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Abstract

The usual canonical prescription ordinarily made for the obtention of the quantum
Hamiltonian operator for a classical system leads to some ambiguities in situations
beyond the simplest ones and these ambiguities arise unavoidably when the config-
uration space has non-zero curvature, as well as in systems in Euclidean space but
with a position-dependent mass. A recently proposed method to circumvent this
difficulty for natural Hamiltonians will be described. The idea is not to quantise the
coordinates and their (classical) conjugate momenta (which is where the ambiguities
could arise), but to work directly with Killing vector fields and associated Noether
momenta in order to get in some unambiguous way the corresponding Hamiltonian
operator. The examples of one-dimensional position-dependent mass systems and
motions on constant curvature surfaces will be used to illustrate the method.

This is a report on previous collaborations with:

M.F. Rañada and M.Santander
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Introduction

I meet (Luis) Alberto for the first time as a student of the academic year 1976–77 of
my course Mathematical Methods for Physicists II, and when finishing his studies in
Physics he obtained a grant for doing his Ph. D. Thesis, entitled

Estructura geométrica de los sistemas con simetría en Mecánica Clásica y Teoría
Clásica de Campos

The defence was in 1984. This was the starting point for our collaboration for almost
40 years.

Then he went for his postdoc to Paris to work in the group of Prof. Marle and
Copenhagen, and a bit later he spent a year at Berkeley to collaborate with Prof.
Weinstein.

Our first common scientific visit to Europe was to the 1st Workshop on Diff. Geom.
Methods in Classical Mechanics, an excellent idea of Willy Sarlet to connect people
of different countries with a close scientific interest
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This was the beginning of a series of meetings.

The second was organised in Jaca (1987) with the collaboration of Alberto
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Particularly intense was our collaboration during the

NATO ASI-XXIII GIFT Seminar “Recent Problems in Mathematical Physics

and the

XIX Int. Colloquium on Group Theoretical Methods in Physics

in Salamanca, 1992.
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The book is devoted to establish a geometric approach to both Classical and Quantum
Mechanics and the transition from Classical to Quantum Mechanics.

Symplectic geometry is the common framework for dealing with both types of sys-
tems.

The geometric framework for the description of classical mechanical systems is the
theory of Hamiltonian dynamical systems.

A symplectic structure ω on a differentiable manifoldM , or more generally a Poisson
structure, is the basic concept.

It is then possible to define an associated Poisson bracket endowing the set of func-
tions on M with a real Lie algebra structure.

The dynamics is given by the Hamiltonian vector field XH defined by the Hamiltonian
H ∈ C∞(M) by means of

i(XH)ω = dH.

The system of differential equations determining the integral curves ofXH in Darboux
coordinates are Hamilton equations.
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A particularly interesting case is when the manifold is the cotangent bundle of the
configuration space Q, M = T ∗Q, endowed with its natural symplectic structure.

The states are the points of M , and the observables are the functions F ∈ C∞(M).
The measure of an observable F in a state x ∈ M is given by the evaluation map,
the result being F (x)

On the other side, the mathematical model for Quantum Theories is different. In
Quantum Mechanics in Schrödinger picture:

��� (pure) states are (rays rather than) vectors ψ of a Hilbert space (H, 〈·, ·〉)
��� observables are selfadjoint operators in H
��� the results of the measure of the observable A on the pure state ψ may be any

eigenvalue of A but with probabilities such that the mean value is given by

e(ψ) =
〈ψ,Aψ〉
〈ψ,ψ〉

��� dynamics is given by Schrödinger equation

The framework unifying both approaches is the theory of Hamiltonian dynamical
systems.
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Hamiltonian dynamical systems

A symplectic manifold is a pair (M,ω) where M is a differentiable manifold and ω is
a symplectic form, i.e. a non-degenerate closed 2-form in M , ω ∈ Z2(M): dω = 0.

Non-degeneracy of ω means that for every point u ∈M the map ω̂u : TuM → T ∗uM :

〈ω̂u(v), v′〉 = ωu(v, v′) , v, v′ ∈ TuM,

is a bijection. This implies that the dimension of M is even, dimM = 2n.

ω̂ : TM → T ∗M is a base-preserving fibred map, i.e. the following diagram :

TM
ω̂ //

τ

��

T ∗M

π

��
M

idM

// M

is commutative and induces a R-linear map between the spaces of sections of both
bundles which, with a slight abuse of notation, we also write ω̂ : X(M)→

∧1
(M).

14



The vector fields corresponding to closed forms are called locally-Hamiltonian vector
fields and those corresponding to exact forms are said to be Hamiltonian vector fields.

ω̂(XH(M,ω)) = B1(M), ω̂(XLH(M,ω)) = Z1(M).

If H ∈ C∞(M), the Hamiltonian vector field XH is defined by the vector field s.t.

i(XH)ω = dH

(M,ω,H) is a Hamiltonian system whenever (M,ω) is a symplectic manifold and
H ∈ C∞(M): the dynamical vector field is XH

Cartan identity, LX = i(X) ◦ d+ d ◦ i(X), shows that X ∈ XLH(M,ω) if and only
if LXω = 0.

Darboux proved that dω = 0 and regularity of ω imply that around each point u ∈M
there is a local chart (U, φ) such that if φ = (q1, . . . , qn; p1, . . . , pn), then

ω|U =

n∑
i=1

dqi ∧ dpi.
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Such coordinates are said to be Darboux coordinates. The expression of XH in
Darboux coordinates is given by

XH =

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
,

and therefore, the local equations determining its integral curves are similar to Hamil-
ton equations. 

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

Define the Poisson bracket of two functions f, g ∈ C∞(M) as being the function
{f, g} given by:

{f, g} = ω(Xf , Xg) = df(Xg) = −dg(Xf ) .

In Darboux coordinates for ω the expression for {f, g} is the usual one:

{f, g} =

n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.
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If X,Y are locally Hamiltonian vector fields, then [X,Y ] is a Hamiltonian vector
field, its Hamiltonian being ω(Y,X).

It is a consequence of the relation i(X)LY α−LY i(X)α = i([X,Y ])α, which is valid
for any form α. We then obtain:

i([X,Y ])ω = i(X)LY ω − LY i(X)ω = −LY i(X)ω =
= −i(Y )d[i(X)ω]− d[i(Y )i(X)ω] = −d[ω(X,Y )] .

In particular, when X = Xf and Y = Xg in the previous relation:

d{f, g} = −i([Xf , Xg])ω ,

i.e.,
[Xf , Xg] = X{g,f}.

This shows that the set of Hamiltonian vector fields, to be denoted XH(M,ω), is an
ideal of the Lie algebra of locally-Hamiltonian vector fields XLH(M,ω) and that

0 // R // C∞(M)
σ // XH(M,ω) // 0

with σ = −ω̂−1 ◦ d, is an exact sequence of Lie algebras.
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An action Φ of a Lie group G on M defines a set of fundamental vector fields
Xa ∈ X(M), a ∈ g, by Xa(m) = Φm∗e(−a) and the map X : g → X(M),
a ∈ g→ Xa is a Lie algebra homomorphism,

[Xa, Xb] = X[a,b].

If the action of G is strongly symplectic, X(g) ⊂ XH(M,ω), then X is a Lie algebra
homomorphism X : g → XH(M,ω), and then there exists a linear map f : g →
C∞(M), called comomentum map, making commutative the following diagram:

g

X

��

f

xx
0 // R // C∞(M)

σ // XH(M,ω) // 0

The corresponding momentum map introduced by Souriau, is the map P : M → g∗,
defined by

〈P (m), a〉 = fa(m) , ∀m ∈M,a ∈ g.

It is not uniquely defined but two possible comomentum map differ by a linear map
r : g→ R,

f ′a(m) = fa(m) + r(a).
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In case of exact symplectic actions on exact symplectic manifolds (M, θ), namely,
g∗θ = θ, ∀g ∈ G, the fundamental vector fields Xa are Hamiltonian and a como-
mentum map can be defined as fa = −i(Xa)θ. This is the case of an action of a Lie
group G on a cotangent bundle T ∗Q lifted from an action of G on its base manifold.

Recall that if X = ξi(q)∂/∂qi ∈ X(Q), its cotangent lift X̃ ∈ X(T ∗Q) (satisfying
LX̃θ = 0, with θ the Liouville 1-form), θ = pi dq

i, is

X̃ = ξi
∂

∂qi
− pi

∂ξi

∂qj
∂

∂pj
.

As an instance if the configuration space is Q = R3 we can consider vector fields
generating translations on Q = R3, and their correspondimg lift in T ∗R3, the fun-
damental vector fields in R3 being Xa = −ai ∂/∂qi, with canonical lifts X̃a a T ∗R3

X̃a = −ai ∂
∂qi

.

The functions fa ∈ C∞(T ∗R3) are defined by

fa(q, p) = −[i(X̃a)θ](q, p) = aipi .

19



Using fa(q, p) = 〈~P (q, p), a〉 and identifying R3, as Lie algebra of translations, with
its dual, we obtain

~P (q, p) = ~p.

If consider the action of SO(3,R) on R3 and the induced action on T ∗R3, the
fundamental vector fields in R3 are

Xi = −εijk qj
∂

∂qk
,

with canonical lifts
X̃i = −εijk

(
qj

∂

∂qk
+ pj

∂

∂pk

)
,

and consequently a comomentum map is

f~n(q, p) = ni εijk q
j pk = ~n · (~q × ~p) .

Using the identification of R3 with its dual space we see that

~P (q, p) = ~q × ~p,

i.e. the associated momentum is the angular momentum
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Dynamical systems of mechanical type

A regular natural Lagrangian system is given by a non-degenerate symmetric (0, 2)-
tensor field g on the configuration space Q and a function V on Q: The Lagrangian
function L ∈ C∞(TQ) is given by

Lg,V (v) =
1

2
(τ∗Qg)(v, v) + τ∗V,

where τQ : TQ→ Q is the tangent bundle.

Nondegeneracy means that the map ĝ : TQ → T ∗Q from the tangent bundle τQ :

TQ → Q to the cotangent bundle πQ : T ∗Q → Q, defined by 〈ĝ(v), w〉 = g(v, w),
where v, w ∈ TxQ, is regular.

ĝ is a fibred map over the identity on Q and induces a map between the spaces of
sections ĝ : X(Q)→ Ω1(Q): 〈ĝ(X), Y 〉 = g(X,Y ).

The vector field corresponding to the exact 1-form df is called grad f , i.e.

ĝ(grad f) = df, ∀f ∈ C∞(Q).
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The case V = 0 corresponds to free motion on the Riemann manifold (Q, g), the
Lagrangian then being given by the kinetic energy defined by the metric g:

Tg(v) =
1

2
(τ∗Qg)(v, v), v ∈ TQ,

which can be rewritten as the following function on TQ:

Tg =
1

2
g(TτQ ◦D,TτQ ◦D),

with D being any second order differential equation vector field, i.e. a vector field
on TQ, and therefore τTQ ◦D = idTQ, such that also TτQ ◦D = idTQ.

If (U, q1, . . . , qn) is a local chart on Q we consider the coordinate basis of X(U)

denoted {∂/∂qj | j = 1, . . . , n} and its dual basis for Ω1(U), {dqj | j = 1, . . . , n}.

A vector and a covector in a point q ∈ U are v = vj (∂/∂qj)q and ζ = pj (dqj)q,
with vj = 〈dqj , v〉 and pj = 〈ζ, ∂/∂qj〉. The local expressions for g and Tg are:

g = gij(q) dq
i ⊗ dqj , Tg(v) =

1

2
gij(τQ(v)) vivj ,

while the coordinate expression for the gradient of a function f ∈ C∞(Q) is:

(grad f)i = gij
∂f

∂qj
, with

n∑
k=1

gik(q) gkj(q) = δij .
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The dynamics is then given by a vector field ΓL solution of the dynamical equation

i(ΓL)ωL = dEL.

where the energy EL of the Lagrangian system is defined by EL = ∆L−L, with ∆

being the Liouville vector field, generator of dilations along the fibres, given by

∆f(v) =
d

dt
f(etv)|t=0,

for all v ∈ TQ and f ∈ C∞(TQ).

As ∆(Tg) = 2Tg and ∆(V ) = 0, the total energy is EL = Tg + V .

The Cartan 1-form θL = dL ◦ S, where S is the vertical endomorphism, gives us an
exact 2-form ωL = −dθL which is non-degenerate when the Lagrangian is regular
and then (TQ, ωL, EL) is a Hamiltonian dynamical system.

The coordinate expressions of θL = dL ◦ S and ωL are:

θL(q, v) = gij(q) v
j dqi, ωL = gij dq

i ∧ dvj +
1

2

(
∂gij
∂qk

vj − ∂gkj
∂qi

vj
)
dqi ∧ dqk.

To be remarked that ωL only depends on Tg and not on V , and we can use ωT
instead of ωL.
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Moreover, it can be proved that if X ∈ X(Q) and Xc ∈ X(TQ) is its complete lift,

XcTg = TLXg,

and this property can be used to prove that the lifts of the flow of X are symplecto-
morphisms if and only if LXg = 0, i.e. X is a Killing vector field. Actually,

LXcωL = LXcωTg
= ωXc(Tg) = ωTLXg

,

and consequently, if X is a Killing vector field, LXcωL = 0. Moreover, Xc(Tg) = 0.

Recall also that Killing vector fields close under commutators on a Lie algebra.

Legendre transformation is regular because the (0, 2)-symmetric tensor g is assumed
to be non-degenerate: v ∈ TqQ 7→ α ∈ T ∗qQ such that 〈α,w〉 = g(v, w).

In the above mentioned local coordinates

pi =
∂T

∂vi
= gik(q) vk ⇐⇒ vi = gij(q) pj ,

with gik(q) gkj(q) = δij .

The Hamiltonian is the kinetic energy of the free system in terms of momenta:

H =
1

2
g(ĝ−1(p), ĝ−1(p)) =

1

2
gij pi pj .
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If we consider the exact symplectic action of a Lie group G on the bundle T ∗Q defined
by lifting an action of G on the base Q, if Xa = ξia(q) ∂/∂qi is the infinitesimal
generator of a ∈ g in the action on Q its lifting is given in the induced coordinate
system by

X̃a = ξia(q)
∂

∂qi
− pi

∂ξia
∂qj

∂

∂pj
.

If X̃a is Hamiltonian, as θ = pi dq
i we have that fa(q, p) = −pi ξia(q).

In the particular case of a natural Lagrangian system as the complete liftXc ∈ X(TQ)

of a Killing vector field X ∈ X(Q) is a Hamiltonian vector field, we have an exact
action of the Lie algebra of Killing vector fields on TQ and the momentum map
P : TQ→ kill∗ is defined by

〈P (x, v), a〉 = fa(x, v) = −θTg
(Xc

a) = −gijvjξia, (x, v) ∈ TQ, a ∈ kill.

and in the corresponding Hamiltonian formalism, P : T ∗Q→ kill∗ by

〈P (x, p), a〉 = fa(x, p) = −θo(X̃a) = −pi ξia, (x, p) ∈ T ∗Q, a ∈ kill.

Note also that the lift of a Killing vector field preserves the kinetic energy
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Geometric approach to Quantum Mechanics

The Schrödinger picture of Quantum mechanics admits a geometric interpretation
similar to that of classical mechanics.

A separable complex Hilbert space (H, 〈·, ·〉) can be considered as a real linear space,
to be then denoted HR. The norm in H defines a norm in HR, where ‖ψ‖R = ‖ψ‖C.

The linear real space HR is endowed with a natural symplectic structure as follows:

ω(ψ1, ψ2) = 2 Imag 〈ψ1, ψ2〉.

The Hilbert HR can be considered as a real manifold modelled by a Banach space
admitting a global chart.

The tangent space TφHR at any point φ ∈ HR can be identified with HR itself: the
isomorphism associates ψ ∈ HR with the vector ψ̇ ∈ TφHR given by:

ψ̇f(φ) :=

(
d

dt
f(φ+ tψ)

)
|t=0

, ∀f ∈ C∞(HR) .
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The real manifold can be endowed with a symplectic 2-form ω:

ωφ(ψ̇, ψ̇′) = 2 Imag 〈ψ,ψ′〉 .

One can see that the constant symplectic structure ω in HR, considered as a Banach
manifold, is exact, i.e., there exists a 1-form θ ∈

∧1
(HR) such that ω = −dθ. Such

a 1-form θ ∈
∧1

(H) is, for instance, the one defined by

θ(ψ1)[ψ̇2] = −Imag 〈ψ1, ψ2〉.

This shows that the geometric framework for usual Schrödinger picture is that of
symplectic mechanics, as in the classical case.

A continuous vector field in HR is a continuous map X : HR → HR. For instance
for each φ ∈ H, the constant vector field Xφ defined by

Xφ(ψ) = φ̇.

It is the generator of the one-parameter subgroup of transformations of HR given by

Φ(t, ψ) = ψ + t φ .
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As another particular example of vector field consider the vector field XA defined by
the C-linear map A : H → H, and in particular when A is skew-selfadjoint.

With the natural identification natural of THR ≈ HR ×HR, XA is given by

XA : φ 7→ (φ,Aφ) ∈ HR ×HR .

When A = I the vector field XI is the Liouville generator of dilations along the
fibres, ∆ = XI , usually denoted ∆ given by ∆(φ) = (φ, φ).

Given a selfadjoint operator A in H we can define a real function in HR by

a(φ) = 〈φ,Aφ〉 ,

i.e.,
a = 〈∆, XA〉 .

Then,

daφ(ψ) =
d

dt
a(φ+ tψ)t=0 =

d

dt
[〈φ+ tψ,A(φ+ tψ)〉]|t=0

= 2 Re 〈ψ,Aφ〉 = 2 Imag 〈−iAφ,ψ〉 = ω(−iAφ,ψ).

If we recall that the Hamiltonian vector field defined by the function a is such that
for each ψ ∈ TφH = H,

daφ(ψ) = ω(Xa(φ), ψ) ,
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we see that
Xa(φ) = −iAφ .

Therefore if A is the Hamiltonian H of a quantum system, the Schrödinger equation
describing time-evolution plays the rôle of ‘Hamilton equations’ for the Hamiltonian
dynamical system (H, ω, h), where h(φ) = 〈φ,Hφ〉: the integral curves of Xh satisfy

φ̇ = Xh(φ) = −iHφ .

The real functions a(φ) = 〈φ,Aφ〉 and b(φ) = 〈φ,Bφ〉 corresponding to two selfad-
joint operators A and B satisfy

{a, b}(φ) = −i 〈φ, [A,B]φ〉 ,

because

{a, b}(φ) = [ω(Xa, Xb)](φ) = ωφ(Xa(φ), Xb(φ)) = 2 Imag 〈Aφ,Bφ〉 ,

and taking into account that

2 Imag 〈Aφ,Bφ〉 = −i [〈Aφ,Bφ〉 − 〈Bφ,Aφ〉] = −i [〈φ,ABφ〉 − 〈φ,BAφ〉] ,

we find the above result.
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In particular, on the integral curves of the vector field Xh defined by a Hamiltonian
H,

ȧ(φ) = {a, h}(φ) = −i 〈φ, [A,H]φ〉 ,

what is usually known as Ehrenfest theorem:

d

dt
〈φ,Aφ〉 = −i 〈φ, [A,H]φ〉 .

There is another relevant symmetric (0, 2) tensor field which is given by the Real
part of the inner product. It endows HR with a Riemann structure and we have also
a complex structure J such that

g(v1, v2) = −ω(Jv1, v2), ω(v1, v2) = g(Jv1, v2),

together with

g(Jv1, Jv2) = g(v1, v2), ω(Jv1, Jv2) = ω(v1, v2) .

The triplet (g, J, ω) defines a Kähler structure in HR and the symmetry group of
the theory must be the unitary group U(H) whose elements preserve the inner prod-
uct, or in an alternative but equivalent way (in the finite-dimensional case), by the
intersection of the orthogonal group O(2n,R) and the symplectic group Sp(2n,R).
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On the other hand, as the fundamental concept for measurements is the expectation
value of observables, two vector fields such that

〈ψ2, Aψ2〉
〈ψ2, ψ2〉

=
〈ψ1, Aψ1〉
〈ψ1, ψ1〉

, ∀A ∈ Her(H)

should be considered as indistinguishable.

This is only possible when ψ2 is proportional to ψ1. In fact it suffices to take as
observable A the orthogonal projection on ψ1 in the preceding relation.

Therefore we must consider rays rather than vectors the elements describing the
quantum states.

The space of states is not Cn but the projective space CPn−1.

It is possible to define a Kähler structure on CPn−1 and therefore to study Lie-Kähler
systems leading to superposition rules and to study time evolution in this projective
space.
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How to find a quantum model for a classical one?

In general the problem of ‘quantisation’ of a system is, given a classical Hamiltonian
system (M,ω,H), to find a Hilbert space H and to choose the selfadjoint operator
F̂ corresponding to the relevant observables F .

In the simplest case of an Euclidean configuration space, the prescription is that

��� H is the space of square integrable functions with respect to the Lebesgue
measure

��� positions x̂i have associated multiplication by xi operators and

��� the momentum operators are the differential operators

p̂k = −i
∂

∂xk
.
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There will be some ordering ambiguities for other observables because functions of
xi commute with those of pk, but x̂i does not commute with p̂k:

[x̂i, p̂j ] = i δik, versus {xi, pk} = δik.

Many textbooks warn that this is only valid using Euclidean coordinates.

This is very restrictive, because:

What happens in other coordinates and even worse when there are no global preferred
coordinates (for instance Q is compact)?

What about position-dependent mass for which mass operator does not commute
with momentum operators?

Generalising previous procedure for a more general case of a Hamiltonian dynamical
system, Dirac assertion is that Quantisation is to be understood as a a map ζ :

C∞(M)→ A(H) such that

−iζ({F,G}) = [ζ(F ), ζ(G)]
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Several meanings for pi

In Classical mechanics, if the configuration space is an Euclidean space Rn, pi denotes
many different and inequivalent objects:

��� pi is the i-th coordinate of a covector in a point of the configuration space

��� pi is a real function in T ∗Rn: pi(α) = α(∂/∂xi)

��� the real function pi is the infinitesimal generator of translations along the i-th
coordinate axis, which are canonical transformations for (T ∗Rn, ω0)

In a more general case, Q 6= T ∗Rn,

��� there is not a global chart,

��� the momentum coordinates are local and depend on the choice of base manifold
coordinates,

��� translations are not defined.
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Recall however that translations and rotations are isometries of the Euclidean space.

For natural Lagrangians defined on TQ, with Q an arbitrary Riemann manifold,
we can consider the isometries of the Riemann metric, whose cotangent lifts are
Hamiltonian vector fields and in this way we define a strongly symplectic action of
the group of isometries, with Lie algebra kill, on T ∗Q.

We are then able to define an associated momentum. The components Pa of this
map are the objects to be quantised instead of the pi which is not an intrinsic but a
coordinate dependent ingredient.

This allows us to quantise functions of the momentum map by associating the func-
tion Pa with P̂a = −iXa acting on an appropriate Hilbert space.

Consequently, we can quantise functions of the momentum map.

We can consider simple models to see how this works.
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Position dependent mass systems

Consider a 1-dimensional system described in terms of a coordinate x by a Lagrangian

L =
1

2
m(x)ẋ2 − V (x) , x ∈ R , m(x) > 0,

that leads to the following nonlinear differential equation

m(x) ẍ+
1

2
m′(x) ẋ2 = 0 ,

with associated Hamiltonian H given by

H(x, p) =
1

2

1

m(x)
p2 + V (x).

There is an important problem with the construction of the quantum version of H,
H → Ĥ from the classical system to the quantum one, because if the mass m
becomes a function of the spatial coordinate, m = m(x), then the quantum version
of the mass no longer commutes with the momentum.
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Different forms of presenting the kinetic term in the Hamiltonian H, as for example

T =
1

4

[ 1

m(x)
p2+p2 1

m(x)

]
, T =

1

2

[ 1√
m(x)

p2 1√
m(x)

]
, T =

1

2

[
p

1

m(x)
p
]
,

are equivalent at the classical level but they lead to different and nonequivalent
Schrödinger equations.

This problem is important mainly for two reasons.

(i) There are a certain number of important areas, mainly related with problems
on condensed-matter physics (electronic properties of semiconductors, liquid
crystals, quantum dots, etc), in which the behaviour of the system depends of
an effective mass that is position-dependent.

(ii) From a more conceptual viewpoint, the ordering of factors in the transition from
a commutative to a noncommutative formalism is an old question that remains
as an important open problem in the theory of quantization.
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(iii) The free motion along a simple regular curve C looks like a position–dependent
mass system. If C is given in parametric form by x : I → Rn, u 7→ x(u), its
arc-length function s(u) is an intrinsic parameter given by

ds

du
=

√
dx

du
· dx
du

= f(u) > 0 ,

and therefore
s(u) =

∫ u√
ẋ(ζ) · ẋ(ζ) dζ.

The geodesics of this metric coincide, up to reparametrisation, with the curves
solution of the Euler–Lagrange equation of the Lagrangian

L0(u, vu) =
1

2
m0 f(u) v2

u,

where m0 is a constant with mass dimension, i.e.

d

dt
(f(u)u̇) =

1

2
f ′(u) u̇2 =⇒ f(u) ü+

1

2
f ′(u) u̇2 = 0,

where f ′(u) = df/du.
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Classical motion on a cycloid: A case study

Consider the motion of a particle of mass m0 moving on a gravitational field along
a cycloid inverted in such a way that the origin is sited in the lowest point, namely:

x(ϑ) = (x(ϑ+ π),−y(ϑ+ π)) + (0, 2R) = (R(ϑ+ π + sinϑ), R (1− cosϑ)),

i.e.,

x(ϑ) =

(
R(ϑ+ π + sinϑ), 2R sin2 ϑ

2

)
, ϑ ∈ (−π, π).

Consequently,
ẋ(ϑ) = (R(1 + cosϑ), R sinϑ),

and then,

‖ẋ‖2 = R2(1 + cos2 ϑ+ 2 cosϑ+ sin2 ϑ) = 2R2(1 + cosϑ) = 4R2 cos2 ϑ

2
,

from which we obtain (recall that θ ∈ (−π, π) and therefore cos(ϑ/2) > 0)

ds

dϑ
= 2R cos

ϑ

2
=⇒ s(ϑ) = 4R

[
sin

ζ

2

]ϑ
0

= 4R sin
ϑ

2
.
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The expression of the metric in these coordinates is

g = 2R cos
ϑ

2
dϑ2,

i.e. the free motion is described by the Lagrangian with a position-dependent mass
given by m(ϑ) = 2m0R cos θ2 :

L0(ϑ, ϑ̇) = m0R cos
ϑ

2
ϑ̇2.

The potential function describing the action of the gravity in terms of the arc–length
s is:

V (ϑ) = m0 g y(ϑ) = 2m0 gR sin2 ϑ

2
= 2m0 gR

s2

16R2
=

1

2
m0

g
4R

s2,

and then the Lagrangian is given by

L(ϑ, ϑ̇) = m0R cos
ϑ

2
ϑ̇2 − 2m0 gR sin2 ϑ

2
,

or in terms of the canonical coordinate

L(s, ṡ) =
1

2
m0 ṡ

2 − 1

2
m0

g
4R

s2.
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Correspondingly, the tangent vector to the curve is

t(ϑ) =
1

2R cos ϑ2
(R(1 + cosϑ), R sinϑ) =

(
cos

ϑ

2
, sin

ϑ

2

)
,

which shows that the tangential force is given by

Ft = F · t = −m0 g sin
ϑ

2
= −m0 g

4R
s,

while the tangential component of ẍ is s̈, and then Newton’s second law is

s̈ = −m0 g
4R

s.

Both expressions show that the motion along the inverted cycloid in terms of the
arc–length s is oscillatory with a constant period function

τ =
2π

ω
= 4π

√
R

g
.

The initial position only fixes the amplitud of motion. This is the reason for the
tautochronous behaviour of the motion along the cycloid.
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Quantisation of motions on curves

A curve is endowed with a (local) chart given by the arc-length which turns out to
be a privileged chart. We can apply the usual canonical quantisation rule using such
a chart because the expressions of the Lagrangian and Hamiltonian for free motion
are exactly the same expressions as for the Euclidean case, i.e.

L0(s, ṡ) =
1

2
m0 ṡ

2, H0(s, ps) =
p2
s

2m0
.

This means that a natural prescription is to replace the momentum ps by −i ~∂/∂s
as an operator acting on the Hilbert space L2

0(C, ds) of square integrable functions
on the curve C vanishing on the boundary of C. As the measure ds is invariant
under length-displacements such operator is selfadjoint.
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Quantum motion on a cycloid: A case study

The quantum model for a particle of mass m0 living on a cycloid as configuration
space, under the action of a gravitational force, in terms of the arc-length parameter
is like that of a harmonic oscillator with mass m0 and ω2 = m0 g/(4R), for −4R ≤
s ≤ 4R.

The Hilbert space of the corresponding quantum system will be L2
0(−L,L) of square

integrable functions in the interval (−L,L), with L = 4R, satisfying the boundary
conditions ψ(−L) = ψ(L) = 0, and the quantum Hamiltonian operator is given by

H = − ~2

2m0

d2

ds2
+ V (s),

where
V (s) =

{
1
2m0ω

2 s2 if |s| ≤ R
∞ if |s| ≥ 4R

.

This problem of a confined harmonic oscillator has been studied by Ghosh. The
Hamiltonian is parity invariant and consequently the eigenfunctions are either even
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or odd functions. The time-independent Schrödinger equation is(
− ~2

2m0

d2

ds2
+

1

2
m0ω

2 s2

)
ψ(s) = E ψ(s),

which can be rewritten as

d2

dz2
+

(
ε− z2

4

)
ψ(z) = 0,

where

z =

√
2m0ω

~
, E = ε ~ω.

It is common to write ε = ν + 1/2, by similarity with the usual harmonic oscillator,
i.e. E = (ν + 1/2) ~ω.

If we introduce now the change

ψ(z) = e−z
2/4φ(z),

and redefine the independent variable as y = 1
2z

2, the new function φ(y) satisfies
the confluent hypergeometric equation (Abramowitz and Stegun, p 504):

y
d2φ

dy2
+ (b− y)

dφ

dy
− a y = 0,

44



with b = 1
2 and a = −ν2 , i.e.

y
d2φ

dy2
+

(
1

2
− y
)
dφ

dy
+
ν

2
y.

The point y = 0 is a regular singular point while y =∞ is an irregular singularity. A
basis of the linear space of solutions for b 6∈ Z is given by the confluent hypergeometric
function, also called Kummer function M(a, b, y) and its related function U(a, b, y)¸
with power expansions (see e.g. Abramowitz and Stegun, p 504):

M(a, b, y) = 1F1(a, b, y) =

∞∑
n=0

(a)n
(b)n

yn

n!

U(a, b, y) =
π

sin(πb)

(
M(a, b, y)

Γ(1 + a− b)Γ(b)
− y1−bM(1 + a− b, 2− b, y)

Γ(a)Γ(2− b)

)
where (an) denotes (an) = a(a+ 1) · · · (a+ n− 1), with (a0) = 1.

The general solution ψ(s) can be written as

ψ(s) = e−mωL2/2~
[(
A+B

√
π

Γ((1−ν)/2)

)
M
(
−ν2 ,

1
2 ,

m0ωs
2

~

)
− 2B

√
π

Γ(−ν/2)

√
m0ω

~
sM

(
1−ν

2 , 3
2 ,

m0ωs
2

~

)]
.

45



The first term on the right-hand side is an even function and the second one is odd.
Therefore, the conditions on the parameter ν for ψ(s) to be an eigenfunction are(

A+B
√
π

Γ((1−ν)/2)

)
M
(
−ν2 ,

1
2 ,

m0ωL
2

~

)
= 0 for even functions

√
π

Γ(−ν/2)

√
m0ω

~
M
(

1−ν
2 , 3

2 ,
m0ωL

2

~

)
= 0 for odd functions

These equations should be used to determine the energy eigenvalues.
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Quantisation of position dependent mass systems

The usual approach make uses of the formalism (α, β, γ): T has the following ex-
pression introduced by von Roos (generalizing a previous study by BenDaniel et al.

Tαβγ =
1

4

(
mα pmβ pmγ +mγ pmβ pmα

)
, α+ β + γ = −1 .

It is important to remark that in order to study a quantum system (in the Schrödinger
picture) we should first fix the Hilbert space H and then the (essentially) selfadjoint
operators corresponding to the relevant observables to be quantized.

Therefore the quantization of the Hamiltonian of a system means first to define
the appropriate Hilbert space of pure states, and then construction of the quantum
Hamiltonian.

In the problem of quantization of a Hamiltonian system with a PDM the definition
of the measure dµ defining the Hilbert space L2(R, dµ) strongly depends on the
characteristics of the function m(x).
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Note that the kinetic Lagrangian T for motion along a curve admits an infinitesimal
symmetry given by the vector field

X =
∂

∂s
=

1√
f(u)

∂

∂u
,

which preserves the metric distance, because LX(ds) = 0.

In an analogous way, the kinetic Lagrangian T for a position dependent mass sys-
tem possesses an exact Noether symmetry. The function T is not invariant under
translations but under the action of the vector field X given by

X(x) =
1√
m(x)

∂

∂x
,

(displacement δx = ε(m(x))−1/2, in the physicists language), i.e. we have Xt
(
T
)

=

0, where Xt denotes the tangent lift to the velocity phase space R×R (that, in
differential geometric terms, is the tangent bundle TQ of the configuration space
Q = R) of the vector field X ∈ X(R),

Xt(x, v) =
1√
m(x)

( ∂

∂x
−
(1

2

m′(x)

m(x)

)
v
∂

∂v

)
.
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Recall that given a Riemannian space (M, g), a Killing vector field X defined on M
is a symmetry of the metric g (in the sense that it satisfies LXg = 0 where LX
denotes the Lie derivative with respect to X). Killing vector fields also preserve the
volume Ωg determined by the metric, that is,

Ωg =
√
|g| dx1 ∧ dx2 ∧ · · · ∧ dxn , LXΩg = 0 ,

where |g| denotes the determinant of the matrix g defining the Riemann structure.

One can show that if Tg(x, v) = 1
2gij(x)vivj , then

Xt(Tg) = Tg̃ , g̃ = LXg .

Consequently, X is a Killing vector field for g iff Xt is a symmetry for the associated
kinetic energy function Tg. The above X is a Killing vector field. In fact it is a
Killing vector field of the one-dimensional m-dependent metric

g = m(x) dx⊗ dx , ds2 = m(x) dx2 .

The line element is invariant under the flow of the vector field X = f(x)∂/∂x when

f m′ + 2mf ′ = 0 ,
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and, therefore, in order to the vector field X to be a Killing vector, it should be
proportional to the vector field X, which represents (the infinitesimal generator of)
an exact Noether symmetry for the geodesic motion. If we denote by θL the 1-form

θL =
(∂L
∂v

)
dx = m(x)v dx ,

the associated Noether constant of the motion P for the free (geodesic) motion,
called Noether momentum is

P = i
(
Xt
)
θL =

√
m(x) v .

Quasi-regular representation

The Hilbert space for a quantum system with a configuration space M is the linear
space of square integrable functions on M with respect to an appropriate measure,
L2(M,dµ).

In the case of a natural system the measure to be considered must be invariant under
the the Killing vector fields of the metric. The reason is the following:

If Φ : G×M →M denotes the action of a Lie group G on a differentiable manifold
M , then the associated quasi-regular representation is given by the following action
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of G on the set of complex functions on M :

(U(g)ψ)(x) = ψ(Φ(g−1, x)).

IfM admits an invariant measure dµ we can restrict the action on the set L2(M,dµ)

and if dµ is G-invariant, the representation so obtained is a unitary representation.

If a one-parameter subgroup γ(t) = exp(at), a ∈ g, is considered, then the funda-
mental vector field Xa ∈ g, which is given by

(Xψ)(x) =
d

dt
ψ(Φ(exp(−ta), x))|t=0,

when restricted to the subspace L2(M,dµ) is a skew-selfadjoint operator provided
that the measure µ is γ(t)-invariant, because U(γ(t)) is a one-parameter group of
unitary transformations.

The infinitesimal generator in the regular representation is a generator for a 1-
parameter group of unitary transformations, and consequently it is skew-self-adjoint
operator. Of course if we want the generators of several one-parameter groups be
skew-self-adjoint, the measure defining the Hilbert space must be invariant under
each 1-parameter subgroup.
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For the one-dimensional PDM system, the quantum system must be described by
the Hilbert space L2(R, dµx) of square integrable functions w,r,t. an invariant under
X measure, dµx, therefore determined by the metric.

The Lebesgue measure dx is not invariant under X = f(x)∂/∂x, the invariance
condition for the measure dµx = ρ(x) dx being

f ρ′ + ρf ′ = 0 .

Then, the only measure invariant under X for f(x) = (m(x))−1/2 is a multiple of

dµx =
√
m(x) dx.

This automatically implies that the first-order linear operator X is skew-symmetric.
This means that the operator P̂ representing the quantum version of the Noether
momentum P must be selfadjoint, not in the standard space L2(R) ≡ L2(R, dx),
but in the space L2(R, dµx) of square integrable functions with respect the PDM
measure dµx.

Using the Legendre transformation the momentum p and velocity v are related by
p = m(x) v, so that the expressions of the Noether momenta and the Hamiltonian
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(kinetic term plus a potential) in the phase space are

P =
1√
m(x)

p ,

and
H =

1

2
P 2 + V (x) .

As we have pointed out, the generator of the infinitesimal ‘translation’ symmetry,
(1/
√
m(x)) d/dx, is skew-Hermitian in the space L2(R, dµx) and therefore the tran-

sition from the classical system to the quantum one is given by defining the operator
P̂ as follows

P 7→ P̂ =
1√
m(x)

(
− i ~ d

dx

)
,

so that
1

m
p2 → − ~2

( 1√
m(x)

d

dx

)( 1√
m(x)

d

dx

)
,

in such a way that the quantum Hamiltonian Ĥ is represented by the following
Hermitian (defined on the space L2(R, dµx)) operator

Ĥ = −~2

2

( 1√
m(x)

d

dx

)( 1√
m(x)

d

dx

)
+ V (x) ,
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= −~2

2

1

m(x)

d2

dx2
+

~2

4

(m′(x)

m2(x)

) d

dx
+ V (x) ,

and then the Schrödinger equation Ĥ Ψ = EΨ becomes

− ~2

2

1

m(x)

d2Ψ

dx2
+

~2

4

(m′(x)

m2(x)

) dΨ

dx
+ V (x)Ψ = EΨ .
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Constant curvature surfaces

The expression of the arc length element in geodesic polar coordinates (ρ, φ) on a
constant cuvature surface M2

κ can be written as follows

ds2
κ = dρ2 + 1

κ sin2(
√
κρ) dφ2 , if κ > 0,

ds2
0 = dρ2 + ρ2 dφ2 , if κ = 0,

ds2
κ = dρ2 − 1

κ sinh2(
√
−κρ) dφ2 , if κ < 0.

It is possible to deal with all of them in an unified way by introducing the following
labelled trigonometric functions

Cκ(x) =

 cos
√
κx if κ > 0,

1 if κ = 0,
cosh
√
−κx if κ < 0,

Sκ(x) =


1√
κ

sin
√
κx if κ > 0,

x if κ = 0,
1√
−κ sinh

√
−κx if κ < 0,

and the κ-dependent tangent function

Tκ(x) = Sκ(x)/Cκ(x).
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The fundamental properties of these curvature-dependent trigonometric functions are

C
2
κ(x) + κS

2
κ(x) = 1 ,

and

Sκ(2x) = 2 Sκ(x) Cκ(x) , Cκ(2x) = C2
κ(x)− κS2

κ(x) ,

d

dx
Sκ(x) = Cκ(x) ,

d

dx
Cκ(x) = −κSκ(x) ,

and therefore
d

dx
Tκ(x) =

1

C2
κ(x)

With this notation the arc length element in all the three cases is:

ds2
κ = dρ2 + S

2
κ(ρ) dφ2 ,

i.e. the only nonzero components of the metric are

gρρ = 1, gφφ = S
2
κ(ρ) =⇒ gρρ = 1, gφφ =

1

S2
κ(ρ)

.
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Note that ρ denotes the distance along a geodesic on the manifold M2
κ .

The Lagrangian for the geodesic (free) motion on the spaces (S2
κ,E2, H2

κ) is

L0κ(ρ, φ, vρ, vφ) = Tκ(ρ, φ, vρ, vφ) =
1

2

(
v2
ρ + S

2
κ(ρ)v2

φ

)
,

and for a general mechanical type system (Riemannian metric minus a potential)

Lκ(ρ, φ, vρ, vφ) =
1

2

(
v2
ρ + S

2
κ(ρ)v2

φ

)
− V (ρ, φ, κ) .

The corresponding Legendre transformation maps the point (ρ, φ, vρ, vφ) into
(ρ, φ, pρ, pφ) with

pρ = vρ, pφ = S
2
κ(ρ) vφ,

i.e. the Hamiltonian is

H =
1

2

(
p2
ρ +

p2
φ

S2
κ(ρ)

)
+ V (ρ, φ, κ)

Under the κ-dependent change of coordinates r = Sκ(ρ) the Lagrangian L0κ becomes

L0κ(r, φ, vr, vφ) =
1

2

(
v2
r

1− κ r2
+ r2v2

φ

)
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and, if we define x = r cosφ and y = r sinφ, the Lagrangian becomes

L0κ(x, y, vx, vy) =
1

2

1

1− κ r2

[
v2
x + v2

y − κ (xvy − yvx)2
]
, r2 = x2 + y2 .

The Hamiltonian expressed interms of these coordinates can be found to be:

H0κ(x, y, p,py) =
1

2

(
p2
x + p2

y − κ(x py − y px)2
)
.

In order to look for the Killing vector fields for the metric we recall that X =

Xρ ∂/∂ρ+Xφ ∂/∂φ ∈ X(Q) is a Killing vector field if and only if its complete lift

Xρ
∂

∂ρ
+Xφ

∂

∂φ
+

(
∂Xρ

∂ρ
vρ +

∂Xρ

∂φ
vφ

)
∂

∂vρ
+

(
∂Xφ

∂ρ
vρ +

∂Xφ

∂φ
vφ

)
∂

∂vφ

is a strict symmetry of L, i.e. XcL = 0. This implies that

∂Xρ

∂ρ
= 0

∂Xρ

∂φ
+ S2

κ(ρ)
∂Xφ

∂ρ
= 0

Sκ(ρ) Cκ(ρ)Xρ + S2
κ(ρ)

∂Xφ

∂φ
= 0.

A solution of this system is Xρ ≡ 0 and Xφ = 1, i.e. the vector field X3 = ∂/∂φ.
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Xρ only depends on φ. A simple derivation w.r.t. φ in the second equation leads to

∂2Xρ

∂φ2
+ S

2
κ(ρ)

∂2Xφ

∂ρ ∂φ
= 0,

while if we derive with respect to ρ in the expression obtained from the third equation

∂Xφ

∂φ
= −Cκ(ρ)

Sκ(ρ)
Xρ, ,

we get
∂2Xφ

∂ρ ∂φ
=

1

S2
κ(ρ)

Xρ.

This relation shows that Xρ is a solution of the equation

∂2Xρ

∂φ2
+Xρ = 0,

and then the value of Xφ may be then obtained from preceding relation. In summary,
we have got the other two linearly independent Killing vector fields

X1 = cosφ
∂

∂ρ
− Cκ(ρ)

Sκ(ρ)
sinφ

∂

∂φ
, X2 = sinφ

∂

∂ρ
+

Cκ(ρ)

Sκ(ρ)
cosφ

∂

∂φ
.
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Note now that the vector fields X1, X2 and X3 so defined are such that

[X1, X2] =

[
cosφ

∂

∂ρ
− sinφ

Cκ(ρ)

Sκ(ρ)

∂

∂φ
, sinφ

∂

∂ρ
+ cosφ

Cκ(ρ)

Sκ(ρ)

∂

∂φ

]
=

C2
κ(ρ)− 1

S2
κ(ρ)

∂

∂φ
= −κX3,

while

[X3, X1] =

[
∂

∂φ
, cosφ

∂

∂ρ
− Cκ(ρ)

Sκ(ρ)
sinφ

∂

∂φ

]
= − sinφ

∂

∂ρ
− Cκ(ρ)

Sκ(ρ)
cosφ

∂

∂φ
= −X2,

[X2, X3] =

[
sinφ

∂

∂ρ
+

Cκ(ρ)

Sκ(ρ)
cosφ

∂

∂φ
,
∂

∂φ

]
= − cosφ

∂

∂ρ
+

Cκ(ρ)

Sκ(ρ)
sinφ

∂

∂φ
= −X1,

and therefore they close on a real Lie algebra isomorphic either to so(3), if κ > 0,
so(2, 1), when κ < 0, or e(2) whenκ = 0, i.e. it depends on the value of κ.

The momentum map for this case is given by

P1 = −θ(X1), P1(ρ, φ, pρ, pφ) = −pρ cosφ+ pφ
Cκ(ρ)

Sκ(ρ)
sinφ

P2 = −θ(X2), P2(ρ, φ, pρ, pφ) = −pρ sinφ− pφ
Cκ(ρ)

Sκ(ρ)
cosφ

P3 = −θ(X3), P3(ρ, φ, pρ, pφ) = −pφ
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The Hamiltonian of the corresponding free particle is

H(ρ, φ, pρ, pφ) =
1

2
p2
ρ +

p2
φ

2 S2
κ(ρ)

,

which can be expressed in terms of the components of the momentum map. From

(
P1

P2

)
= −

(
cosφ − sinφ
sinφ cosφ

) pρ

pφ
Cκ(ρ)

Sκ(ρ)


we easily see that

P 2
1 + P 2

2 = p2
ρ + p2

φ
C2
κ(ρ)

S2
κ(ρ)

,

and consequently,

P 2
1 + P 2

2 + κP 2
3 = p2

ρ + p2
φ

1

S2
κ(ρ)

.

This shows that the Hamiltonian can be written as

H = P 2
1 + P 2

2 + κP 2
3 .

Using Cartesian coordinates, x = r cosφ and y = r sinφ, the Killing vector fields
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are:
X1(λ) =

√
1 + λ r2

∂

∂x
,

X2(λ) =
√

1 + λ r2
∂

∂y
,

X3(λ) = x ∂
∂y − y

∂
∂x .

The conditions for a volume form vol = %(x, y) dx ∧ dy to be invariant under such
vector fields are:√

1 + λ r2
∂%

∂x
dx∧dy+% d(

√
1 + λ r2)∧dy=

(√
1 + λ r2

∂%

∂x
+

λx %√
1 + λ r2

)
dx∧dy = 0 ,

√
1 + λ r2

∂%

∂y
dx∧dy+% dx∧d(

√
1 + λ r2)=

(√
1 + λ r2

∂%

∂y
+

λ y ρ√
1 + λ r2

)
dx∧dy = 0 ,

and therefore, y times the first equation minus x times the second one gives the
invariance of the function % under rotations x∂%/∂y − y∂%/∂x = 0, which implies:

%(x, y) = f(r) , r2 = x2 + y2 ,

and when using such expression in the previous equations we obtain (for r 6= 0):√
1 + λ r2

1

r

df

dr
+

λ f√
1 + λ r2

= 0 ,
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and therefore,
df

f
= −λ r dr

1 + λ r2
,

with general solution f proportional to

f(r) =
1√

1 + λ r2
.

Natural mechanical systems involve a potential term. The two most studied sit-
uations are the harmonic oscillator and the Kepler-Coulomb system, that are the
corresponding cases for constant curvature surface motion?

The harmonic oscillator on the unit sphere, on the Euclidean plane, or on the unit
Lobachewski plane, arise as Vκ(ρ) = 1

2 α
2 T2

κ(ρ), i.e.

V1(ρ) =
1

2
α2 tan2 ρ , V0(ρ) =

1

2
α2ρ2 , V−1(ρ) =

1

2
α2 tanh2 ρ .

Now if we consider the κ-dependent change ρ → r = Sκ(ρ) then the Lagrangian
L(κ) becomes

L(κ) =
1

2

( v2
r

1− κ r2
+ r2v2

φ

)
− 1

2
α2
( r2

1− κ r2

)
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and, if we change to Cartesian coordinates, we arrive to

L(κ) =
1

2

( 1

1− κ r2

)[
v2
x+v2

y−κ (xvy−yvx)2
]
− 1

2
α2
( r2

1− κ r2

)
, r2 = x2+y2 .

Similarly we can use this potential terms in the corresponding Hamiltonian

As far as the Kepler-Coulomb system in constant curvature surfacs is concerned one
uses

VK(ρ) = − k

Tκ(ρ)
.

In Cartesian coordinate, using that Cκ =
√

1− κ Sκ(ρ)

VK(r) = −k
r

√
1− κ Sκ(ρ).

Both cases have received a lot of attention during the last years.
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Quantisation of Noether momenta

In order to the differential operator be selfadjoint we need to consider a Hilbert space
L2(Q, dµ) such that the volume form be invariant under Xk.

This shows that the Hilbert space of the quantisation of constant curvature surfaces
must be

L2

(
Q,

1√
1 + λ r2

dx ∧ dy
)
.

The Killing vector fields X1(λ) and X2(λ) are skewsymmetric first order differential
operators generating ‘translations’, because as the functions are square integrable,∫
R2

ψ∗1(x, y)
√

1 + λ r2
∂ψ2(x, y)

∂x

dx dy√
1 + λ r2

= −
∫
R2

[√
1 + λ r2

∂ψ∗1(x, y)

∂x

]
ψ2(x)

dx dy√
1 + λ r2

,

and similarly when changing x by y, suggests us to quantise the momenta operators
by associating the function Pk with P̂k = −iXk.

P̂x = −i ~
√

1 + λ r2
∂

∂x
, P̂y = −i ~

√
1 + λ r2

∂

∂y
,
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and then the quantum Hamiltonian for the free case is

Ĥ = −~2

2
m

(
(1 + λ r2)

∂2

∂x2
+ λx

∂

∂x

)
− ~2

2
m

(
(1 + λ r2)

∂2

∂y2
+ λ y

∂

∂y

)
+ λ

~2

2
m

(
x2 ∂2

∂y2
+ y2 ∂2

∂x2
− 2x y

∂2

∂x ∂y
− x ∂

∂x
− y ∂

∂y

)
which can be written as

Ĥ = Ĥ1 + Ĥ2 − λĴ2 ,

with

Ĥ1 = − ~2

2m

(
(1 + λ r2)

∂2

∂x2
+ λx

∂

∂x

)
Ĥ2 = − ~2

2m

(
(1 + λ r2)

∂2

∂y2
+ λ y

∂

∂y

)
Ĵ2 = − ~2

2m

(
x2 ∂2

∂y2
+ y2 ∂2

∂x2
− 2x y

∂2

∂x ∂y
− x ∂

∂x
− y ∂

∂y

)
and each term commutes with the sum of the other two and therefore with Ĥ. There-
fore we can consider three different (complete) systems of compatible observables:

{Ĥ1, Ĥ2 − λJ2} , {Ĥ1 − λJ2, Ĥ2} , {Ĥ1 + Ĥ2, J}
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The case of harmonic oscillator includes a term

1

2
α2
( r2

1− κ r2

)
and it was exhaustively analysed in several papers, see e.g. J.F.C. + M.F. Rañada +
M. Santander, A quantum exactly solvable nonlinear oscillator with quasi-harmonic
behaviour, Ann. Phys. 322, 434–459 (2007)

The case of Kepler-Coulomb problem was analysed in a recent paper: C. Quesne,
Quantum oscillator and Kepler-Coulomb problems in curved spaces: deformed shape
invariance, point canonical transformations, and rational extensions, J. Math. Phys.
57, 102101 (2016) (also arXiv: 1604.04136)

Finally, let us remark that the computation of the Laplace–Beltrami operator corre-
sponding to the given metric is very easy: the metric matrix is given by

(gij) =
1

1 + λ r2

(
1 + λ y2 −λx y
−λx y 1 + λx2

)
with inverse

(gij) =

(
1 + λx2 λx y
λx y 1 + λ y2

)
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and therefore, taking into account that

g = det(gij) =
1

1 + λ r2
,

the Laplace–Beltrami operator which is given by

∆ψ = |g|−1/2 ∂

∂xi

(
|g|1/2 gij ∂ψ

∂xj

)
, g = det (gij) .

turns out to be:

∆ = (1 + λx2)
∂2

∂x2
+ (1 + λ y2)

∂2

∂y2
+ 2λ

(
x
∂

∂x
+ y

∂

∂y

)
+ 2λx y

∂2

∂x∂y
.
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