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Physical spacetime is (or at least appears to be) four dimensional.

Four dimensional spaces have lots of nice properties, which I will

not enumerate

Nevertheless there are some who would prefer to live in two

dimensions:

Those who wish to quantise gravity
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The main obstacle to a quantum filed theory which includes

gravity is the fact that the theory is nonrenormalizable, and

therefore looses its predicitive power.

The field theory problem is an ultraviolet problem which manifests

itself at high energies, where the scale is given by the Plank

energy ∼ 1019GeV

Ideally therefore one could have a space which is four dimensional

at low energies (large distances), and two dimensional at high

energies (small distances)
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There have been proposals in this direction. One is the Hǒrava-

Lifshitz model

The main idea is to consider space and time scaling in an anisotropic

way

t→ azt ~x→ a~x

where z is usually taken to be 3

The Euclidean Laplacian (i.e. the inverse propagator for a scalar

field) on a foliation becomes dependent on a mass scale M :

“∆” = ∂2
t + (∂i∂

i)3 +M2(∂i∂
i)2 +M4(∂i∂

i)

For the rest of this talk I will be in a Euclidean context
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In this model time is treated in different way from space, and

therefore Lorentz invariance is broken

In the following I will present a model for which the space is

noncommutative (a NC torus), but in the limit the noncommutativity

disappears, but the resulting space is two (four) dimensional at

large distance, or one (two) dimensional at small distances. I

will discuss in detail the two to one model, the extension being

straightforward but notationally messy

The work (in progress), in collaboration with A. Pinzul, is based

on some work by Elliott and Evans in 1993, and work in collaboration

with Landi and Szabo in 2003/2004
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Let me first of all give the definition of dimension which is most
useful for our purposes. It is due to Weyl and is based on the
growth of the eigenvalues of the Laplacian.

Let N∆(ω) be the number, counting multiplicities, of eigenvalues of the

Laplacian ∆ on a Riemannian manifold, less then ω . Then there is only one

value of d such that the following expression is finite

lim
ω→∞

N∆(ω)

ω
d
2

=
V ol(M)

(4π)
d
2Γ(d

2 + 1)

The r.h.s. can actually be used to calculate the volume, in a rather elaborate way!

Being purely spectral the above formula can be used in the
noncommutative case. Clearly any noncommutative space corresponding
to a finite algebra will have d = 0

6



Let me introduce the various kinds of tori I will need. The usual torus

T2 is generated by two elements U := exp(2πix) and V := exp(2πiy) with

x, y ∈ [0,1) the usual coordinates along the cycles. The algebra is

∀a ∈ A ≡ C∞(T2), a =
∑

(l,m)∈Z2

a(l,m)U lV m

for some Schwartz function a : Z2 → C .

The passage to a noncommutative torus is done keeping the above expression

but deforming

V U = ωUV

where ω = e2πiθ and θ real is called the deformation parameter
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For a general θ this algebra cannot be realized by finite matrices

For θ = p/q rational here is a q × q representation by the clock

and shift matrices

Cq :=


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
... ... ... . . . ...
0 0 0 0 ωq−1

 , Sq :=


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
... ... ... . . . 1
1 0 0 0 0



with SqCq = ω CqSq

These matrices are unitary, traceless and satisfy the relations (Cq)q = (Sq)q = 1q

hence generate the matrix algebra Mq(C) which we call the fuzzy torus
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Generalize Weyl to define an effective, or scaling or deceptive,

dimension.

The spectral dimension is “ultraviolet”, i.e. the dimension as seen in an

experiment that can probe any scale.

This is not the case in reality. Define the scaling dimension as

d(ω) := 2
d lnN∆(ω)

d lnω
.

This is the dimension seen in experiments that probe the physics only up to

the scale ω . The scale is defined in terms of the spectrum of a relevant

physical Laplacian, the operator controlling the dynamics
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The difference between the UV-dimension and the scaling can be

seen when applied to any matrix geometry, i.e. when the relevant

operators have finite spectra.

The counting function in this case goes to a constant when

ω →∞

Any matrix geometry has a UV-dimension equal to zero. At

the same time, it seems very natural that, if the spectrum is

truncated at very high energy, we will not be able to tell the

smooth geometry from the matrix one. Hence in any accessible

experiment we will see the matrix geometry as a smooth one

with some defined dimension, possibly with some “quantum”

corrections. This observation makes the concept of a scaling

dimension to be a very natural one.
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The NC torus has two outer derivations, which are the same as

the ones in the ordinary torus

{
∂1U = 2πiU , ∂1V = 0
∂2U = 0 , ∂2V = 2πiV

⇔


∂1a = 2πi

∑
(l,m)∈Z2

l a(l,m)U lV m

∂2a = 2πi
∑

(l,m)∈Z2
ma(l,m)U lV m

.

It is easy to see that the spectrum of the Laplacian is proportional

to the integers of the kind n2
1 + n2

2 and hence the Weyl dimension

of is 2

The fuzzy torus does not have outer derivations, in particular

does not have the analog of these derivations, but being a finite

algebra it will anyway have dimension zero at high enough energy
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Let us study a simplified model for which the number of dimensions can be

deceptive.

Start with a torus with two different radii, r and R := µr , the spectrum is

given by n2
1

r2 + n2
1

R2

Introduce some sort of “1-d fuzzyness” via the operator ∆c diagonal in the

basis above, but with the spectrum truncated on the direction of V at the

integer N

∆cUn1 = n2
1U

n1 ,∆cV n2 =

{
n2

2V
n2 |n2| ≤ N

0 |n2| > N

Clearly ∆c is not a differential operator
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Note that the number N implicitly defines a length and therefore an energy

scale. While in the R direction the Fourier series does not truncate, and

therefore variation of arbitrarily small length can be taken into account, in

the r direction only harmonics of width r/N contribute.

Spec(4nc) =
{

1

R2

(
µ2n2

1 + n2
2

)
, n1, n2 ∈ Z , |n2| ≤ N

}

The structure of a typical spectrum can be represented graphically

as
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A. The structure of a typical spectrum with the n2 -direction truncated at

N ; B. The solid curve µ2n2
1 + n2

2 = ω represents a cut-off (we set R = 1 ).

All the points of the spectrum inside the shadowed area are below the cut-off.
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When µ ∼ 1 the low energy spectrum, up to N , is basically

that of a two dimensional torus

The dimension is “deceptively” two, a low energy experiment

will probe atwo dimensional torus

Then when ω reaches N a transition phase starts

The number of dimensions decreases to one
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Consider now first the case 1� ωR2 < µ2 and at the same time ωR2 < N2

The n1 semi-axis of the cut-off ellipse is so small that no state with n1 6= 0

will contribute but the number of states with non-zero n2 is enough to allow

the application of the scaling dimension formula

N∆(ω) ∼ 2
√
ωR ⇒ d(ω) = 2d lnN∆(ω)

d lnω = 1

We arrive at a very natural and expected result: if the experiment probes the

scales below the energy needed to excite the first mode it does not see the

corresponding compactified dimension.
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Increasing the cut-off scale ω the states with n1 6= 0 will start contributing

to the counting function.

Only when a great number of them will enter, i.e. when ωR2 � µ2, (so one

can pass from sum to integral) one can start using again the formula for

scaling dimension to determine the dimension.

This can happen either when a) ωR2 is still less then N2 or b) ωR2 > N2

(but still of the order of N ) or c) ωR2 � N2 . This is shown below
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We have seen that by changing the Laplacian it is possible to
deceive the number of dimensions in a variety of ways.

In all cases however the dimension suppressed and the dimension
where the original ones, and a choice has been made to suppress
one of them

As in the case of Hǒrava-Lifshitz the fundamental symmetry of
the space, which in this case is U(1)× U(1) acting as independent
rotation on the two cycles, has been broken.

I will now present a two dimensional model for which the numebr
of dimensions is again going form two to one, but the high energy
space retains the fundamental symmetry of space, and the single
ultraviolet dimension emerges independently form the original
two.
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Consider a sequence of fuzzy tori with parameters θn = pn
qn
→ θ

with θ generic, possibly rational or even zero

Even taking the inductive limit of these algebras the resulting

algebra cannot be a torus (NC or otherwise). The torus is not an

approximatively finite algebra (AF). For one thing the K-theory

of a torus is Z⊕ Z , while for any AF algebra is trivial.

There is however a construction, due to Elliott and Evans, which

shows that the the torus T2
θ is the inductive limit of a sequence

of algebras of matrices of functions on two circles

The algebra of matrices whose entries are function on a circle is Morita

equivalent to the algebra of complex valued functions on the circle. It is not

AF and its K-theory is Z
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Let me sketch this construction

Consider {θn = pn/qn} , with the qn →∞ and n = 1 . . .∞

The construction is based on the existence of a projection element of P11 ∈ T2
θ ,

whose specific form and construction I have no time to describe.

Build P22 “translating”: U → epn/qnU, V → V , and iterate till Pqnqn

Define then P21 as the unitary part of P22V P11 and so on for all Pij
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It seems that PijPkl = δjkPil , i.e. the P ’s act as a basis for M(qn, ) , except

that there is a caveat

It is possible to obtain P1qn either ar P12P23 . . . Pqn−1 q or translating qn − 1

times P21

These two operators do not coincide but are related by a partial isometry z ,

so that the Pij ’s and z generate the algebra of matrix valued functions on

the circle Mq2n(C∞(S1)) ⊂ T2
θ

Exchanging U ↔ V (and after a unitary transformation) it is possible to

obtain another set of matrix units and an isometry, orthogonal to the first

one
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I stress that all these operators are element of the original algebra, and that

as n→∞ we are just building a sequence of subalgebras.

define

Un :=

(
Cq2n 0

0 Sq2n−1(z′)−1

)
, Vn :=

(
Sq2n(z) 0

0 Cq2n−1

)

with Cq an usual clock, but Sq(z) z-deformed shift matrix

Cq :=


1 0 0 · · · 0
0 ωq 0 · · · 0
0 0 ω2

q · · · 0
... ... ... . . . ...

0 0 0 0 ω
q−1
q

 , Sq(z) :=


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
... ... ... . . . 1
z 0 0 0 0
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Un and Vn generate the finite matrix algebra An

An ∼= Mq2n(C∞(S1))⊕Mq2n−1(C∞(S1))

and they have a relation similar to the one of the original NCtorus, and which converges to

it in the limit

VnUn = ωnUnVn , where ωn =

(
ωq2n1q2n 0

0 ωq2n−11q2n−1

)

Moreover, and this is the central point of the approximation

lim
n→∞ ‖Un − U‖ = lim

n→∞ ‖Vn − V ‖ = 0

23



This enables the proof that the inductive limit of the An is indeed

the NCtorus T2
θ (details in the original papers).

Note that An is not approximatively finite, and that its K-

theories are Z⊕ Z , but, and we will discuss this later, it is Morita

equivalent to two copies of functions on a 1-dimensional circle.

Also, unlike Hǒrava-Lifshitz and the cutoff torus earlier, the original fundamental

symmetry of the torus of independently “rotate” the two cycles: U → eiα1U V → eiα2V

is still a symmetry of the high energy space

Define the truncation map

∀a ∈ Aθ , Γn(a) :=
∑

(l,m)∈Z2

a(l,m) Ul
nVm

n
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since (Cq)q = 1q , but (Sq(z))q = z1q . Defining ( [. . .] the integer part)

a(n)(m+
[
q
2

]
, r; l) :=

∑
s∈Z

a(sq +m, lq + r)

a′(n)(m, r +
[
q
2

]
; s) :=

∑
l∈Z

a(sq +m, lq + r)

The truncation becomes

Γn(a) :=

(
q2n∑

m,r=1

∑
l∈Z

a(n)(m+
[
q2n
2

]
, r; l)zl(Cq2n)m(Sq2n(z))r

)
⊕

⊕

 q2n−1∑
m′,r′=1

∑
l′∈Z

a′(n)(m′, r′+
[
q2n−1

2

]
; l′)z′l

′
(Sq2n−1(z′))m

′
(Cq2n−1)r

′


=: a(n)(z)⊕ a′(n)(z′) where a, a′ are q × q matrices

25



An , like the fuzzy torus, does not have an analog of ∂i . However it does

have two approximate derivatives, which close the Leibnitz rule in the limit

Using as the motivation the truncation map

∇iΓn(a) := Γn(∂ia) + terms which vanish as n→∞ ,

The choice of these terms is made in such a way as to ensure
that the action is diagonal. Explicitly

∇1Γn(a) := 2πi

(
q2n∑

m,r=1

∑
l∈Z

ma(n)(m+
[
q2n

2

]
, r; l)zl(Cq2n)

m(Sq2n(z))r

)
⊕

⊕

(
q2n−1∑

m′,r′=1

∑
l′∈Z

(l′q2n−1 +m′) a′(n)(m′, r′ +
[
q2n−1

2

]
; l′)z′l

′
(Sq2n−1(z

′))m
′
(Cq2n−1)

r′

)

and an analogous expression for ∇2
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It is also useful to write these deformed derivatives as operators on the matrix-

valued functions on S1

∇1

(
a(n)(τ)⊕ a′(n)(τ ′)

)
= Σa(n)(τ)⊕

(
q2n−1

d
dτ ′a

′(n)(τ ′) + [Θ′, a′(n)(τ ′)]
)

where z = e2πiτ and Θ and Σ are known matrices

In this form it is simple to see the violation of Leibnitz rule: the terms that

contain the τ -derivative and commutators with Θ do respect the Leibnitz

rule, the terms with the matrix multiplication by Σ don’t

This exactly corresponds to throwing away the extra terms. The Leibnitz rule

is recovered in the limit
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We now ask what the Weyl dimension of our space is, at different

scales

Define the deformed Laplacian ∆(n) in the usual way

∆(n) = −∇2
1 −∇

2
2 ,

Since the general element of An can be written as Γn(a) we have the

eigenvalue problem:

−
(
∇2

1 +∇2
2

)
Γn(a) = λΓn(a)
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The eigenvalue problem can be rewritten as

4π2

(
q2n∑

m,r=1

∑
l∈Z

(
m2 + (q2nl + r)2

)
a(n)(m+

[
q2n

2

]
, r; l)zl(Cq2n)

m(Sq2n(z))r

⊕
q2n−1∑

m′,r′=1

∑
l′∈Z

(
r′2 + (q2n−1l′ +m′)2

)
a′(n)(m′, r′ +

[
q2n−1

2

]
; l′)z′l

′
(Sq2n−1(z′))m

′
(Cq2n−1)r

′

)
=

= λ

(
q2n∑

m,r=1

∑
l∈Z

a(n)(m+
[
q2n

2

]
, r; l)zl(Cq2n)

m(Sq2n(z))r ⊕

⊕
q2n−1∑

m′,r′=1

∑
l′∈Z

a′(n)(m′, r′ +
[
q2n−1

2

]
; l′)z′l

′
(Sq2n−1(z′))m

′
(Cq2n−1)r

′

)

Using orthogonality relation among clock and shift we can invert to obtain,

after some algebra

λ = −4π2
(
m2 + (q2nl + r)2

)
= 4π2

(
r′2 + (q2n−1l

′+m′)2
)

with l, l′ ∈ Z, 1 ≤ m, r ≤ q2n, 1 ≤ m′, r′ ≤ q2n−1
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The matching condition is Diophantine which means that is not

clear that the spectrum is non empty

Fortunately there are eigenvalues: Both, (q2n−1l′ +m′) and (q2nl + r) , are

bijective maps to Z .For every value of l′, r′ there is only one choice of l, r

such that (q2n−1l′ +m′) = (q2nl + r) . Since q2n−1 < q2n then ∀r′ ∃!r : r′ = r .

This shows that the spectrum is

4π2(m2 + s2), 1 ≤ m ≤ q2n−1, s ∈ Z

We are in the same situation of the simplified model described at

the beginning, except that this time we did not cut the spectrum

of the Laplacian by hand.
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We are ready to calculate the spectral dimension of our fuzzy

geometry in two extreme limits, infrared and ultraviolet

What one should expect to see in this limits? The physical spectral dimension

is the dimension as seen in the experiment that can probe the geometry up

to some cut-off scale.

The IR limit should look as the commutative geometry, i.e. we expect that

the spectral dimension is this case should be 2.

In the UV limit we do not have, in general, enough intuition (which is based

on a commutative geometry). So, in this case the actual calculation should

provide us with some hints on where the fundamental, i.e. UV, degrees of

freedom really live. We will see that this is the case
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IR Regime. The cut-off scale ω is below the characteristic quantum

geometric scale. In the case of a toy model this scale was controlled by

the number of the states along R -direction. In the present scale, this means

that ω < q2
2n−1 . Only the winding modes (from two circles) with l, l′ = −1,0

contribute. We immediately have for the counting function

N∆(ω) ∼ degeneracy×
∫
m2+s2≤ ω

4π2

dmds = const× ω

With our definition of scaling dimension we get dIR = 2

This result is not unexpected, is the consequence of the fact that the effective

radii of two S1 are very small. Although we started with all the radii of the

order of 1the contribution of (l, l′)-mode to the spectrum is of the order of

q2 � 1 (where q is either q2n or q2n−1). This effectively reduces the radii of

the ”internal” circles by the factor of q
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UV Regime. Now many of the S1 winding modes are excited, l, l′ � 1 . The

hypothetical experiment can probe the physics up to the cut-off ω � q2
2n .

In this case we have for the spectrum (in terms of l′,m′, r′ )

4π2
(
r′2 + (q2n−1l

′+m′)2
)

= 4π2q2
2n−1l

′2
(

1 +O
(

1

l′

))

The counting function in this limit is

N∆(ω)→ degeneracy×
∫ q2n−1

dmdr
∫ √

ω
2πq2n−1

−
√
ω

2πq2n−1

dk = const× q2n−1
√
ω

We get the physical dimension in ultraviolet dUV = 1



Consider the factor q in the UV counting function N ∼
√
q2

2n−1ω

From the original Weyl theorem the effective size of the UV-

dimension is proportional to q , instead of being of order one or

even of order of 1/q

This ”elongation” is due to the q2 matrix degrees of freedom

This is very suggestive: in the ultraviolet the new single dimension

is fundamental and the two IR dimensions of the torus have

disappeared

The single reduced dimension is not one of the original two.
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It is instructive to look at the UV regime from the point of view
of the other representation of the deformed derivatives

In this representation the dynamics governed by the deformed
Laplacian is 1-dimensional matrix model

(
∇2

1 +∇2
2

) (
a(n)(τ)⊕ a′(n)(τ ′)

)
=

=
(
q2

2n
d2

dτ2a
(n)(τ) + 2q2n[Θ, d

dτa
(n)(τ)] + [Θ, [Θ, a(n)(τ)]] + Σ2a(n)(τ)

)
⊕

⊕
(
q2

2n−1
d2

dτ ′2
a′(n)(τ ′) + 2q2n−1[Θ′, d

dτ ′a
′(n)(τ ′)] + [Θ′, [Θ′, a′(n)(τ ′)]]

+Σ′2a′(n)(τ ′)
)
.

The leading UV term UV has two τ -derivatives, corresponding to the sum

of two usual S1 -Laplacians with the correct rescaling of the radii by 1/q in

agreement with our previous discussion.
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Conclusions

I have argued how a construction for the noncommutative torus
can give a space which is effectively two dimensional at low
scales, or large distances, while being at high scales, small distances,
actually a two dimensional sum of tho circles

Although I have discussed a 2→ 1 reduction a 4→ 2 reduction
is possible, but technically messy. I straightforward application
of the above to T4

θ = T2
θ × T2

θ gives a reduction to two two
dimensional tori.

Other possibilities like reducing a four torus to four circles are possible

This is work in progress and there are several aspects, like the
presence of fermions, which could unveil other interesting features
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Auguri Alberto!
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