Fernando Falceto Theoretical Physics Department. Universidad de Zaragoza

Toeplitz determinants in Mathematical Physics

Alberto Ibort fest, ICMAT, Madrid, March 5-9, 2018

In collaboration with:
Filiberto Ares
José G. Esteve
Amilcar de Queiroz

- ▶ We review the main steps in our progress towards the understanding of Toeplitz determinants.
- ▶ We discuss connections of the latter with physics, namely: the Ising model and entanglement entropy of fermionic chains.
- ▶ We emphasize the impulse that physics has given to the development of the theory.
- ► Finally we present new results and conjectures on the subject.

- We review the main steps in our progress towards the understanding of Toeplitz determinants.
- ► We discuss connections of the latter with physics, namely: the Ising model and entanglement entropy of fermionic chains.
- ▶ We emphasize the impulse that physics has given to the development of the theory.
- ► Finally we present new results and conjectures on the subject.

- ▶ We review the main steps in our progress towards the understanding of Toeplitz determinants.
- ► We discuss connections of the latter with physics, namely: the Ising model and entanglement entropy of fermionic chains.
- ▶ We emphasize the impulse that physics has given to the development of the theory.
- ▶ Finally we present new results and conjectures on the subject.

- ▶ We review the main steps in our progress towards the understanding of Toeplitz determinants.
- ► We discuss connections of the latter with physics, namely: the Ising model and entanglement entropy of fermionic chains.
- ▶ We emphasize the impulse that physics has given to the development of the theory.
- Finally we present new results and conjectures on the subject.

- ► We review the main steps in our progress towards the understanding of Toeplitz determinants.
- ► We discuss connections of the latter with physics, namely: the Ising model and entanglement entropy of fermionic chains.
- ► We emphasize the impulse that physics has given to the development of the theory.
- Finally we present new results and conjectures on the subject.

Based on:

- P. Deift, A. Its, I. Krasovsky, Comm.Pure Appl.Math. 66. arXiv:1207.4990
- F. Ares, J. G. Esteve, F. F., Phys. Rev. A 90, (2014)
- F. Ares, J. G. Esteve, F. F., A. R. de Queiroz, J. Stat. Mech. 063104, (2017)
- F. Ares, J. G. Esteve, F. F., A. R. de Queiroz, arXiv:1801.07043, (2018)

Toeplitz matrices (Toeplitz 1907)

Symbol $f: S_1 \to \mathbb{C}, f \in L^1$

$$t_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-ik\theta} d\theta$$

Toeplitz matrices (Toeplitz 1907)

Symbol $f: S_1 \to \mathbb{C}, f \in L^1$

$$t_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-ik\theta} d\theta$$

Toeplitz Matrix with symbol f:

$$T_n(f) = \begin{pmatrix} t_0 & t_{-1} & t_{-2} & \cdots & \cdots & \cdots & t_{1-n} \\ t_1 & t_0 & t_{-1} & t_{-2} & & & & \vdots \\ t_2 & t_1 & t_0 & t_{-1} & \ddots & & & \vdots \\ \vdots & t_2 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & t_{-2} & \vdots \\ \vdots & & & \ddots & \ddots & t_1 & t_0 & t_{-1} & t_{-2} \\ \vdots & & & & t_2 & t_1 & t_0 & t_{-1} \\ \vdots & & & & t_{n-1} & \cdots & \cdots & \cdots & t_2 & t_1 & t_0 \end{pmatrix}$$

Introduce the Toeplitz determinant with symbol f

$$D_n(f) = \det T_n(f)$$

Introduce the Toeplitz determinant with symbol f

$$D_n(f) = \det T_n(f)$$

Szegő theorem (1915):

For
$$f: S^1 \to \mathbb{R}^+$$
 continuous and $[f] = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) d\theta\right)$

$$\lim_{n \to \infty} (D_n(f))^{1/n} = [f]$$

Introduce the Toeplitz determinant with symbol f

$$D_n(f) = \det T_n(f)$$

Szegő theorem (1915):

For
$$f: S^1 \to \mathbb{R}^+$$
 continuous and $[f] = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) d\theta\right)$

$$\lim_{n \to \infty} (D_n(f))^{1/n} = [f]$$

Our cooperation started from a conjecture which I found. It was about a determinant considered by Toeplitz and others, formed with the Fourier-coefficients of a function f(x). I had no proof, but I published the conjecture and the young Szegő found the proof...

G. Pólya, Mathematische Annalen, 1915

Introduce the Toeplitz determinant with symbol f

$$D_n(f) = \det T_n(f)$$

Szegő theorem (1915):

For $f: S^1 \to \mathbb{R}^+$ continuous and $[f] = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) d\theta\right)$

$$\lim_{n \to \infty} (D_n(f))^{1/n} = [f]$$

In other words

$$\frac{D_n(f)}{\lceil f \rceil^n} = e^{o(n)}$$

Introduce the Toeplitz determinant with symbol f

$$D_n(f) = \det T_n(f)$$

Szegő theorem (1915):

For
$$f: S^1 \to \mathbb{R}^+$$
 continuous and $[f] = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) d\theta\right)$

$$\lim_{n \to \infty} (D_n(f))^{1/n} = [f]$$

In other words

$$\frac{D_n(f)}{\lceil f \rceil^n} = e^{o(n)}$$

Can we say something about o(n)?

Szegő Strong limit theorem (Szegő 1952, Johanson 1988):

Let $f: S^1 \to \mathbb{C}$, with $\log f \in L^1$, call

$$s_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) e^{-ik\theta} d\theta$$

Hence if

$$\sum_{k=-\infty}^{\infty} |k| |s_k|^2 < \infty$$

$$\lim_{n \to \infty} \frac{D_n(f)}{e^{ns_0}} = e^{\sum_{k=1}^{\infty} k s_k s_{-k}}$$

Szegő Strong limit theorem (Szegő 1952, Johanson 1988):

Let $f: S^1 \to \mathbb{C}$, with $\log f \in L^1$, call

$$s_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) e^{-ik\theta} d\theta$$

Hence if

$$\sum_{k=-\infty}^{\infty} |k| |s_k|^2 < \infty$$

$$\lim_{n \to \infty} \frac{D_n(f)}{e^{ns_0}} = e^{\sum_{k=1}^{\infty} k s_k s_{-k}}$$

Comparing with previous slide, $o(n) = \sum_{k=1}^{n} k s_k s_{-k} + o(1)$

Szegő Strong limit theorem (Szegő 1952, Johanson 1988):

Let $f: S^1 \to \mathbb{C}$, with $\log f \in L^1$, call

$$s_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log f(\theta) e^{-ik\theta} d\theta$$

Hence if

$$\sum_{k=-\infty}^{\infty} |k| |s_k|^2 < \infty$$

$$\lim_{n \to \infty} \frac{D_n(f)}{e^{ns_0}} = e^{\sum_{k=1}^{\infty} k s_k s_{-k}}$$

Comparing with previous slide, $o(n) = \sum_{k=1}^{l} k s_k s_{-k} + o(1)$

What if
$$\sum_{k=0}^{\infty} |k| |s_k|^2 = \infty ?$$

Ising model in two dimensions $(\sigma_{x,y})$

Kaufman and Onsager (1949)

$$\langle \sigma_{0,0}\sigma_{n,n}\rangle = D_n(f_{\rm Is})$$

$$f_{\rm Is} = \mathrm{e}^{\mathrm{i}\mathrm{Arg}\phi}, \quad \phi(\theta) = 1 - A\mathrm{e}^{\mathrm{i}\theta}, \text{ with } A = (\sinh\frac{2J}{k_BT})^{-2}.$$

Ising model in two dimensions $(\sigma_{x,y})$

Kaufman and Onsager (1949)

$$\langle \sigma_{0,0}\sigma_{n,n}\rangle = D_n(f_{\rm Is})$$

$$f_{\rm Is} = {
m e}^{{
m i}{
m Arg}\phi}, \quad \phi(\theta) = 1 - A{
m e}^{{
m i}\theta}, \ \ {
m with} \ \ \frac{A = (\sinh{rac{2J}{k_BT}})^{-2}}.$$

For
$$A < 1$$
, $\log f_{\mathrm{Is}} \in C^{1+\epsilon} \quad \Rightarrow \quad \sum_{k=-\infty}^{\infty} |k| |s_k|^2 < \infty \quad \Rightarrow$

⇒ Szegő Strong Limit Theorem applies.

Ising model, $T < T_c$ (A < 1). $-\mathrm{i}\log f_{\mathrm{Is}}$ $\dagger \pi/2$

$$\phi(\theta) \qquad -\mathrm{i} \log f_{\mathrm{Is}} \qquad \pi/2$$

$$-\pi \qquad \pi$$

For
$$A < 1$$
, $\log f_{\mathrm{Is}} \in C^{1+\epsilon} \implies \sum_{k=-\infty}^{\infty} |k| |s_k|^2 < \infty \implies$
 $\Rightarrow Szegő Strong Limit Theorem$ applies.

Hence
$$\lim_{n\to\infty}\frac{D_n(f_{\rm Is})}{{\rm e}^{ns_0}}={\rm e}^{\sum_{k=1}^\infty ks_ks_{-k}}$$

with

Then

$$\lim_{n \to \infty} \langle \sigma_{0,0} \sigma_{n,n} \rangle = \lim_{n \to \infty} D_n(f_{\mathrm{Is}}) =$$
$$= e^{\sum_{k=1}^{\infty} k s_k s_{-k}} = (1 - A^2)^{1/4}.$$

From which we derive the spontaneous magnetization

$$M_0 = \lim_{n \to \infty} \langle \sigma_{0,0} \sigma_{n,n} \rangle^{1/2} = (1 - A^2)^{1/8}$$

...and lo and below I found it. It was a general formula for the evaluation of Toeplitz matrices. The only thing I did not know was how to fill out the holes in the mathematics and show the epsilons and deltas and all that...

...the mathematicians got there first...

L. Onsager, 1971.

$$M_0 = \lim_{n \to \infty} \langle \sigma_{0,0} \sigma_{n,n} \rangle^{1/2} = (1 - A^2)^{1/8}$$

$$f(\theta) = \mathrm{e}^{V(\theta)} \prod^R |\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{\mathrm{i}\theta_r}|^{2\alpha_r} \prod^R g_{\beta_r}(\theta - \theta_r), \quad \theta, \theta_r \in (-\pi, \pi]$$

ullet V(heta) periodic and smooth enough, $g_{\scriptscriptstyleeta}(heta)=\mathrm{e}^{\mathrm{i}(heta-\pi\,\mathrm{sgn}(heta))eta}$

$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r), \quad \theta, \theta_r \in (-\pi, \pi]$$

- ullet V(heta) periodic and smooth enough, $g_{\scriptscriptstyleeta}(heta)=\mathrm{e}^{\mathrm{i}(heta-\pi\,\mathrm{sgn}(heta))eta}$
- f has zeros and/or jump discontinuities at $\theta=\theta_r,\ r=1,\dots,R.$

$$f(\theta) = e^{V(\theta)} \prod_{r=0}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=0}^{R} g_{\beta_r}(\theta - \theta_r), \quad \theta, \theta_r \in (-\pi, \pi]$$

- ullet V(heta) periodic and smooth enough, $g_{\scriptscriptstyleeta}(heta)=\mathrm{e}^{\mathrm{i}(heta-\pi\,\mathrm{sgn}(heta))eta}$
- f has zeros and/or jump discontinuities at $\theta = \theta_r, \ r = 1, \dots, R$.

$$f_{\rm Is} = g_{1/2}$$

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has:
$$D_n(f) = \mathrm{e}^{nV_0} \; n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} \; E(f) (1 + o(1))$$

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has:
$$D_n(f) = e^{nV_0} \ n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} \ E(f)(1 + o(1))$$

$$E(f) = E(e^{V}) \prod_{r=1}^{R} \left[b_{+}(e^{i\theta_{r}})^{\beta_{r}-\alpha_{r}} b_{-}(e^{i\theta_{r}})^{-\beta_{r}-\alpha_{r}} \right]$$

$$\times \prod_{r\neq r'} \left[|e^{i\theta_{r}} - e^{i\theta_{r'}}|^{\beta_{r}\beta_{r'}-\alpha_{r}\alpha_{r'}} g_{\alpha_{r}\beta_{r'}}(\theta_{r'} - \theta_{r}) \right]$$

$$\times \prod_{r=1}^{R} \frac{G(1+\alpha_{r}+\beta_{r})G(1+\alpha_{r}-\beta_{r})}{G(1+2\alpha_{r})}$$

Widom (1972, $\beta_r = 0$), Basor (1978), Ehrhardt (2001).

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has:
$$D_n(f) = e^{nV_0} n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} E(f) (1 + o(1))$$

$$E(f) = E(e^{V}) \prod_{r=1}^{R} \left[b_{+}(e^{i\theta_{r}})^{\beta_{r}-\alpha_{r}} b_{-}(e^{i\theta_{r}})^{-\beta_{r}-\alpha_{r}} \right]$$

$$\times \prod_{r \neq r'} \left[|e^{i\theta_{r}} - e^{i\theta_{r'}}|^{\beta_{r}\beta_{r'}-\alpha_{r}\alpha_{r'}} g_{\alpha_{r}\beta_{r'}}(\theta_{r'} - \theta_{r}) \right]$$

$$\times \prod_{r=1}^{R} \frac{G(1 + \alpha_{r} + \beta_{r})G(1 + \alpha_{r} - \beta_{r})}{G(1 + 2\alpha_{r})}$$

$$V(\theta) = \sum_{k=1}^{\infty} V_k e^{ik\theta}, E(e^V) = e^{\sum_{k=1}^{\infty} kV_k V_{-k}}$$

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has:
$$D_n(f) = e^{nV_0} \ n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} \ E(f)(1 + o(1))$$

$$E(f) = E(e^{V}) \prod_{r=1}^{R} \left[b_{+}(e^{i\theta_{r}})^{\beta_{r}-\alpha_{r}} b_{-}(e^{i\theta_{r}})^{-\beta_{r}-\alpha_{r}} \right]$$

$$\times \prod_{r \neq r'} \left[|e^{i\theta_{r}} - e^{i\theta_{r'}}|^{\beta_{r}\beta_{r'}-\alpha_{r}\alpha_{r'}} g_{\alpha_{r}\beta_{r'}}(\theta_{r'} - \theta_{r}) \right]$$

$$\times \prod_{r=1}^{R} \frac{G(1 + \alpha_{r} + \beta_{r})G(1 + \alpha_{r} - \beta_{r})}{G(1 + 2\alpha_{r})}$$

$$b_{+}(z) = e^{\sum_{k=1}^{\infty} V_k z^k}, \ b_{-}(z) = e^{\sum_{k=1}^{\infty} V_{-k} z^{-k}}$$

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has:
$$D_n(f) = e^{nV_0} \ n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} \ E(f)(1 + o(1))$$

$$E(f) = E(e^{V}) \prod_{r=1}^{R} \left[b_{+}(e^{i\theta_{r}})^{\beta_{r}-\alpha_{r}} b_{-}(e^{i\theta_{r}})^{-\beta_{r}-\alpha_{r}} \right]$$

$$\times \prod_{r \neq r'} \left[|e^{i\theta_{r}} - e^{i\theta_{r'}}|^{\beta_{r}\beta_{r'}-\alpha_{r}\alpha_{r'}} g_{\alpha_{r}\beta_{r'}}(\theta_{r'} - \theta_{r}) \right]$$

$$\times \prod_{r=1}^{R} \frac{G(1 + \alpha_{r} + \beta_{r})G(1 + \alpha_{r} - \beta_{r})}{G(1 + 2\alpha_{r})}$$

$$G(z) = \text{Barnes function}, \qquad G(z+1) = \Gamma(z)G(z),$$

$$G(1-m) = 0, \ m \in \mathbb{Z}^+.$$

Fisher-Hartwig conjecture (1968), Lenard (1964), Wu (1966).

For
$$f(\theta) = e^{V(\theta)} \prod_{r=1}^{R} |e^{i\theta} - e^{i\theta_r}|^{2\alpha_r} \prod_{r=1}^{R} g_{\beta_r}(\theta - \theta_r)$$

One has: $\boxed{ D_n(f) = \mathrm{e}^{nV_0} \; n^{\sum_{r=1}^R (\alpha_r^2 - \beta_r^2)} \; E(f) (1 + o(1)) }$

$$E(f) = E(e^{V}) \prod_{r=1}^{R} \left[b_{+}(e^{i\theta_{r}})^{\beta_{r}-\alpha_{r}} b_{-}(e^{i\theta_{r}})^{-\beta_{r}-\alpha_{r}} \right]$$

$$\times \prod_{r \neq r'} \left[|e^{i\theta_{r}} - e^{i\theta_{r'}}|^{\beta_{r}\beta_{r'}-\alpha_{r}\alpha_{r'}} g_{\alpha_{r}\beta_{r'}}(\theta_{r'} - \theta_{r}) \right]$$

$$\times \prod_{r=1}^{R} \frac{G(1 + \alpha_{r} + \beta_{r})G(1 + \alpha_{r} - \beta_{r})}{G(1 + 2\alpha_{r})}$$

Ising model at
$$T_c$$
: $V=0, \ \alpha=0, \ \beta=1/2 \Rightarrow$

$$\Rightarrow \langle \sigma_{0,0}\sigma_{n,n}\rangle = D_n(f) = \frac{G(3/2)G(1/2)}{m^{1/4}}(1+o(1))$$

Ising model, $T > T_c \ (A > 1)$.

$$f_{\rm Is}(\theta) = \tilde{f}(\theta) e^{i\theta}, \qquad \log \tilde{f} \text{ smooth}$$

$$\beta=1\Rightarrow G(1-\beta)=0\Rightarrow E(f_{\mathrm{Is}})=0\Rightarrow$$
 F-H do not apply.

Ising model, $T > T_c \ (A > 1)$.

$$f_{\rm Is}(\theta) = \tilde{f}(\theta)e^{i\theta}, \qquad \log \tilde{f} \text{ smooth}$$

$$\beta=1\Rightarrow G(1-\beta)=0\Rightarrow E(f_{\mathrm{Is}})=0\Rightarrow$$
 F-H do not apply.

$$D_n(f_{\mathrm{Is}}) = p_n(0)D_n(\tilde{f}) \qquad p_n(z) = z^n + \dots, \text{ s. t.}$$

$$\int_{-\pi}^{\pi} p_n(\mathrm{e}^{-\mathrm{i}\theta})\mathrm{e}^{\mathrm{i}m\theta}\tilde{f}(\theta)\mathrm{d}\theta = 0, \ 0 \le m < n.$$

Ising model, $T > T_c$ (A > 1). $\phi(\theta)$ $-i \log f_{Is}$ 2π

$$f_{\rm Is}(\theta) = \tilde{f}(\theta) {\rm e}^{{\rm i} heta}, \qquad \log \tilde{f} \,\, {
m smooth}$$

$$\beta = 1 \Rightarrow G(1 - \beta) = 0 \Rightarrow E(f_{I_S}) = 0 \Rightarrow F-H \text{ do not apply}$$

$$eta=1\Rightarrow G(1-eta)=0\Rightarrow E(f_{\mathrm{Is}})=0\Rightarrow$$
 F-H do not apply.
$$\boxed{D_n(f_{\mathrm{Is}})=p_n(0)D_n(\tilde{f})} \qquad p_n(z)=z^n+\dots \text{, s. t.}$$

 $\int_{0}^{\infty} p_n(e^{-i\theta})e^{im\theta}\tilde{f}(\theta)d\theta = 0, \ 0 \le m < n.$ $\langle \sigma_{0,0}\sigma_{n,n}\rangle = D_n(f_{\rm Is}) = \frac{\pi^{1/2}}{(1-A^{-2})^{1/4}} \frac{A^{-n}}{n^{1/2}} (1+o(1)), \quad A > 1$

Fermionic chain

$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}, \quad \{a_i, a_j^{\dagger}\} = \delta_{ij}, \quad \{a_i, a_j\} = \{a_i^{\dagger}, a_j^{\dagger}\} = 0.$$

Fermionic chain

$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}, \quad \{a_i, a_j^{\dagger}\} = \delta_{ij}, \quad \{a_i, a_j\} = \{a_i^{\dagger}, a_j^{\dagger}\} = 0.$$

Quadratic, periodic, translational and parity invariant Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=-L}^{L} \left(2A_{l}a_{i}^{\dagger}a_{i+l} + B_{l}a_{i}^{\dagger}a_{i+l}^{\dagger} - B_{l}a_{i}a_{i+l} \right)$$
$$A_{l}, B_{l} \in \mathbb{R}$$

Fermionic chain

$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}, \quad \{a_i, a_i^{\dagger}\} = \delta_{ij}, \quad \{a_i, a_j\} = \{a_i^{\dagger}, a_j^{\dagger}\} = 0.$$

Quadratic, periodic, translational and parity invariant Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=-L}^{L} \left(2A_{l} a_{i}^{\dagger} a_{i+l} + B_{l} a_{i}^{\dagger} a_{i+l}^{\dagger} - B_{l} a_{i} a_{i+l} \right)$$

$$= \sum_{k=0}^{N-1} \Lambda(\theta_{k}) d_{k}^{\dagger} d_{k}, \quad \text{Bogoliubov modes.}$$

$$A_{l}, B_{l} \in \mathbb{R}$$

$$\begin{split} \Lambda(\theta) &= \sqrt{\Theta(\mathrm{e}^{\mathrm{i}\theta})^2 - \Xi(\mathrm{e}^{\mathrm{i}\theta})^2}, & \Theta(z) &= \sum_{-L}^L A_l z^l \\ \Xi(z) &= \sum_{-L}^L B_l z^l. \end{split}$$

Fermionic chain

$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}, \quad \{a_i, a_i^{\dagger}\} = \delta_{ij}, \quad \{a_i, a_j\} = \{a_i^{\dagger}, a_j^{\dagger}\} = 0.$$

Quadratic, periodic, translational and parity invariant Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=-L}^{L} \left(2 \frac{A_l a_i^{\dagger} a_{i+l} + B_l a_i^{\dagger} a_{i+l}^{\dagger} - B_l a_i a_{i+l}}{A_l, B_l \in \mathbb{R}} \right)$$

$$= \sum_{l=0}^{N-1} \Lambda(\theta_k) d_k^{\dagger} d_k, \quad \text{Bogoliubov modes.}$$

$$\begin{split} \Lambda(\theta) &= \sqrt{\Theta(\mathrm{e}^{\mathrm{i}\theta})^2 - \Xi(\mathrm{e}^{\mathrm{i}\theta})^2}, \\ \Theta(z) &= \sum_{-L}^L A_l z^l \\ \Xi(z) &= \sum_{-L}^L B_l z^l. \end{split}$$

Ground state: $d_k |\mathrm{GS}\rangle = 0$

Entanglement entropy.

• Introduce the *reduced density matrix*

$$\rho_X = \mathsf{Tr}_{\mathcal{H}_Y}(|\mathsf{GS}\rangle \, \langle \mathsf{GS}|).$$

• The Rényi entanglement entropy is given by

$$S_{lpha}(X) = rac{1}{1-lpha} \log \mathsf{Tr}(
ho_X^{lpha}$$

Entanglement entropy.

Introduce the reduced density matrix

$$\rho_X = \mathsf{Tr}_{\mathcal{H}_Y}(|\mathrm{GS}\rangle \, \langle \mathrm{GS}|).$$

The Rényi entanglement entropy is given by

$$S_{lpha}(X) = rac{1}{1-lpha} \log \mathsf{Tr}(
ho_X^{lpha})$$

Entanglement entropy.

• Introduce the *reduced density matrix*

$$\rho_X = \operatorname{Tr}_{\mathcal{H}_Y}(|\operatorname{GS}\rangle \langle \operatorname{GS}|).$$

• The Rényi entanglement entropy is given by

$$S_{\alpha}(X) = \frac{1}{1-\alpha} \log \operatorname{Tr}(\rho_X^{\alpha})$$

Wick decomposition holds and $S_{\alpha}(X)$ can be obtained from the correlation matrix V_X

$$(V_X)_{ij} = \left\langle \operatorname{GS} \middle| \left[\left(\begin{array}{c} a_i \\ a_i^{\dagger} \end{array} \right), \left(a_j^{\dagger}, a_j \right) \right] \middle| \operatorname{GS} \right\rangle, \quad i, j \in X.$$

In the thermodynamic limit

$$(V_X)_{ij} = \frac{1}{2\pi i} \int_{-\pi}^{\pi} M(\theta) e^{i\theta(i-j)} d\theta.$$

A block Toeplitz matrix $T_n(M)$ with 2×2 symbol $M(\theta)=\mathcal{M}(\mathrm{e}^{\mathrm{i}\theta})$ where

$$\mathcal{M}(z) = \frac{\begin{pmatrix} \Theta(z) & \Xi(z) \\ -\Xi(z) & -\Theta(z) \end{pmatrix}}{\sqrt{\Xi(z)^2 - \Theta(z)^2}}$$

• Szegő Theorem for block Toeplitz matrices (Gyires, 1956)

$$\lim_{n \to \infty} \frac{1}{n} \log D_n(M) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$

• Szegő Theorem for block Toeplitz matrices (Gyires, 1956)

$$\lim_{n \to \infty} \frac{1}{n} \log D_n(M) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$

In our case $\det M(\theta) = 1$ and the limit is 0, o(n) corrections?

Szegő Theorem for block Toeplitz matrices (Gyires, 1956)

$$\lim_{n \to \infty} \frac{1}{n} \log D_n(M) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$

In our case $\det M(\theta) = 1$ and the limit is 0, o(n) corrections?

• Widom Theorem, 1974: For smooth enough $M(\theta)$

$$\log D_n(M) - \frac{n}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$
$$= \log \det \left[T(M)T(M^{-1}) \right] (1 + o(1))$$

• Szegő Theorem for block Toeplitz matrices (Gyires, 1956)

$$\lim_{n \to \infty} \frac{1}{n} \log D_n(M) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$

In our case $\det M(\theta) = 1$ and the limit is 0, o(n) corrections?

• Widom Theorem, 1974: For smooth enough $M(\theta)$

$$\log D_n(M) - \frac{n}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta$$
$$= \log \det \left[T(M)T(M^{-1}) \right] (1 + o(1))$$

It is hard to compute.

- It can be mapped into a Riemann-Hilbert problem.
- And can be solved for the non critical fermionic chain. (Its, Jin, Korepin, 2007; Its, Mezzadri, Mo, 2008).

 M: Meromorphic in a two-sheeted cover of the Riemann sphere with branch points at the zeros and poles of

$$\mathcal{M}(z) = \frac{\begin{pmatrix} \Theta(z) & \Xi(z) \\ -\Xi(z) & -\Theta(z) \end{pmatrix}}{\sqrt{\Xi(z)^2 - \Theta(z)^2}}$$

$$\frac{\Xi(z)+\Theta(z)}{\Xi(z)-\Theta(z)}\,.$$

|z| = I

 M: Meromorphic in a two-sheeted cover of the Riemann sphere with branch points at the zeros and poles of

$$\mathcal{M}(z) = \frac{\left(\begin{array}{cc} \Theta(z) & \Xi(z) \\ -\Xi(z) & -\Theta(z) \end{array} \right)}{\sqrt{\Xi(z)^2 - \Theta(z)^2}}$$

$$\frac{\Xi(z) + \Theta(z)}{\Xi(z) - \Theta(z)} \,.$$

 They are related by inversion and conjugation,

e.g.
$$z_3 = \overline{z}_4 = z_6^{-1}$$
.

• M: Meromorphic in a two-sheeted cover of the Riemann sphere with branch points at the zeros and poles of

$$\mathcal{M}(z) = \frac{\begin{pmatrix} \Theta(z) & \Xi(z) \\ -\Xi(z) & -\Theta(z) \end{pmatrix}}{\sqrt{\Xi(z)^2 - \Theta(z)^2}}$$

$$\frac{\Xi(z) + \Theta(z)}{\Xi(z) - \Theta(z)}.$$

 They are related by inversion and conjugation,

e.g.
$$z_3 = \overline{z}_4 = z_6^{-1}$$
.

Assume no degeneracy:

$$z_i \neq z_j \Rightarrow |z_i| \neq 1.$$

 M: Meromorphic in a two-sheeted cover of the Riemann sphere with branch points at the zeros and poles of

$$\mathcal{M}(z) = \frac{\left(\begin{array}{cc} \Theta(z) & \Xi(z) \\ -\Xi(z) & -\Theta(z) \end{array} \right)}{\sqrt{\Xi(z)^2 - \Theta(z)^2}}$$

$$\frac{\Xi(z) + \Theta(z)}{\Xi(z) - \Theta(z)}.$$

 They are related by inversion and conjugation,

e.g.
$$z_3 = \overline{z}_4 = z_6^{-1}$$
.

- Assume no degeneracy: $z_i \neq z_i \Rightarrow |z_i| \neq 1$.
- Riemann surface of genus g = 2L 1; 4L branch points.

$$D(M) \equiv \lim_{n \to \infty} D_n(M) = \frac{\vartheta \begin{bmatrix} \vec{\mu} \\ \vec{\nu} \end{bmatrix} (\vec{e}/2) \ \vartheta \begin{bmatrix} \vec{\mu} \\ \vec{\nu} \end{bmatrix} (-\vec{e}/2)}{\vartheta \begin{bmatrix} \vec{\mu} \\ \vec{\nu} \end{bmatrix} (0)^2}$$

$$\vec{e} = \overbrace{(0,0,\ldots,0}^{L-1}\overbrace{1,1,\ldots,1}^{L}), \qquad \mu_r = \frac{1}{4}(\epsilon_{2r+1} + \epsilon_{2r+2})$$

$$\nu_r = \frac{1}{4}\sum_{j=2}^{2r+1}\epsilon_j, \quad r = 1,\ldots,2L-1.$$
 (Ares, Esteve, F.F. , Queiroz, 2017)

$$z' = \frac{az+b}{cz+d}, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C})$$

$$\mathcal{M}'(z') = \mathcal{M}(z)$$

$$z' = \frac{az+b}{cz+d}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C})$$

$$\mathcal{M}'(z') = \mathcal{M}(z)$$

- Automorphisms of the Riemann surfaces.
- Preserve the period matrix $\Pi' = \Pi$ and also $\vartheta \begin{bmatrix} \vec{p} \\ \vec{q} \end{bmatrix} (\vec{s})$

 \bullet Provided γ' can be continuously deformed to γ without crossing branch points

$$D(M) = D(M')$$

But a physical Möbius transformation should preserve the relations between the branch points, e.g $z_3 = \overline{z}_4 = z_6^{-1}$.

It implies that it should commute with inversion and conjugation, equivalently, it should preserve the real line and the unit circle.

But a physical Möbius transformation should preserve the relations between the branch points, e.g $z_3 = \overline{z}_4 = z_6^{-1}$.

It implies that it should commute with inversion and conjugation, equivalently, it should preserve the real line and the unit circle.

Therefore we are left with transformations in $SO(1,1) \subset SL(2,\mathbb{C})$

$$z' = \frac{z \cosh \zeta + \sinh \zeta}{z \sinh \zeta + \cosh \zeta}$$

$$SO(1,1) \subset SL(2,\mathbb{C})$$
 $z' = \frac{z \cosh \zeta + \sinh \zeta}{z \sinh \zeta + \cosh \zeta}$

$$SO(1,1) \subset SL(2,\mathbb{C})$$
 $z' = \frac{z \cosh \zeta + \sinh \zeta}{z \sinh \zeta + \cosh \zeta}$

Couplings A_l, B_l : spin L representation of $SL(2, \mathbb{C})$

$$\begin{pmatrix} A'_L \\ \vdots \\ A'_0 \\ \vdots \\ A'_{-L} \end{pmatrix} = e^{\zeta \cdot (J_x)_L} \begin{pmatrix} A_L \\ \vdots \\ A_0 \\ \vdots \\ A_{-L} \end{pmatrix}, \quad \begin{pmatrix} B'_L \\ \vdots \\ B'_0 \\ \vdots \\ B'_{-L} \end{pmatrix} = e^{\zeta \cdot (J_x)_L} \begin{pmatrix} B_L \\ \vdots \\ B_0 \\ \vdots \\ B_{-L} \end{pmatrix}$$

Recall:
$$H = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=1}^{L} \left[A_{l} a_{i}^{\dagger} a_{i+l} + B_{l} a_{i}^{\dagger} a_{i+l}^{\dagger} - B_{l} a_{i} a_{i+l} \right]$$

$$SO(1,1) \subset SL(2,\mathbb{C})$$
 $z' = \frac{z \cosh \zeta + \sinh \zeta}{z \sinh \zeta + \cosh \zeta}$

Couplings A_l, B_l : spin L representation of $SL(2, \mathbb{C})$

$$\begin{pmatrix} A'_{L} \\ \vdots \\ A'_{0} \\ \vdots \\ A'_{-L} \end{pmatrix} = e^{\zeta \cdot (J_{x})_{L}} \begin{pmatrix} A_{L} \\ \vdots \\ A_{0} \\ \vdots \\ A_{-L} \end{pmatrix}, \quad \begin{pmatrix} B'_{L} \\ \vdots \\ B'_{0} \\ \vdots \\ B'_{-L} \end{pmatrix} = e^{\zeta \cdot (J_{x})_{L}} \begin{pmatrix} B_{L} \\ \vdots \\ B_{0} \\ \vdots \\ B_{-L} \end{pmatrix}$$

Recall:
$$H = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=-L}^{L} \left[A_{l} a_{i}^{\dagger} a_{i+l} + B_{l} a_{i}^{\dagger} a_{i+l}^{\dagger} - B_{l} a_{i} a_{i+l} \right]$$

$$D(M) = D(M') \quad \Rightarrow \quad S_{\alpha} = S'_{\alpha} \text{ for } |X| \to \infty$$

(Ares, Esteve, F.F., Queiroz, 2016)

Critical theories.

When $\Lambda(\theta_r) = 0$, $M(\theta)$ has a jump discontinuity at θ_r .

Not covered by Widom theorem.

Critical theories.

When $\Lambda(\theta_r)=0$, $M(\theta)$ has a jump discontinuity at $\theta_r.$

Not covered by Widom theorem.

• In the scalar case we can apply the Fisher-Hartwig conjecture:

f piece wise smooth, lateral limits f_{r-} and f_{r+} at discontinuity θ_r .

$$\log D_n(f) = s_0 n + \frac{1}{4\pi^2} \sum_{r=1}^R \log (f_{r+}/f_{r-})^2 \log n + O(1)$$

Critical theories.

When $\Lambda(\theta_r) = 0$, $M(\theta)$ has a jump discontinuity at θ_r .

Not covered by Widom theorem.

• In the scalar case we can apply the Fisher-Hartwig conjecture: f piece wise smooth, lateral limits f_{r-} and f_{r+} at discontinuity θ_r .

$$\log D_n(f) = s_0 n + \frac{1}{4\pi^2} \sum_{r=1}^R \log (f_{r+}/f_{r-})^2 \log n + O(1)$$

• When the symbol is a matrix M with jumps at θ_r a similar expression holds: (Ares, Esteve, F., Queiroz, 2018)

$$\log D_n(M) = s_0 n + \frac{1}{4\pi^2} \sum_{r=1}^R \text{Tr} \left(\log \left[M_{r+} (M_{r-})^{-1} \right] \right)^2 \log n + O(1)$$

$$s_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det M(\theta) d\theta, \qquad M_{r\pm} = \lim_{\theta \to \theta_r^{\pm}} M(\theta)$$

Back to the scalar symbol $f: S^1 \to \mathbb{C}$.

For piecewise smooth $f(\theta)$ with geometric average 1 ($s_0 = 0$)

$$\log D_n(f) = c \log n + O(1).$$

Back to the scalar symbol $f: S^1 \to \mathbb{C}$.

For piecewise smooth $f(\theta)$ with geometric average 1 ($s_0 = 0$)

$$\log D_n(f) = c \log n + O(1).$$

Is it possible to have

$$\log D_n(f) = c (\log n)^\mu + O(1), \quad 0<\mu<1$$
 or
$$\log D_n(f) = c \log\log n + O(1) \ ?$$

Back to the scalar symbol $f: S^1 \to \mathbb{C}$.

For piecewise smooth $f(\theta)$ with geometric average 1 ($s_0 = 0$)

$$\log D_n(f) = c \log n + O(1).$$

```
Is it possible to have \log D_n(f)=c\,(\log n)^\mu+O(1),\quad 0<\mu<1 or \log D_n(f)=c\log\log n+O(1)\ ?
```

Motivation:

• For fun.

Back to the scalar symbol $f: S^1 \to \mathbb{C}$.

For piecewise smooth $f(\theta)$ with geometric average 1 ($s_0 = 0$)

$$\log D_n(f) = c \log n + O(1).$$

```
Is it possible to have \log D_n(f) = c (\log n)^{\mu} + O(1), \quad 0 < \mu < 1 or \log D_n(f) = c \log \log n + O(1) ?
```

Motivation:

- For fun.
- It is a challenge.

Back to the scalar symbol $f: S^1 \to \mathbb{C}$.

For piecewise smooth $f(\theta)$ with geometric average 1 ($s_0 = 0$)

$$\log D_n(f) = c \log n + O(1).$$

```
Is it possible to have \log D_n(f) = c (\log n)^\mu + O(1), \quad 0<\mu<1 or \log D_n(f) = c \log\log n + O(1) \ ?
```

Motivation:

- For fun.
- It is a challenge.
- Anomalous scaling in non unitary conformal field theories.

Consider the family of functions

$$\log f_{\nu}(\theta) = \frac{\cos(\theta/2)\operatorname{sgn}(\theta)}{\left(-\log\frac{|\theta|}{2\pi}\right)^{\nu}},$$
$$\theta \in (-\pi, \pi]$$

Consider the family of functions

$$\log f_{\nu}(\theta) = \frac{\cos(\theta/2)\operatorname{sgn}(\theta)}{\left(-\log\frac{|\theta|}{2\pi}\right)^{\nu}},$$
$$\theta \in (-\pi, \pi]$$

$$\nu = 0.25$$
 -2
 -1
 1
 2
 3
 -0.5

$$s_k \sim \frac{1}{\pi k (\log |k|)^{\nu}} \quad \Rightarrow \quad \sum_{k=1}^{\infty} |k| |s_k|^2 = \infty \text{ for } \nu \le 0.5$$

Szegő strong limit theorem can not be applied.

Consider the family of functions

$$\log f_{\nu}(\theta) = \frac{\cos(\theta/2)\operatorname{sgn}(\theta)}{\left(-\log\frac{|\theta|}{2\pi}\right)^{\nu}},$$
$$\theta \in (-\pi, \pi]$$

$$\nu = 0.25$$
 0.5
 -0.5
 -0.5

$$s_k \sim \frac{1}{\pi k (\log |k|)^{\nu}} \quad \Rightarrow \quad \sum_{k=1}^{\infty} |k| |s_k|^2 = \infty \text{ for } \nu \le 0.5$$

- Szegő strong limit theorem can not be applied.
- f_{ν} , for $\nu > 0$, is continuous and F-H formula does not apply.

Consider the family of functions

$$\log f_{\nu}(\theta) = \frac{\cos(\theta/2)\operatorname{sgn}(\theta)}{\left(-\log\frac{|\theta|}{2\pi}\right)^{\nu}},$$
$$\theta \in (-\pi, \pi]$$

$$\nu = 0.25$$
 -2
 -0.5
 -0.5

$$s_k \sim \frac{1}{\pi k (\log|k|)^{\nu}} \quad \Rightarrow \quad \sum_{k=1}^{\infty} |k| |s_k|^2 = \infty \text{ for } \nu \le 0.5$$

- Szegő strong limit theorem can not be applied.
- f_{ν} , for $\nu > 0$, is continuous and F-H formula does not apply.

We conjecture that there are positive $Z(\nu)$ and $\delta(\nu)$, such that:

$$\log D_n(f_{\nu}) = \sum_{k=1}^{\lfloor nZ \rfloor} k s_k s_{-k} + o(n^{-\delta})$$

• $\log D_n(f_{\nu}) = \sum_{k=1}^{\lfloor n/2 \rfloor} k s_k s_{-k} + o(n^{-\delta})$ implies sublogarithmic scaling:

•
$$\log D_n(f_\nu) = \frac{1}{\pi^2(1-2\nu)}(\log n)^{1-2\nu} + o(1), \ 0 < \nu < 0.5$$

•
$$\log D_n(f_{0.5}) = \frac{1}{\pi^2} \log \log n + o(1), \ \nu = 0.5$$

- $\log D_n(f_{\nu}) = \sum_{k=1}^{\lfloor n/2 \rfloor} k s_k s_{-k} + o(n^{-\delta})$ implies sublogarithmic scaling:
 - $\log D_n(f_\nu) = \frac{1}{\pi^2(1-2\nu)}(\log n)^{1-2\nu} + o(1), \ 0 < \nu < 0.5$
 - $\log D_n(f_{0.5}) = \frac{1}{\pi^2} \log \log n + o(1), \ \nu = 0.5$
- For $\nu=0$ we reproduce the Fisher-Hartwig formula with $\log Z(0)=2\pi^2\log|G(1+{\rm i}/\pi)|-\gamma_{\rm E}\approx 0.9424\dots$

- $\log D_n(f_{\nu}) = \sum_{k=1}^{\lfloor n/2 \rfloor} k s_k s_{-k} + o(n^{-\delta})$ implies sublogarithmic scaling:
 - $\log D_n(f_\nu) = \frac{1}{\pi^2(1-2\nu)}(\log n)^{1-2\nu} + o(1), \ 0 < \nu < 0.5$
 - $\log D_n(f_{0.5}) = \frac{1}{\pi^2} \log \log n + o(1), \ \nu = 0.5$
- For $\nu=0$ we reproduce the Fisher-Hartwig formula with $\log Z(0)=2\pi^2\log|G(1+\mathrm{i}/\pi)|-\gamma_{\rm E}\approx 0.9424\dots$
- Supported by numerical checks.

n

- Dots represent $\log D_n(f_{\nu})$ for different values of ν and n up to 100 000.
- The continuous lines are $\sum^{\lfloor n\,Z\rfloor} k s_k s_{-k}$ for every ν and Z from the best fit.

- Note that adjusting only one free parameter, Z, we obtain an excellent agreement.

n

60000

80000

40000

20000

100000

Main plot: $\log D_n(f_{\nu})$ for $\nu=0.25$ (dots) and $\sum_{k=1}^{\lfloor \nu-1 \rfloor} k s_k s_{-k}$ (continuous line).

Inset: - crosses are $\Delta(n)$, the difference between the real value and the prediction.

- continuous line is our best fit,
$$\Delta(n) \approx \frac{2.35 \times 10^{-3}}{n^{0.186}}$$

We expect this behavior in the entanglement entropy of fermionic chains with long range couplings.

$$H = \sum_{i=1}^{N} \left(a_i^{\dagger} a_{i+1} + a_{i+1}^{\dagger} a_i + h \ a_i^{\dagger} a_i \right) + 2 \sum_{i=1}^{N} \sum_{l=1}^{N/2} \frac{1}{l(\log l)^{\nu}} (a_i^{\dagger} a_{i+l}^{\dagger} - a_i a_{i+l}).$$

In this case, we should have

$$S_{\alpha}(X) = c(\log |X|)^{1-2\nu} + o(1), \text{ for } 0 \le \nu < 0.5$$

 $S_{\alpha}(X) = c \log \log |X| + o(1), \text{ for } \nu = 0.5$

Consider now $X = (u_1, v_1) \cup (u_2, v_2) \cup \cdots \cup (u_P, v_P)$

Consider now $X = (u_1, v_1) \cup (u_2, v_2) \cup \cdots \cup (u_P, v_P)$

$$V_X = \langle \mathrm{GS} | [a_i^{\dagger}, a_j] | \mathrm{GS} \rangle$$
, $i, j \in X$ is not a Toeplitz matrix, but a principal submatrix;

Consider now
$$X = (u_1, v_1) \cup (u_2, v_2) \cup \cdots \cup (u_P, v_P)$$

 $V_X = \langle \mathrm{GS}| \, [a_i^\dagger, a_j] \, |\mathrm{GS}\rangle \,, \ i,j \in X$ is not a Toeplitz matrix, but a principal submatrix;

e. g. for two intervals V_X is the shaded area of the Toeplitz matrix on the right.

Consider now $X = (u_1, v_1) \cup (u_2, v_2) \cup \cdots \cup (u_P, v_P)$

 $V_X = \langle \mathrm{GS}| \, [a_i^\dagger, a_j] \, |\mathrm{GS}\rangle \,, \ i,j \in X$ is not a Toeplitz matrix, but a principal submatrix;

e. g. for two intervals V_X is the shaded area of the Toeplitz matrix on the right.

The correlation matrix is

Consider now $X = (u_1, v_1) \cup (u_2, v_2) \cup \cdots \cup (u_P, v_P)$

$$V_X = \langle \mathrm{GS}| \, [a_i^\dagger, a_j] \, |\mathrm{GS}\rangle \,, \ i,j \in X$$
 is not a Toeplitz matrix, but a principal submatrix;

e. g. for two intervals V_X is the shaded area of the Toeplitz matrix on the right.

The correlation matrix is

Inspired by conformal field theories, we conjecture...

...for the determinant of a principal submatrix of a Toeplitz matrix:

...for the determinant of a principal submatrix of a Toeplitz matrix:

$$D[\bigcup_{p=1}^{P}(u_p,v_p)] \simeq \prod_{p} D[(u_p,v_p)] \prod_{p < p'} \frac{D[(u_p,v_{p'})]D[(v_p,u_{p'})]}{D[(u_p,u_{p'})]D[(v_p,v_{p'})]},$$

$$D[X] := \text{det} V_X$$

...for the determinant of a principal submatrix of a Toeplitz matrix:

$$D[\bigcup_{p=1}^{P}(u_{p},v_{p})] \simeq \prod_{p} D[(u_{p},v_{p})] \prod_{p < p'} \frac{D[(u_{p},v_{p'})]D[(v_{p},u_{p'})]}{D[(u_{p},u_{p'})]D[(v_{p},v_{p'})]},$$

$$D[X] := \det V_{X}$$

Pictorially, for P=2:

...for the determinant of a principal submatrix of a Toeplitz matrix:

$$D[\bigcup_{p=1}^{P}(u_p,v_p)] \simeq \prod_{p} D[(u_p,v_p)] \prod_{p < p'} \frac{D[(u_p,v_{p'})]D[(v_p,u_{p'})]}{D[(u_p,u_{p'})]D[(v_p,v_{p'})]},$$

$$D[X] := \det V_X$$

Remarkable agreement!!!

(Ares, Esteve, F., 2014)

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain.
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain.
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain.
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain.
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

- We have shown how the theory of Toeplitz determinants has been boosted by physicists' demands.
- We obtained a compact expression for the determinant of the correlation function of the fermionic chain with finite range coupling.
- We discussed the role of Möbius transformations as symmetries of the Toeplitz determinants and its implications for the fermionic chain.
- We presented a conjecture on the sublogarithmic scaling of Toeplitz determinants and showed its numerical accuracy.
- Based on the results for Conformal Field Theory we have proposed an asymptotic formula for the determinant of a principal subamtrix of the Toeplitz matrix.

HAPPY BIRTHDAY

ALBERTO

Möbius transformations in critical theories: $\Lambda(\theta_r) = 0$.

$$SO(1,1) \subset SL(2,\mathbb{C})$$
 $z' = \frac{z \cosh \zeta + \sinh \zeta}{z \sinh \zeta + \cosh \zeta}$

For critical theories the Toeplitz determinant is not invariant.

Conjecture For the fermionic chain it transforms as an homogeneous function.

- M has jump discontinuities at θ_r . Call $u_r = e^{i\theta_r}$.
- $M_{r\pm}$ lateral limits at θ_r .
- $\delta_r = \frac{1}{4\pi^2} \operatorname{Tr} \left(\log \left[M_{r+} (M_{r-})^{-1} \right] \right)^2$

$$D_n(M') = \prod_r \left(\frac{\partial u_r'}{\partial u_r}\right)^{\delta_r} D_n(M)(1 + o(1))$$

Checked analytically in particular cases and in numerical simulations.