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Ising model and entanglement entropy of fermionic chains.

» We emphasize the impulse that physics has given to the
development of the theory.

» Finally we present new results and conjectures on the subject.

Based on:

- P. Deift, A. Its, |. Krasovsky, Comm.Pure Appl.Math. 66. arXiv:1207.4990
- F. Ares, J. G. Esteve, F. F., Phys. Rev. A 90, (2014)

- F. Ares, J. G. Esteve, F. F., A. R. de Queiroz, J. Stat. Mech. 063104, (2017)
- F. Ares, J. G. Esteve, F. F., A. R. de Queiroz, arXiv:1801.07043, (2018)
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Toeplitz matrices (Toeplitz 1907)
Symbol f: S, — C, f e L )
bty = % / f(0)e *dp
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Toeplitz matrices (Toeplitz 1907)

Symbol f: S = C, fe Ll
1 ™ .

by = -— f(0)e *dp

2

-

Toeplitz Matrix with symbol f:
31 to t-1 t_o
t2 tl t(] t*l

to
jzl(f) =
t_o
tq tO t_1 t_o
to t1 to tq
tn—1 SRR 5 t1 to

3/32



Toeplitz determinant

Introduce the Toeplitz determinant with symbol f

Dy (f) = det T (f)
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Toeplitz determinant

Introduce the Toeplitz determinant with symbol f

Dy (f) = det T (f)

Szegd theorem (1915):

1 s
For f: ST — R* continuous and [f] = exp (2/ log f(9)d9>
a —Tr

lim (D, (f)"™ = [f]

n—00

Our cooperation started from a conjecture which | found. It was about a
determinant considered by Toeplitz and others, formed with the
Fourier-coefficients of a function f (x). | had no proof, but | published the
conjecture and the young Szegé found the proof...

G. Pdlya, Mathematische Annalen, 1915
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Introduce the Toeplitz determinant with symbol f
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Toeplitz determinant

Introduce the Toeplitz determinant with symbol f

Dy (f) = det T (f)

Szegd theorem (1915):

1 s
For f: ST — R* continuous and [f] = exp (2/ log f(H)dG)
a —Tr

lim (D, (f))"" = [f]

n—00

In other words
Dn(f) _ eo(n)

Can we say something about o(n)?
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Toeplitz determinant
Szegd Strong limit theorem (Szegd 1952, Johanson 1988):
Let f:S! — C, with log f € L', call

™

1 :
sk=r5— [ logf(#)e""dd

- 27 J_,
Hence if

[o.¢]
Z ’kHSk‘Q < 00

k=—o0

lim M — okt ksks—k

n—oo enso0
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Toeplitz determinant
Szegd Strong limit theorem (Szegd 1952, Johanson 1988):
Let f:S! — C, with log f € L', call

™

1 )
S = — logf(g)e—lkede

2
Hence if
[o.¢]
> Ikllsel” < oo
k=—00
lim M — k=1 ksksk
n—oo enso
Comparing with previous slide, o(n Z kesis_k + of
oo
What if Z IK||sk]? =

k=—o0
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Ising model in two dimensions (o)

Kaufman and Onsager (1949)

<UO,OUn,n> = Dn(fIS)

s = eAT8? 0) =1— Ae, with A = (sinh 2L.)"2.
EsT
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Ising model in two dimensions (o)

Kaufman and Onsager (1949)

<UO,OUn,n> = Dn(fIS)

s = eAT8?, 0) =1 — Ael, with A = (sinh 2Z.)~2.
kT

T<T, T="T, T>T,
| $(6) $(6) $(6)
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Ising model, " < T, (A < 1).
$(0) —ilog fis /2

o A

—7/2
For A<1,logfis€ C1T¢ = S _|kllsk|* <0 =

= Szeg6 Strong Limit Theorem applies.
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Ising model, " < T, (A < 1).
(b(e) —i IOg fIs 77/2

o A

—7/2

For A<1,logfis€ C1T¢ = S _|kllsk|* <0 =

= Szeg6 Strong Limit Theorem applies.

Hence
hm Dn(fIS) — 6220:1 k’SkS_k
n—oo  enso
with
Alkl > 1
so =0, s ST ZkSkS—k =1 log(1 — A?)
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Ising model, " < T, (A < 1).
(b(e) —i IOg fIs 77/2

o A

—7/2

Then

lim <UO,00n,n> = lim Dn(fls) =
n—00 n—00

— ez;il k)SkS_k — (1 _ A2)1/4.
From which we derive the spontaneous magnetization

My = lim <00700n_n>1/2 =(1- A2)1/8
n—o0 :
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Ising model, " < T, (A < 1).
(b(e) —i IOg fIs 77/2

o A

—7/2

...and lo and below | found it. It was a general formula for the evaluation
of Toeplitz matrices. The only thing | did not know was how to fill out

the holes in the mathematics and show the epsilons and deltas and all
that...

...the mathematicians got there first...

L. Onsager, 1971.
My = lim <00700n7n>1/2 =(1- A2)1/8
n—oo
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Ising model, T'="T,. (A=1).

\\\\\\5____4/’///7 4//1:;;////////,

fis has jumps, s, = — = Z k| |sk|? = oo
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/—% —ilog fis /2

/2

: 1 - )
f1s has jumps, s, = ok = kz |kl|sk|® = oo
=—00

R R
£(0) = V() H |ei9 _ eier’2ar Hgﬁr 0—6,), 6,0,¢c(—m,n
r=1 r=1

e V(0) periodic and smooth enough, g,(0) = el(0—msgn(0))B

9/32



Ising model, T'="T,. (A=1).

/—% —ilog fis /2

/2

: 1 - )
f1s has jumps, s = ~or = kz |kl|sk|® = oo
=—00

R R
£(0) = V() H |ei9 _ eier’2ar Hgﬁr 0—6,), 6,0,¢c(—m,n
r=1 r=1

e V(0) periodic and smooth enough, g,(0) = el(0—msgn(0))B

e f has zeros and/or jump discontinuities at 6 = 0,, r =1,..., R.

9/32



Ising model, T'="T,. (A=1).

/—% —ilog fis /2

/2

: 1 - )
f1s has jumps, s = ~or = kz |kl|sk|® = oo
=—00

R R
£(0) = V() H |ei9 _ eier’2ar Hgﬁr 0—6,), 6,0,¢c(—m,n
r=1 r=1

e V(0) periodic and smooth enough, g,(0) = el(0—msgn(0))B

e f has zeros and/or jump discontinuities at 6 = 0,, r =1,..., R.

fIS - 91/2
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Ising model, T'="T,. (A=1).
Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).
For f(0) = eV L%, e — e[ T[L, g, (0~ 0y)

2

One has: Dy(f) = "o n2re (02 =67) E(f)(1+o0(1))
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Ising model, T'="T,. (A=1).

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For f(8) = VO TLL, e — e[ [T2, g, (6 6;)

One has: Dy (f) = Vo i1 (a?=52) E(f)(1+0(1))

R
B(f) = BE) ] [ba(e) b (%) =0 ]

T
% [|619T 19 ’ ‘,BT,B ;- arar/gaTB ) (0 , ar)}
#r

E G +ar+ﬁr) ( +ar_ﬁ7‘)
H G(1+ 2a,)

<

X

3
=

Widom (1972, 3, = 0), Basor (1978), Ehrhardt (2001).

10/32



Ising model, T'="T,. (A=1).

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For f(8) = VO TLL, e — e[ [T2, g, (6 6;)

One has: Dy (f) = Vo i1 (a?=52) E(f)(1+0(1))

R
B(f) = BE) ] [ba(e) b (%) =0 ]

T
% [|619T 19 ’ ‘,BT,B ;- arar/gaTﬂ ) (0 , ar)}
#r

E G +a7‘+/8’l“) ( +ar_ﬁ7‘)
Ii[ G(1+ 2a,)

<

X

3
=

V(9) = Z Veck? | B(eV) = oS FViVox

k=—o0

10/32



Ising model, T'="T,. (A=1).

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For f(8) = VO TLL, e — e[ [T2, g, (6 6;)

One has: Dy (f) = Vo i1 (a?=52) E(f)(1+0(1))

R
B(f) = BE) ] [ba(e) b (%) =0 ]

T
% [|619T 19 ’ ‘,BT,B ;- arar/gaTﬂ ) (0 , ar)}
#r

E G +a7‘+/8’l“) ( +ar_ﬁ7‘)
Ii[ G(1+ 2a,)

<

X

3
=

k

bi(z) = X0 Vis' p_ () = X0 Vors

10/32



Ising model, T'="T,. (A=1).

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For f(8) = VO TLL, e — e[ [T2, g, (6 6;)

One has:

Da(f) = &m0 B(f)(1 + o(1))

R
= E(e )H [ (e )Prarb_(eifr)=frmar]

T
[|619T 19 ’ ‘,BT,B ;- arar/gaTﬂ ) (0 , ar)}

G +ozT+BT) (14 ar — 6y)
G(1+ 2a,)

n
e

G(z) = Barnes function, G(z+1) =T(2)G(»),

G(1—-m)=0, meZ".
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Ising model, T'="T,. (A=1).
Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).
For f(8) = VO TLL, e — e[ [T2, g, (6 6;)

One has: Dy (f) = Vo i1 (a?=52) E(f)(1+0(1))

R
B(f) = BE) ] [ba(e) b (%) =0 ]

T
% [|619T 19 ’ ‘,BT,B ;- arar/gaTﬂ ) (0 , ar)}
#r

E G +a7‘+/8’l“) ( +ar_ﬁ7‘)
H G(1+ 2a,)

<

X

3
=

Ising model at T.: V=0, a=0,8=1/2=

= (o00mn) = Dalf) = CEBEAD 4 4 o))
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Ising model, 7" > T, (A > 1).

¢(0)

fis(8) = f(8)e?, log f smooth
B=1=G(1-p)=0= E(fis) =0= F-H do not apply.

-1 log fIs
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Ising model, 7" > T, (A > 1).

J

—i IOg fIs

fis(8) = f(8)e?, log f smooth
B=1= G —-p)=0= E(fis) =0= F-H do not apply.
D (fis) = pn(0) Dy (f) pu(z) =2"4 ..., s t

/ (e )™ f(0)do =0, 0 < m < n.
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Ising model, 7" > T, (A > 1).

—i IOg fIs

\__/ |

fis(8) = f(8)e?, log f smooth
B=1= G —-p)=0= E(fis) =0= F-H do not apply.
D (fis) = pn(0) Dy (f) pu(z) =2"4 ..., s t

/ (e )™ f(0)do =0, 0 < m < n.

r1/2 A"

<UO,OUn,n> = Dn(fls) = (1 _ A72)1/4 n1/2(

1+0(1), A>1
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Fermionic chain

—0—0—0 00 0 0 & 0 0o 00—

H=(C)*N, {ajal} =6y, {ai a5} ={a},al} =0.
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Fermionic chain

H = (C2)®N, {CLZ', CL;[ = 61']', {ai, CL]'} = {a},a}} =0.
Quadratic, periodic, translational and parity invariant Hamiltonian
1 NL
H=— Z Z (ZAICLZCLZ‘_H + BlaZ(IL_Z - Blaiai_H)

2 4
i=1[]=—L

Al,Bl eR
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Fermionic chain

H=(C)*N, {ajal} =6y, {ai a5} ={a},al} =0.

Quadratic, periodic, translational and parity invariant Hamiltonian

N L
1
H = 5 Z Z (2A1agai+l + BlaZaLl — BlaiaH_l)
i=1[]=—L

N_1 A, B eR
= A(Oy) d,tdk, Bogoliubov modes.
k=0
A(9) = 1/6(c)? — =(c0)? () = ok, 42!
— ) —L

E(z) = ZEL B;Z.

12/32



Fermionic chain

H=(C)*N, {ajal} =6y, {ai a5} ={a},al} =0.

Quadratic, periodic, translational and parity invariant Hamiltonian

N L
1
H = 5 z; lZL (2A1ajai+l + BlaZ(IL_Z - Blaiai+l>
1=1 [=—

N_1 A, B eR
= A(Oy) d,tdk, Bogoliubov modes.
k=0
A(9) = 1/6(c)? — =(c0)? () = ok, 42!
— ) —L

2(z) = 3k, B2
Ground state: dj |GS) =0
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Entanglement entropy.

e o o e o o o o0 o o

X Y

H=Hx Hy

13 /32



Entanglement entropy.

e o o e o o o o0 o o
b Y
H=Hx Hy

e Introduce the reduced density matrix

px = Tra, (|GS) (GS]).
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Entanglement entropy.

e o o e o o o o0 o o
b Y
H=Hx Hy

e Introduce the reduced density matrix

px = Try, (|GS) (GS]).

e The Rényi entanglement entropy is given by

1
Sa(X) = log Tr(p%)

l—«

13 /32



Block Toeplitz matrix

Wick decomposition holds and S, (X) can be obtained from the
correlation matrix Vy

a; .
(Vx)ij = <GS‘ [( alT ) ,(a;,aj)]‘GS>, i,j € X.
In the thermodynamic limit

(Vx)ij = 5 3 M (0)eC=1)qg.

A block Toeplitz matrix T;,(M) with 2 x 2 symbol M () = M(e'?)
where

14 /32



Block Toeplitz matrix

e Szegd Theorem for block Toeplitz matrices (Gyires, 1956)

1 1 (7
lim —log D, (M) = / log det M (0)do
n—oo N 2 J_ .
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Block Toeplitz matrix

e Szegd Theorem for block Toeplitz matrices (Gyires, 1956)

1 1 (7
lim —log D, (M) = / log det M (0)do
n—oo N 2 J_ .

In our case det M (0) = 1 and the limit is 0, o(n) corrections?
e Widom Theorem, 1974: For smooth enough M (6)

logDn(M)—% / log det M (6)d6

—T

= log det [T(M)T(M~")] (1 + o(1))
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Block Toeplitz matrix

e Szegd Theorem for block Toeplitz matrices (Gyires, 1956)

1
lim — log Dn(]\4) = 7

n—oo N

-/

s

T

log det M (0)do

In our case det M (0) = 1 and the limit is 0, o(n) corrections?
e Widom Theorem, 1974: For smooth enough M (6)

K

—Tr

1ogDn(M)_2£ / log det M (6)d6
T

= log det [T(M)T(M~")] (1 + o(1))

It is hard to compute.

- It can be mapped into a Riemann-Hilbert problem.

- And can be solved for the non critical fermionic chain.
(Its, Jin, Korepin, 2007; Its, Mezzadri, Mo, 2008).
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Non critical theories (A(f) > 0)

e M: Meromorphic in a o) =(2)
two-sheeted cover of the ( _E(2) —H@(z) )
Riemann sphere with branch M(z) = : = >
points at the zeros and poles of E(2)* - 6(2)
H(z) +06(2)
Vi
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Non critical theories (A(f) > 0)

e M: Meromorphic in a o(z) E(2)
two-sheeted cover of the ( _2(z) -6(2) )
Riemann sphere with branch M(z) =

points at the zeros and poles of

H(z) +06(2)
=) -60)

L L=
= " %oy
e They are related by 1wt ]
. . ; L8
inversion and [T | R ——— "
. . R it % s
conjugation, 27 « 7610
N - —1 s
€8 Z3=24= 2 - VI?I—] « pole
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H(z) +06(2)
=) -60)
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g=3 R “ e
e They are related by Yt
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inversion and [T | R ——— "
. . SONEECE S B 2
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Non critical theories (A(f) > 0)

e M: Meromorphic in a o(z) E=(2)
two-sheeted cover of the ( _E(2) —0(z) )
Riemann sphere with branch M(z) =

points at the zeros and poles of

H(z) +06(2)
=) -60)

L= B 2
g=3 R “ e
e They are related by Yt
. . i L8
inversion and [T | R ——— "
. . SONEECE S B 2
conju gatloD, . Z",v"'zf « 7610
€8 Z3=24= 2 - et e pole

e Assume no degeneracy:
zi # 25 = |al # 1.

e Riemann surface of genus g = 2L — 1; 4L branch points.
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Non critical theories (A(f) > 0)

{ } (3) = Z i+ )T 7+ )+ 271(5+)-(7+7).

nezs . )
O II: the standard period matrix.
L=2 T z
=3 "%
g z, ;
L8
Vg
@oe® P
Z; ZZ% Hoy Z,
|
23 v,w'Z- e zero €] = €5 = -+ = 1
5
el=1 epole €2 =€3=---=—1
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Non critical theories (A(f) > 0)

[ } 5») Z mi(A+p) - (7+p)+27i(54q)- (n—l—ﬁ)

nezs ) )
J— II: the standard period matrix.
L=2 ) Lz
= Y
ZJZ; e zero €] =e€5 = 1
"i;|_1 e pole €3 =ec3 = =-1
ﬁ[g} (/2) 0[5} (—&/2)
D(M) = lim D,(M) = -

Mp = i(62’r+1 + €2r42)

vp=1Y7%"e, r=1,...2L—1
(Ares, Esteve, F.F., Queiroz, 2017)
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Mobius transformations

, az+b (a b

o c d

L(2
cz+d’ >GS (2,C)

M () = M(2)
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Mobius transformations

, az+b <a b

= . d> € SL(2,C)

cz+d’

M () = M(2)

e Automorphisms of the Riemann surfaces.
° Preserve the period matrix II' = II and also ﬁ[fﬂ (5)

--------- \‘;‘\?‘3~-F,|:] EN e Provided + can be
e continuously deformed to
— g % N . Wwithout crossing branch points

D(M) = D(M')

18 /32



Mobius transformations

But a physical Mobius transformation should preserve the relations

between the branch points, e.g 23 =2z, = 26_1.

L=2 <
g=3 - b‘*«zﬂu
A.Jg “.‘ g
P
Qoo % i *
25 24 Z; Zg
28/
3ie8 ® zero
ole
=1 °P

It implies that it should commute with inversion and conjugation,
equivalently, it should preserve the real line and the unit circle.
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Mobius transformations

But a physical Mobius transformation should preserve the relations
between the branch points, e.g 23 =2z, = 26_1.

L=2 z
e=3 S
A.Jg ('.‘ g
P
Qoo % i *
o % ;é z z
2878
3o o zero
ole
lol=1 °p

It implies that it should commute with inversion and conjugation,
equivalently, it should preserve the real line and the unit circle.

Therefore we are left with transformations in SO(1,1) C SL(2,C)

, zcosh( +sinh(

~ zsinh ¢ + cosh ¢
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Mobius transformations
zcosh ¢ + sinh
zsinh ¢ + cosh ¢

SO(1,1) € SL(2,C) 2 =
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Mobius transformations
, zcosh(+sinh(

1,1 L(2 =
SO(1,1) € SL(2,C) : zsinh ¢ + cosh ¢

Couplings A;, B;: spin L representation of SL(2,C)

AIL Ap BIL By
: J : ‘ :
A | = eC (Ja)L A | B |- eC (Jo)L By
(N
Recall: H = 3 Z Z [A;ajaiﬂ + Bla;raj.H — Bia;a;4g
i=11=—L
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Mobius transformations
, zcosh(+sinh(

S50(1,1) c SL(2,C) =7 zsinh ¢ + cosh ¢

Couplings A;, B;: spin L representation of SL(2,C)

i AL B,
AI_L A—L B/_L

N L
1
. _ T 7T
Recall: H = 3 E . E ] [A[aiaiﬂ + Bia;a; ; — Blaiaiq
1= =—

D(M)=D(M') = S,=25, for |X|—

(Ares, Esteve, F.F. , Queiroz, 2016)
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Critical theories.

When A(6,) =0, M(0) has a jump discontinuity at 6,..
Not covered by Widom theorem.

21 /32



Critical theories.
When A(6,) =0, M(0) has a jump discontinuity at 6,..
Not covered by Widom theorem.

e In the scalar case we can apply the Fisher-Hartwig conjecture:

f piece wise smooth, lateral limits f,._ and f,, at discontinuity 6,.

R
log Du(f) = som + 15 D108 (frs/fy)*logn + O(1)
r=1
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Critical theories.
When A(6,) =0, M(0) has a jump discontinuity at 6,..
Not covered by Widom theorem.

e In the scalar case we can apply the Fisher-Hartwig conjecture:

f piece wise smooth, lateral limits f,._ and f,, at discontinuity 6,.

R
log Du(f) = som + 15 D108 (frs/fy)*logn + O(1)
r=1

e When the symbol is a matrix M with jumps at 6, a similar
expression holds: (Ares, Esteve, F., Queiroz, 2018)

log Dy (M) = son + £ 5 ZTr (log [M,+ (M,_)])*1logn + O(1)

1 ™
S0 = — log det M (0)d8, M,y = hm M(0)
2 J_, 0—0;F
21 /32



Sublogarithmic scaling

Back to the scalar symbol f: S — C.
For piecewise smooth f(6) with geometric average 1 (so = 0)

log Dy, (f) = clogn + O(1).
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Back to the scalar symbol f: S — C.
For piecewise smooth f(6) with geometric average 1 (so = 0)

log Dy, (f) = clogn + O(1).

Is it possible to have

log D, (f) =c(logn)* +0(1), 0<pu<l1
or
log Dy, (f) = cloglogn+ O(1) ?

Motivation:

e For fun.
e It is a challenge.
e Anomalous scaling in non unitary conformal field theories.
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Sublogarithmic scaling

Consider the family of functions

log ,(6) = COE”]/ 2 Tjr)l(f),
g

0 € (—m, 7]
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Sublogarithmic scaling

Consider the family of functions

log £,(6) = CO(S”{ 2 Tjg(f)),
g

0 € (—m, 7]

1

k™ Thk(log [k])¥

k=1

v=20.25 05

~

-0.5

e Szegd strong limit theorem can not be applied.

1 2 3

o0
= Z |k||sk|? = oo for v < 0.5
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Sublogarithmic scaling

Consider the family of functions v=025 5
_ cos(6/2)sgn(0)

logfl,(ﬁ) =T NV X -2 - 2 3
(_ log%> 1 1

0 € (—m, 7]
1
" whk(log [K[)”

-0.5

o0
s = ZlkHsk\Q:ooforuSOB

k=1
e Szegd strong limit theorem can not be applied.

e f,, for v > 0, is continuous and F-H formula does not apply.
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Sublogarithmic scaling

Consider the family of functions v =025

log f,,(0) = M K\

) = -2 -1 1 2 3
(~rost2)’

-0.5
0 € (—m, 7]
1 o0
Sk h(log [F)” Z] |sk|* = oo for v <

k=1
e Szegd strong limit theorem can not be applied.

e f,, for v > 0, is continuous and F-H formula does not apply.

We conjecture that there are positive Z(v) and §(v), such that:

[nZ|
log D,y Z ksps_i + o(n™0%)
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Sublogarithmic scaling

[nZ]
e log D, ( Z ksks_x + o(n ) implies sublogarithmic

scaling:

e log D,(fy) = (logn)*™% +0(1), 0 < v < 0.5

m2(1 —2v)

1
e log Dy (fo5) = = loglogn +o(1), v =0.5
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m2(1 —2v)

1
e log Dy (fo5) = = loglogn +o(1), v =0.5

e For v = 0 we reproduce the Fisher-Hartwig formula with

log Z(0) = 272 log |G(1 +i/7)| — yE ~ 0.9424 . ..

24 /32



Sublogarithmic scaling

[nZ]
e log D, ( Z ksks_x + o(n ) implies sublogarithmic
scaling:
e log Dy (f,) = m(logn)l 1o(1),0<v<05

1
e log Dy (fo5) = = loglogn +o(1), v =0.5

e For v = 0 we reproduce the Fisher-Hartwig formula with

log Z(0) = 272 log |G(1 +i/7)| — yE ~ 0.9424 . ..

e Supported by numerical checks.
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Sublogarithmic scaling

log D,

20000 40000 n 60000 80000 100000

- Dots represent log Dy, (fy) for different values of v and n up to 100 000.

[nZ]
- The continuous lines are Z ksks_y for every v and Z from the best fit.
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Sublogarithmic scaling

log D,

20000 40000 n 60000 80000 100000

- Note that adjusting only one free parameter, Z, we obtain an excellent agreement.
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Sublogarithmic scaling

058
0.56 |
0.54 |
[nZ2]
0.2 — _
0.0008 1 A(n) = log Dy, E ksps_p
k=1
S 05
& 0.0006
0.48
0.0004
0.46
0.4 0.0002]
0.42
0 : ; ; ; :
20000 40000 60000 80000 100000
04 ‘ ‘ ‘ ‘ ‘
20000 40000 n 60000 80000 100000
(n2]
Main plot: log Dy (f,) for v = 0.25 (dots) and E ksks_k (continuous line).
k=1
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Sublogarithmic scaling

0.58 -
0.56 |
054 |
[nZ]
0.52 _ _
0.0008 1 A(n) = log Dy, E ksps_p
- k=1
S os
& 0.0006
048
0.0004-
046
044 0.0002-
042
0 ‘ ‘ ‘ ‘ ‘
20000 40000 60000 80000 100000
04 ‘ ‘ ‘ ‘ ‘
20000 40000 n 60000 80000 100000

Inset: - crosses are A(n), the difference between the real value and the prediction.

- continuous line is our best fit, A(n)

_235x107°
=~ 0186
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Sublogarithmic scaling

We expect this behavior in the entanglement entropy of fermionic
chains with long range couplings.

N

H = Z (ajaiH + a;rﬂai +h a;rai>
i=1
N N/2

+2 ZZ logl alal,, — aiaiy).

In this case, we should have

S.(X) = c(log| X' +0(1), for 0<v < 0.5

Sa(X) = cloglog|X|+ o(1), for v =0.5
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Several Intervals. e {o o of e o ofo ol e o

Consider now X = (u1,v1) U (ug,v2) U--- U (up,vp)
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Several Intervals. e {o o of e o ofo ol e o

Consider now X = (u1,v1) U (ug,v2) U--- U (up,vp)

Vi = (GS|[a],a]|GS), i,j € X is
not a Toeplitz matrix, but a principal
submatrix;

e. g. for two intervals Vx is the
shaded area of the Toeplitz matrix on
the right.

The correlation matrix is

Vy =

Inspired by conformal field theories, we conjecture...
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...for the determinant of a principal submatrix of a Toeplitz matrix:

P D[(up, vy )] D[(vp, up )]
D[L;J Up, Up)] HD (up, vp) H D|(up, uy )| D[(vp, vpy)]’

D[X] = detVx

p=1 p<p’
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Several Intervals. e {o o of e o ofo ol e o

...for the determinant of a principal submatrix of a Toeplitz matrix:

P D (up, vy)]D[(vp, up)]
D[L;J Up, Up)] HD (up, vp) l_IlD[(umup,)]D[(vp,vp/)]7

p=1 p<p
D[X} = detVX
Pictorially, for P = 2: NN
NN
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Several Intervals. e {o o of e o ofo ol e o

...for the determinant of a principal submatrix of a Toeplitz matrix:

P D[(up, vy )] D[(vp, up )]
D[L;J Up, Up)] HD (up, vp) H D|(up, uy )| D[(vp, vpy)]’

p=1 p<p’
D[X} = detVX
Pictorially, for P = 2: =
AN
1 N
N 3
003 | saaaNia J
o _ (ug —v1)(v2 — u1) AN .
0025 1 T (uz — u1)(v2 — v1) NN i
| AR |
ozl NN \ | i
a P:2 (50,50) © ‘ !
=~ 0015 =2,(500,500) e

Remarkable agreement!!!

(Ares, Esteve, F., 2014)
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Conclusions

e We have shown how the theory of Toeplitz determinants has been
boosted by physicists' demands.

e We obtained a compact expression for the determinant of the
correlation function of the fermionic chain with finite range
coupling.

We discussed the role of Mobius transformations as symmetries of
the Toeplitz determinants and its implications for the fermionic
chain.

e We presented a conjecture on the sublogarithmic scaling of
Toeplitz determinants and showed its numerical accuracy.

e Based on the results for Conformal Field Theory we have proposed
an asymptotic formula for the determinant of a principal subamtrix

of the Toeplitz matrix.
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Mobius transformations in critical theories: A(6,) = 0.
zcosh ¢ + sinh

zsinh ¢ + cosh ¢

For critical theories the Toeplitz determinant is not invariant.

SO(1,1) C SL(2,C) 2 =

Conjecture For the fermionic chain it transforms as an
homogeneous function.

- M has jump discontinuities at ,.. Call u, = elfr.

- M,+ lateral limits at 6,.
- 8 = 7k Tr (log [ My (M,-)71])?

/\ Or
D,00) =TT (Gex) Puan(1 +o(1)

Checked analytically in particular cases and in numerical
simulations.
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