these notions?

Critic: the definitions of quasidiagonality and Følner sequences for
operators require, e.g., a concrete C*-algebra A ⊂ B(H).
Voiculescu’s approach to quasidiagonality:

Definition
An (abstract) unital C*-algebra A is called quasidiagonal if there exists a net of unital completely
positive (u.c.p.) maps ϕi : A → Mk(i)(C) which is both asymptotically multiplicative and
asymptotically isometric, i.e.,

I ‖ϕi (AB)− ϕi (A)ϕi (B)‖ → 0 for all A,B ∈ A.

I ‖A‖ = limn→∞ ‖ϕi (A)‖ for all A ∈ A.

In the context of Følner sequences:

Definition (Ara, Ll. ’14)

Let A be a unital C*-algebra.

We say that A is a Følner C*-algebra if there exists a net of u.c.p.
maps ϕi : A → Mk(i)(C) such that

lim
i
‖ϕi (AB)− ϕi (A)ϕi (B)‖2,tr = 0 , A,B ∈ A , (∗)

where ‖F‖2,tr :=
√

tr(F ∗F ), F ∈ Mn(C) and tr(·) is the unique
tracial state on the matrix algebra Mn(C).



Theorem (Ara,Ll. ’14)

Let A be a unital C*-algebra. T.F.A.E.: (selection)

(i) A is a Følner C*-algebra.

(ii) Every faithful representation π : A → B(H) satisfies that π(A) has
an amenable trace.

(iii) Every faithful essential representation π : A → B(H) satisfies that
π(A) has a proper Følner net.

I Bédos uses the name ”weakly hypertracial“ (’95) instead of ”Følner
C*-algebra“.

I How can we get the Følner projections ?
Stinespring ⇒ ϕ(a) = V ∗π(a)V for some representation
π : A → B(H′) and isometry V : Ck → H′. Følner projections
appear as Stinespring’s projections P = VV ∗.



Is there any notion in operator algebras reflecting paradoxicality ?

A possibly capturing some aspects of paradoxicality is the following
notion. Let A be a unital C*-algebra. It is called properly infinite if

I there exist isometries V1,V2 ∈ A satisfying
I V ∗1 V1 = V ∗2 V2 = 1, V ∗1 V2 = 0 and V1V

∗
1 + V2V

∗
2 ≤ 1.

I Idea: V1 and V2 map the Hilbert space H isometrically onto two
mutually orthogonal subspaces.



5. Roe C*-Algebras

I We have addressed issues around amenability and paradoxical
decompositions in very different mathematical situations:

I Groups Γ.
I Metric spaces (X , d).
I C-algebras A.
I Operator algebras A ⊂ B(H), i.p., C*-algebras.

I We will use Roe algebras to give a unified picture of the different
approaches of amenability we have presented.

I These algebras were introduced to proof an index theorem for elliptic
operators on non-compact manifolds M. The idea is to look at the
coarse structure of M captured by a discrete space (X , d) and
define a C*-algebra R(X ) to define the analytical part of the index.



Construction of Roe C*-algebra

Let (X , d) be a metric space with bounded geometry.

1. Hilbert space: H = `2(X ) with canonical ONB: {δx | x ∈ X}.

2. Operators: T ∈ B(`2(X )) and T ∼= (Txy )x,y∈X .

3. Propagation of operators: For any operator T ∈ B(`2(X )) define

p(T ) := sup{d(x , y) | Txy 6= 0} .
I Examples:

I If F ⊂ X and QF is the characteristic function of F , then p(QF ) = 0.
I If X = N, H = `2 and S(δn) = δn+1 the unilateral shift, then

p(S) = 1.
If and S+(δn) := δ2n+1 (a generator of the Cuntz algebra), then
p(S+) =∞.

I The laplacian ∆ on a discrete graph has p(∆) = 1.

4. Translation algebra: R0(X ) := ∪
R>0
{T ∈ B(`2(X )) | p(T ) ≤ R}

(Operators with bounded propagation).

5. Roe C*-algebra: R(X ) := R0(X ).



Remarks:

I Roe C*-algebras provide a natural link

metric spaces ↔ algebra ↔ operators/operator algebras

and are fundamental objects for coarse geometry.

I If X = Γ (discrete fin. generated group), then R(Γ) = `∞(Γ) o Γ.

I Partial translations (A,B, t) in X ↔ partial isometries in R0(X ) via

t 7→ T , Tyx :=

{
1 , if (x , y) ∈ gra(t)
0 , otherwise

with T ∗T = PA and TT ∗ = PB .

Theorem (Ara,Li,Ll.,Wu ’18)

(X , d) a discrete metric space with bdd geometry. TFAE: (selection)

1. (X , d) is amenable.

2. The translation algebra R0(X ) is algebraically amenable.

3. The Roe C*-algebra R(X ) is a Følner C*-algebra.

4. The Roe C*-algebra R(X ) is not properly infinite.



Some ideas to the proof:

I (X , d) amenable ⇒ R(X ) is Følner C*-alg:
(Use local version of amenability)

1. Take T ∈ R0(X ) with p(T ) ≤ R. For ε > 0 there is an finite F ⊂ X
such that |∂R(F )| ≤ ε|F |.

2. Consider the projection QF and note that ‖QF‖2
2 = |F |.

3. ‖[T ,QF ]‖2
2 =

∑
x∈F ,y /∈F |〈Tδx , δy 〉|

2+ sym

≤
∑

y∈∂R (F )

(
‖Tδy‖2 + ‖T ∗δy‖2

)
≤ 2‖T‖|∂R(F )|.

I (X , d) amenable ⇒ R0(X ) is algebraically amenable:

1. Note that p(QF ) = 0. Take as Følner subspaces

W = QFR0(X )QF ⊂ R0(X ) !

2. Use dim(W ) = |F |.



6. Summary and outlook

I Roe algebras provide a very nice frame, where amenability, i.e.,
having nice finite dimensional approximations with reasonable
dynamics fit together

groups ↔ metric spaces ↔ algebra ↔ C*-algebras

What else ?
I How about this equivalence in more degenerate dynamics ?

E.g., semigroups where the dynamics can drastically shrink the set
|sF | � |F | .

I How do notions of amenability aspects enter mathematical physics ?
In QFT properly infinite operator algebras are ubiquitous.

I Construction of the field algebra out of the observables and the
DHR-selection principle ; proper infinity !

I Recall, e.g., that it is a fact of nature that the von Neumann algebra
associated to quantum fields in certain space-time regions of four
dimensional Minkowski space are hyperfinite factors of type III1, ;
proper infinity !




