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Introduction

R. Low proposed a real geometry based in the space of light rays N ([Low
’88, ’89, ’90, ’93, ’01, ’06]) as a generalization of the twistor geometry
([Penrose ’77, et al ’88]).

Aim

Construction and characterization of the conformal boundary suggested by
R. Low, called L–boundary ([Low ’06]), for 3–dimensional spacetimes.
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Introduction

Starting point

(M, Cg) conformal (Lorentz) manifold.

M m–dimensional Hausdorff differentiable manifold, (m ≥ 3).

g Lorentz metric in M, (−+ + + . . .+).

(M, g) time–oriented.

Cg =
{
g = e2σg : σ ∈ F (M)

}
conformal (Lorentz) structure in M.
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Introduction

Causality

Given 0 6= v ∈ TpM, then v is said to be

timelike ⇐⇒ g (v , v) < 0

null or lightlike ⇐⇒ g (v , v) = 0

spacelike ⇐⇒ g (v , v) > 0

causal ⇐⇒ timelike or null

Causal character can be extended to differentiable curves γ : I → M
depending on γ′ (s).

Causality is conformal.
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Introduction

Figure: Causal character.
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The space of light rays

1 Introduction.

2 The space of light rays.

3 The L–boundary for dimension m = 3.

4 L–extensions for dimension m = 3.
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The space of light rays N

Given g = e2σg ∈ Cg, and a differentiable curve γ : I → M, it is known
that

γ is null g–geodesic =⇒ γ is null g–pregeodesic. ([Kulkarni ’88])

The space of light rays N
N = {Im (γ) : γ is a null geodesic for some g ∈ Cg}

This is NOT true for timelike or spacelike geodesics.

A light ray γ ∈ N can be seen as an unparametrized null geodesic.

The definition of N is conformal.
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Differentiable structure of N

Strong causality, ([Minguzzi, Sánchez ’08])

M is strongly causal in x ∈ M if and only if there exists a neighbourhood
basis at x of globally hyperbolic, causally convex (and convex normal)
open sets.

Figure: How can a light ray be defined by a basic neighbourhood?
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Differentiable structure of N

(M, Cg) strongly causal.

TM tangent bundle. T̂M = TM − {0}.

N =
{
v ∈ T̂M : g (v , v) = 0

}
. N = N+ ∪ N−.

V ⊂ M basic neighbourhood of x ∈ M contained in a coordinate
chart with Cauchy surface C ⊂ V .

N+ (C ) = {v ∈ N+ : π (v) ∈ C}. (Null vectors at C ).

PN (C ) = {[v ] = span{v} : v ∈ N+ (C )}. (Null directions at C ).

The topology and the differentiable structure of N is inherited from
PN (C ) by the diffeomorphism

γ : PN (C )→ NV given by γ ([v ]) = γ[v ]

Locally, N can be seen as a bundle of spheres: NV ' C × Sm−2.
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Topology in N

Definition

M is said to be null pseudo–convex if ∀K compact ∃K ′ compact such that
all segments of null geodesic with endpoints at K are contained in K ′.

Theorem, ([Low ’90])

Let M be strongly causal. M null pseudo–convex ⇐⇒ N Hausdorff.

Figure: N is not Hausdorff.
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Tangent space TγN

How can TγN be described with elements of M?
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Tangent space TγN

If γs are null g–geodesics =⇒ g (J (t) , γ′ (t)) = constant ∀t.

JL (γ) = {J ∈ J (γ) : g (J (t) , γ′ (t)) = const.} ' R2m−1 Jacobi
fields of null geodesic variation.

J0 (γ) = {J ∈ JL (γ) : J (t) = (αt + β) γ′ (t) , α, β ∈ R}

Proposition

TγN is isomorphic to L (γ) = JL (γ) /J0 (γ) ' R2m−3.
This means: ξ ∈ TγN ⇐⇒ J (modγ′) ∈ JL (γ) /J0 (γ)

The metric g ∈ C and the parametrization of γ ∈ N are auxiliary elements.
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Contact structure H

Contact structure H in P where dimP = 2n + 1

H is a differentiable distribution of hyperplanes in TP defined by a
1–form α verifying α ∧ (dα)n 6= 0 (maximally non–integrable).

If α is global then H is said to be co–oriented.

Contact structure H in N
Hγ = {J ∈ TγN : α (J) ≡ g (J, γ′) = 0}.
Moreover, H is co–oriented.

H is conformal

A. Bautista ( ) L–boundary 23 / 47



Contact structure H

Contact structure H in P where dimP = 2n + 1

H is a differentiable distribution of hyperplanes in TP defined by a
1–form α verifying α ∧ (dα)n 6= 0 (maximally non–integrable).

If α is global then H is said to be co–oriented.

Contact structure H in N
Hγ = {J ∈ TγN : α (J) ≡ g (J, γ′) = 0}.
Moreover, H is co–oriented.

H is conformal

A. Bautista ( ) L–boundary 23 / 47



The space of skies Σ

The sky of x ∈ M

The sky of x is defined by X = S (x) = {γ ∈ N : x ∈ γ} ' Sm−2

The space (set) of skies

Σ = {S (x) : x ∈ M}

The sky map

S : M → Σ defined by x 7→ X = S (x)
S is surjective by definition.
Injectivity of S is required ⇐⇒ M is sky–separating.
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The space of skies Σ

Figure: Skies at M.
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The space of skies Σ

Figure: Skies at N .
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The space of skies Σ

For any x ∈ M and γ ∈ S (x), if x = γ (t0) then

Tangent space to a sky

TγS (x) = {〈J〉 ∈ TγN : J (t0) = 0 (mod γ′)} ⊂ Hγ

Light non-conjugation

TγX ∩ TγY 6= {0γ} =⇒ X = Y ∈ Σ

H is conformal

Hγ = TγX ⊕ TγY for any X ,Y light non–conjugate.
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Topology in Σ

X0 ∈ Σ such that X0 ⊂ U ⊂ N where U is open.

Reconstructive or Low’s topology in Σ

It is generated by Σ (U) = {X ∈ Σ : X ⊂ U}

Theorem ([Kinlaw ’11], [–, Ibort, Lafuente 14, 15])

The sky map S : M → Σ is an homeomorphism.
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Differentiable structure in Σ

Theorem ([–, Ibort, Lafuente 14, 15])

Let V ⊂ M be a relatively compact basic open set and VΣ = S (V ) ⊂ Σ.
Then:

VΣ ⊂ Σ is light non–conjugate.

V̂ =
⋃

X∈VΣ

T̂X ⊂ TN is a regular submanifold of T̂N .

The distribution D in TN such that its leaves are T̂X is regular.

The map VΣ → V̂ /D such that X 7→ T̂X is a diffeomorphism.

Theorem ([–, Ibort, Lafuente 14, 15])

The previous one is the unique differentiable structure of Σ compatible
with the reconstructive topology and such that S : M → Σ is a
diffeomorphism.
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Reconstruction of (M , C)

Theorem of reconstruction ([–, Ibort, Lafuente, ’14])

Let (M, C),
(
M, C

)
be two strongly causal spacetimes and (N ,Σ),

(
N ,Σ

)
their corresponding pairs of spaces of light rays and skies. Let φ : N → N
be a diffeomorphism such that φ (Σ) ⊂ Σ (i.e. sky preserving). Then the
map

ϕ = S
−1 ◦ φ ◦ S : M → M

is a conformal diffeomorphism onto its image, where S : M → Σ is the sky
map of M.
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The L–boundary for dimension m = 3

1 Introduction.

2 The space of light rays.

3 The L–boundary for dimension m = 3.

4 L–extensions for dimension m = 3.

A. Bautista ( ) L–boundary 31 / 47



Low’s boundary

Idea

γ : (a, b)→ M maximal parametrized light ray.

γ̃ : (a, b)→ Grm−2 (Hγ) defined by γ̃ (s) = TγS (γ (s))
where Grm−2 (Hγ) is the grassmannian manifold of
(m − 2)–dimensional subspaces of Hγ ⊂ TγN .{
	γ = lims 7→a+ γ̃ (s) ∈ Grm−2 (Hγ)

⊕γ = lims 7→b− γ̃ (s) ∈ Grm−2 (Hγ)
(distributions in Grm−2 (H)).

New future (past) causal boundary: integral manifolds of ⊕ (	).

Problem

Do the limits 	γ and ⊕γ exist?
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(m − 2)–dimensional subspaces of Hγ ⊂ TγN .{
	γ = lims 7→a+ γ̃ (s) ∈ Grm−2 (Hγ)

⊕γ = lims 7→b− γ̃ (s) ∈ Grm−2 (Hγ)
(distributions in Grm−2 (H)).

New future (past) causal boundary: integral manifolds of ⊕ (	).

Problem

Do the limits 	γ and ⊕γ exist?
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Low’s boundary in dimM = 3

dimM = 3 =⇒ dimN = 3.

Gr1 (Hγ) = P (Hγ).

Figure: γ̃ ⊂ P (Hγ).

If M is light non–conjugate =⇒ the limits 	γ ,⊕γ exist.
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Hypotheses

Hypotheses

a. dimM = 3.

b. (M, C) is strongly causal, null–pseudo convex, light non–conjugate
and sky–separating.

c. The distributions ⊕,	 : N → P (H) defined by
⊕γ = lims 7→b− TγS (γ (s)) and 	γ = lims 7→a+ TγS (γ (s)) are
differentiable and regular and such that ⊕γ 6= 	γ for any maximally
and future–directed parametrized light ray γ : (a, b)→ M.
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The space Ñ ⊂ P (H)

Lemma

Let πPNM : PN→ M be the canonical projection. Then the map

σ : PN → P (H)
[u] 7→ Tγ[u]

S
(
πPNM ([u])

) (1)

is a diffeomorphism onto its image Ñ = σ (PN).

Corollary

Ñ is an open submanifold of P (H).
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The projective parameter

Every fibre P (Hγ) is a projective line, so it
is diffeomorphic to the circle S1.

We can construct a “bunch” of projective parametrizations

ε : NU × R → P (HU)− ∞̃
(γ, t) 7→ γ̃ (t) = TγS (γ (t))

such that ε is a diffeomorphism and moreover

t ∈ (−1, 1)⇐⇒ γ̃ (t) ∈ Ñ .

γ̃ (1) = ⊕γ , γ̃ (−1) = 	γ and π ◦ σ−1 (γ̃ (0)) ∈ C .
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Distribution D∼

σ : PN→ Ñ diffeomorphism.

P regular distribution in PN whose leaves are fibres PNx of PN→ M.

Propagating P by σ we obtain a regular distribution D∼ in Ñ whose
leaves are σ (PNx).

The map PN/P → Ñ/D∼ induced by σ is a diffeomorphism.
Since PN/P ' M then

Ñ/D∼ ' M
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Ñ/D∼ ' M

A. Bautista ( ) L–boundary 37 / 47



Distribution ∂+D∼

N ' N × {1} ε→ ∂+Ñ is a diffeomorphism.

⊕ : N → P (H) is a regular distribution in N .

Propagating the leaves of ⊕ by ε we obtain a regular distribution
∂+D∼ in ∂+Ñ whose leaves are ε (X+) for X+ leaf of ⊕.
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L–boundary

Theorem, ([–, Ibort, Lafuente, ’18])

D∼ = D∼ ∪ ∂+D∼ is a regular smooth distribution in Ñ .

Then

Ñ/D∼ is a differentiable manifold and

Ñ/D∼ = Ñ/D∼ ∪ ∂+Ñ/∂+D∼ ' M ∪ ∂+Ñ/∂+D∼ = M

∂M = ∂+Ñ/∂+D∼ is the L–boundary.
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∂M = ∂+Ñ/∂+D∼ is the L–boundary.

A. Bautista ( ) L–boundary 39 / 47



L–extensions for dimension m = 3.

1 Introduction.

2 The space of light rays.

3 The L–boundary for dimension m = 3.

4 L–extensions for dimension m = 3.
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L–extensions

Let γ : (a, b)→ M be an inextensible parametrization of a light ray γ ∈ N
such that γ ⊂ M is future–directed. This parametrization is said to be

1 continuous if γ : (a, b)→ M is a continuous map,

2 regular if γ : (a, b)→ M is a differentiable map and γ′ (s) ∈ N is a
future–directed lightlike vector for all s ∈ (a, b),

3 projective if γ : (a, b)→ M is a regular parametrization and
γ̃ (s) ∈ P (Hγ) defines a projectivity in the fibre P (Hγ), and

4 admissible if there exists a diffeomorphism h : (c , d ]→ (a, b] such
that h′ (t) > 0 for all t ∈ (c , d ] and γ ◦ h : (c , d)→ M is a projective
parametrization.
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L–extensions

Definition

A future L–extension of (M, C) is a Hausdorff smooth manifold
M = M ∪ ∂+M where ∂+M = M −M is a closed hypersurface of M
called the future L–boundary such that:

1 lims 7→b− γ (s) =∞+
γ ∈ ∂+M for any continuous parametrization of

γ ∈ N .

2 The map ∞+ : N → ∂+M defined by ∞+ (γ) =∞+
γ is a surjective

submersion.

3 For every γ0 ∈ N there exists a neighbourhood U ⊂ N and a
differentiable map ΨU : U × (a, b]→ M, where γ (s) = ΨU (γ, s) is an
admissible parametrization of γ ∈ U for s ∈ (a, b) and such that
∂ΨU
∂s (γ, b) /∈ T∞+(γ)∂

+M.

Analogously, we can define a past L–extension M = M ∪ ∂−M.
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L–extensions

Since ∞+ : N → ∂+M is a surjective submersion then every

S (p) =
(
∞+

)−1
(p) = {γ ∈ N : p =∞+ (γ)} ⊂ N

defines a leaf of a regular distribution � : N → P (TN ) given by
� (γ) = TγS (∞+ (γ)), and the map

S : ∂+M → N/�
p 7→ S (p)

is a diffeomorphism.

Theorem, ([–, Ibort, Lafuente, ’18])

The extension constructed by the L–boundary is a L–extension.
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L–extensions

Theorem, ([–, Ibort, Lafuente, ’18])

Let M1 = M ∪ ∂+M1 and M2 = M ∪ ∂+M2 be future L–extension of
(M, C), then the identity map id : M → M can be extended as a
diffeomorphism id : M1 → M2.

Conversely,

Theorem, ([–, Ibort, Lafuente, ’18])

Under the hypotheses:

a. dimM = 3.

b. (M, C) is strongly causal, null–pseudo convex, light non–conjugate
and sky–separating.

c. there is a future L–extension of (M, C)

then � = ⊕, and therefore ⊕ is differentiable and regular.
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Present and future

Present

Construction and characterization of L–boundary for 3–dimensional
spacetimes.
All results try to indicate, when possible, a way to afford the
construction for the general higher dimensional case.

What’s next?

Follow the suggested way (or find another one) to obtain analogue
results for m–dimensional spacetimes with m ≥ 3.
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Thanks to all for your attention...

... and congratulations to Alberto for his birthday.

Happy ��
�HHHsixty sixteen!!!
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