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The model quantum system

Remark: every finite-dimensional quantum system (without superselection 
sectors) is isomorphic to this model. The isomorphism is not canonical.

Is the Hilbert space of the system

Is the C*-algebra of the system, (linear) 
observables are self-adjoint matrices

Is the space of states 
of the system

Is the expectation value function of the (linear) 
observable a on the quantum state ρ



Quantum states as non-commutative probabilities

❖ A state ρ on a unital C*-algebra A is a normalized positive linear functional on A    
(ρ(a2)≥0 and ρ(1)=1, where 1 is the identity element in A). 

❖ Quantum states are the states of the non-commutative C*-algebra B(Hn).

❖ Consider the commutative C*-algebra C0(X) of continuous functions on the 
topological space X={1,...,n}. It may be realized as ℂn endowed with 
component-wise multiplication. 

❖ Positive normalized linear functionals  on C0(X) are then fair probability 
distributions on X (use the fact that  ℂn  is isomorphic to its dual).  

❖ Quantum mechanics may be thought of as a non-commutative version of 
probability theory where quantum states replace probability distributions.



Quantum states as non-commutative probabilities

The differential geometry of the space of probability distributions on X={1,...,n} is 
well-developed (Cencov and Amari as prominent references).

Stochastic Markov maps ⟷ Fisher-Rao invariant metric tensor;

Convex structure of probabilities  ⟷ dually related torsion-less affine connections

Questions: what can we say about the differential geometry of the space of 
quantum states?

What are the relevant geometrical structures of non-commutative probabilities?



The general linear group GL(n, C)  acts on the space of quantum states:

Quantum states and the general linear group

Remark: the trace term in the denominator makes this action “nonlinear”.

The orbits are classified by the (matrix) rank of the quantum states. 
The space of quantum states is partitioned into the disjoint union of orbits of quantum 

states with fixed rank:



Quantum states and the general linear group

The isotropy subgroup of every quantum state in Sk  is a closed subgroup of GL(n, C). 

Every Sk  is a smooth homogeneous space of GL(n, C). 

Given ρ1, ρ2 in Sk, there is an element in GL(n, C) connecting them. 

Quantum states with fixed rank

Flow of the fundamental vector fields of 

the group action:

Remark:   k=1 → pure quantum states, 
 k=n (maximal rank) → invertible quantum states.



Quantum states and the unitary group

From the general linear group GL(n, C) to the unitary group U(n):

This action preserves the spectrum of the quantum states.

Manifolds Sk as disjoint union of manifolds of isospectral quantum states.  

Element in the Lie algebra of GL(n, C):

Fundamental vector fields of U(n): 



Quantum states and the unitary group

Manifolds of isospectral quantum states are (compact) Kahler manifolds.

They “are” coadjoint orbits of U(n).

 Konstant-Kirillov-Souriau symplectic form ω.

Killing form on U(n) ⇒ invariant metric tensor g.
 

A complex structure J relates the symplectic form and the metric tensor:

Remark:  the fundamental vector fields are Hamiltonian vector fields:



Quantum states and the unitary group

Gradient vector fields out of Hamiltonian vector fields using the complex structure J:

We found that Hamiltonian and gradient vector fields associated with elements in the Lie 
algebra of the unitary group provide a realization of the Lie algebra of GL(n, C):

This realization “integrates” to an action of the general linear group GL(n, C) on the 
manifolds of isospectral states.

Remark:  this GL(n, C)-action is different from the “nonlinear” one defined on the 
manifolds of quantum states with fixed rank. 



Question: Is there a metric tensor on the space of invertible quantum states 
which is invariant w.r.t. the action of the unitary group? Is it unique?

Answer: There is an infinite number of metric tensors on the space of invertible 
quantum states that are invariant with respect to the unitary group.

Remark: All these metric tensors satisfy the so-called monotonicity property (MP), 
that is, “invariance” w.r.t. quantum stochastic maps.

Information geometry of invertible quantum states

Dimensional constraints ⇒ no symplectic/complex structure on the manifolds of 
quantum states with fixed rank (>1).



Question: How can we obtain a metric tensor satisfying the monotonicity property?

In classical Information Geometry we take a divergence function D (often it is a relative 
entropy), derive it twice and then evaluate the result on the diagonal:

We could take a quantum relative entropy and perform the same algorithm….

Metrics on the space of invertible quantum states

Remark: divergence functions are non-negative two-point functions vanishing on 
the diagonal.



Very often, the resulting quantum metrics satisfy the MP, however:

1) the algorithm is coordinate-based;

2) we must prove that the resulting object is a metric tensor and that it satisfies the MP.

Metrics on the space of invertible quantum states

Using the geometrical point of view we achieved the following results: 

i) give a coordinate-free extraction algorithm for classical and quantum systems;

ii) prove that  quantum divergence functions satisfying the data processing inequality 
(DPI) give rise to quantum metric tensors satisfying the MP 



Covariant tensors from two-point functions

A vector field on M may be thought of as a derivation of the associative algebra of 
smooth functions, or as a section of the tangent bundle.

In a local chart {qj} on M a vector field X can be written as:

Remark:  Vector fields are the coordinate-free version of the derivative operator and 
we will use them to give a coordinate-free algorithm to extract tensor fields from 
two-point functions.



Covariant tensors from two-point functions

Divergence functions are defined on M x M  (two-point functions):

Remark: The left functions fl on M x M form a subalgebra of the algebra of smooth 
functions on M x M. The same is true for the right functions fr. 



Covariant tensors from two-point functions

From vector fields on M to vector fields on its double:

Left lift of a vector field on M Right lift of a vector field on M

Proposition: for every smooth function f, and for all vector fields X, Y on M, we have:



Covariant tensors from two-point functions

Question: How can we extract a covariant (0,2) tensor from a two-point function D?

To answer this question, let us consider the diagonal immersion of M into its double:

Let X and Y be arbitrary vector fields on M, D a smooth function on its double, and  define 
the following maps:



Covariant tensors from two-point functions

Without further assumptions on D, these maps do not define covariant (0,2) tensors.

Proposition:

1) glr and grl are covariant (0,2) tensors, and glr(X,Y)=grl(Y,X);

2) gll is a symmetric covariant (0,2) tensor if and only if :

3) grr is a symmetric covariant (0,2) tensor if and only if:

4) if the previous two conditions hold simultaneously for D, then:



Covariant tensors from two-point functions

Definition: A smooth function D on the double of M such that:

 
is called a potential   function,   and we set g =-glr for the symmetric covariant (0,2) tensor 
associated with D.

Definition: A smooth function D on the double of M such that:

 
is called a divergence   function.

Remark: Every divergence function is a potential function, and the associated tensor 
g is positive-semidefinite. The converse is not true.



Covariant tensors from two-point functions

Coordinates expression: {qj}, {xj, yj} local charts on M and M x M:

Proposition: Let D be a potential   function  on M x M, then the tensor g is 
positive-semidefinite if and only if every point on the diagonal is a local minimum for D. 
In particular, g is a metric tensor if and only if every point of the diagonal is a 
nondegenerate local minimum for D.



Covariant tensors from two-point functions

Question: What happens when we consider 
smooth maps between manifolds?

Symmetric covariant tensor on N

Potential function on NxN

extract

Symmetric covariant tensor on M

Potential function on MxM

extract

Pullback by ᶰ

Pullback by ᷈

We can prove that:

 is commutative!



Metrics on the space of invertible quantum states

Quantum stochastic maps:

We consider the family  {Sn}n∊ℕ2 of manifolds of invertible quantum states, where ℕ2 is the 
set of natural numbers without 0 and 1.

is a Quantum Stochastic map if it is a linear completely-positive trace-preserving map 
(CPTP map) such that:

Remark: Quantum Stochastic maps are the quantum analogue of the Markov maps 
in classical theory of probability. 



Metrics on the space of invertible quantum states

 is a family of metric tensors on 

Monotonicity property of metric tensors

A family of quantum metric tensors satisfies the monotonicity property (MP) if:

 for every n,m, for every vector field X, and for every quantum stochastic map:

Remark: The MP entails the fact that distances between quantum states do not 
increase under the action of Quantum Stochastic Maps.



Metrics on the space of invertible quantum states

Data processing inequality for divergence functions

A family of divergence functions satisfies the data processing inequality (DPI) if:

 for every n,m,  and for every quantum stochastic map:

Remarks: information can not increase under  Quantum Stochastic Maps.

Proposition: The family of metric tensors extracted from a family of quantum 
divergence functions satisfying the DPI satisfies the MP. 

 is a family of divergence functions on 



Metrics on the space of invertible quantum states

Proposition: If a family of quantum divergence functions satisfies the DPI, then, the 
family of metric tensors we can extract from it, satisfies the MP. 

proof:

 is a non-negative potential function vanishing on the diagonal. 

 is a positive semidefinite covariant (0,2) tensor. 

Q.E.D.



Metrics on the space of invertible quantum states

REMARK: some interesting limiting cases are:

When q=z=1 we recover Von Neumann’s relative entropy.
When z=1 we recover the q-Rényi relative entropies.
When z=q we recover the q-quantum Rényi divergence.
When z=1 and q=1/2 we recover the Wigner-Yanase-Dyson skew information.

This family of quantum divergence functions satisfies the DPI when z ≥ 0 and 0 ≤ q ≤1

We studied the family of q-z-Rényi relative entropies (Audenaert, Datta):



Metrics on the space of invertible quantum states

To perform coordinate-free computations we work in the space:

Special unitary group

Surjective submersion:

The kernel of the differential at each point is 
given by the Hermitian matrices commuting 
with 

Open interior of the n-dimensional simplex

Unfolding of the manifold 
of invertible quantum 
states by means of the 
spectral decomposition



Metrics on the space of invertible quantum states

From the q-z-Rényi relative entropies to a family of potential functions on {Mn} by means 
of the pullback through ᶢn: 

Remark:   Mn has a basis of globally defined vector fields and differential one-forms 
we use to perform computations without the need to introduce coordinates:

Orthonormal basis in the Lie algebra of SU(n)

Left-invariant 
one-form on SU(n)

One-form on ᵂn

Left Maurer-Cartan form
Diagonal matrix with 1 in the j-th place of the diagonal



Metrics on the space of invertible quantum states

After a patient calculation, we obtain the symmetric covariant (0,2) tensor:

Fisher-Rao metric: “Classical-like” contribution 
depending only on the eigenvalues of the quantum states 

Purely quantum contribution depending on eigenvalues 
and phases of the quantum states; it is tangent to the 
orbit of the action of the unitary group



Metrics on the space of invertible quantum states

∑' denotes the summation over all indexes except those pertaining to the Cartan 
subalgebra of the Lie algebra of SU(n), and:

with τk a basis of the Lie algebra of SU(n), and eαβ the 
matrix with 1 in the (α,β) place, and 0 elsewhere



Conclusions

❖ The habit does not make the monk…..the algebraic dress of quantum mechanics 
hides a beautiful geometrical lingerie.

❖  We can give a  geometrical partition of the space of quantum states by means of 
Lie group actions.

❖ Exploiting the language of differential geometry we were able to define a 
coordinate-free extraction algorithm for metric tensors  starting from potential 
functions. It works for classical and quantum systems. It allows to extract skewness 
tensors too.

❖ We can successfully apply this algorithm to the quantum case, where we find that 
DPI implies MP, and that the MP metrics associated with q-z-Rényi relative 
entropies always decompose as the sum of the Fisher-Rao metric with a purely 
quantum contribution.



Happy Birthday!!!

There is no future. 
There is no past.
 Do you see? 
Time is simultaneous, an intricately structured jewel that humans insist on viewing one 
edge at a time, when the whole design is visible in every facet.

   Dr. Manhattan





Extra graphics



Thank You for your attention

“Heard joke once: Man goes to doctor. Says he's depressed. Says life seems harsh and cruel. 
Says he feels all alone in a threatening world where what lies ahead is vague and uncertain. 
Doctor says, "Treatment is simple. Great clown Pagliacci is in town tonight. Go and see him. 
That should pick you up." Man bursts into tears. Says, "But doctor....I am Pagliacci.”


