A way to build a conformal boundary of a spacetime based on light rays: the 3-dimensional case.

Alfredo Bautista Santa-Cruz (UC3M-UAM)

co-work with Alberto Ibort (ICMAT-UC3M) and Javier Lafuente (UCM)

ICMAT – Madrid, 9/3/2018 60 years Alberto Ibort Fest Classical and Quantum Physics: Geometry, Dynamics & Control

- Introduction.
- 2 The space of light rays.
- The *L*-boundary for dimension m = 3.
- *L*-extensions for dimension m = 3.

э

・ロト ・ 一下・ ・ ヨト・

- Introduction.
- The space of light rays.
- The *L*-boundary for dimension m = 3.
- *L*-extensions for dimension m = 3.

3

◆ロト ◆聞ト ◆ヨト ◆ヨト

R. Low proposed a real geometry based in the space of light rays \mathcal{N} ([Low '88, '89, '90, '93, '01, '06]) as a generalization of the twistor geometry ([Penrose '77, et al '88]).

- 4 同 1 - 4 回 1 - 4 回 1

R. Low proposed a real geometry based in the space of light rays \mathcal{N} ([Low '88, '89, '90, '93, '01, '06]) as a generalization of the twistor geometry ([Penrose '77, et al '88]).

Aim

Construction and characterization of the conformal boundary suggested by R. Low, called *L*-boundary ([Low '06]), for 3-dimensional spacetimes.

Starting point

 $(M, C_{\mathbf{g}})$ conformal (Lorentz) manifold.

E

ヘロト 人間 ト くほ ト くほ トー

Starting point

$(M, C_{\mathbf{g}})$ conformal (Lorentz) manifold.

- M m-dimensional Hausdorff differentiable manifold, ($m \ge 3$).
- g Lorentz metric in M, (-+++...+).
- (M, \mathbf{g}) time-oriented.

• $C_{\mathbf{g}} = \left\{ \overline{\mathbf{g}} = e^{2\sigma} \mathbf{g} : \sigma \in \mathfrak{F}(M) \right\}$ conformal (Lorentz) structure in M.

Causality

Given $0 \neq v \in T_p M$, then v is said to be

- timelike $\iff \mathbf{g}(v, v) < 0$
- null or lightlike $\iff \mathbf{g}(v, v) = 0$
- spacelike $\iff \mathbf{g}(v, v) > 0$
- causal ⇐⇒ timelike or null

イロト イ団ト イヨト イヨト 二日

Causality

Given $0 \neq v \in T_p M$, then v is said to be

- timelike $\iff \mathbf{g}(v, v) < 0$
- null or lightlike $\iff \mathbf{g}(v, v) = 0$
- spacelike $\iff \mathbf{g}(v, v) > 0$
- causal ⇐⇒ timelike or null

Causal character can be extended to differentiable curves $\gamma: I \to M$ depending on $\gamma'(s)$.

Causality

Given $0 \neq v \in T_p M$, then v is said to be

- timelike $\iff \mathbf{g}(v, v) < 0$
- null or lightlike $\iff \mathbf{g}(v, v) = 0$
- spacelike $\iff \mathbf{g}(v, v) > 0$
- causal ⇐⇒ timelike or null

Causal character can be extended to differentiable curves $\gamma: I \to M$ depending on $\gamma'(s)$.

Causality is conformal.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction

Figure: Causal character.

E

・ロト ・ 一下・ ・ ヨト・

Introduction.

- 2 The space of light rays.
- The *L*-boundary for dimension m = 3.
- *L*-extensions for dimension m = 3.

3

イロト イポト イヨト イヨト

 γ is null **g**-geodesic $\Longrightarrow \gamma$ is null **\overline{\mathbf{g}}**-pregeodesic. ([Kulkarni '88])

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 γ is null **g**-geodesic $\Longrightarrow \gamma$ is null **\overline{\mathbf{g}}**-pregeodesic. ([Kulkarni '88])

The space of light rays \mathcal{N}

 $\mathcal{N} = \{ \operatorname{Im}(\gamma) : \gamma \text{ is a null geodesic for some } \overline{\mathbf{g}} \in \mathcal{C}_{\mathbf{g}} \}$

 γ is null **g**-geodesic $\Longrightarrow \gamma$ is null **g**-pregeodesic. ([Kulkarni '88])

The space of light rays \mathcal{N}

 $\mathcal{N} = \{ \operatorname{Im}(\gamma) : \gamma \text{ is a null geodesic for some } \overline{\mathbf{g}} \in \mathcal{C}_{\mathbf{g}} \}$

This is NOT true for timelike or spacelike geodesics.

 γ is null **g**-geodesic $\Longrightarrow \gamma$ is null **g**-pregeodesic. ([Kulkarni '88])

The space of light rays ${\cal N}$

 $\mathcal{N} = \{ \operatorname{Im}(\gamma) : \gamma \text{ is a null geodesic for some } \overline{\mathbf{g}} \in \mathcal{C}_{\mathbf{g}} \}$

This is NOT true for timelike or spacelike geodesics.

• A light ray $\gamma \in \mathcal{N}$ can be seen as an unparametrized null geodesic.

• The definition of $\mathcal N$ is conformal.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト 一 画 … のへの

Strong causality, ([Minguzzi, Sánchez '08])

M is strongly causal in $x \in M$ if and only if there exists a neighbourhood basis at x of globally hyperbolic, causally convex (and convex normal) open sets.

Strong causality, ([Minguzzi, Sánchez '08])

M is strongly causal in $x \in M$ if and only if there exists a neighbourhood basis at x of globally hyperbolic, causally convex (and convex normal) open sets.

Figure: How can a light ray be defined by a basic neighbourhood?

A. Bautista ()

• $(M, C_{\mathbf{g}})$ strongly causal.

- (M, C_g) strongly causal.
- *TM* tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

- (M, C_g) strongly causal.
- *TM* tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

•
$$\mathbb{N} = \Big\{ v \in \widehat{T}M : \mathbf{g}(v, v) = 0 \Big\}.$$

- (M, C_g) strongly causal.
- *TM* tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

•
$$\mathbb{N} = \left\{ v \in \widehat{T}M : \mathbf{g}(v, v) = 0 \right\}$$
. $\mathbb{N} = \mathbb{N}^+ \cup \mathbb{N}^-$.

- (M, C_g) strongly causal.
- *TM* tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$
- $\mathbb{N} = \left\{ \boldsymbol{v} \in \widehat{T}M : \mathbf{g}(\boldsymbol{v}, \boldsymbol{v}) = 0 \right\}$. $\mathbb{N} = \mathbb{N}^+ \cup \mathbb{N}^-$.
- V ⊂ M basic neighbourhood of x ∈ M contained in a coordinate chart with Cauchy surface C ⊂ V.

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 足

- (M, C_g) strongly causal.
- TM tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

•
$$\mathbb{N} = \left\{ v \in \widehat{T}M : \mathbf{g}(v, v) = 0 \right\}$$
. $\mathbb{N} = \mathbb{N}^+ \cup \mathbb{N}^-$.

 V ⊂ M basic neighbourhood of x ∈ M contained in a coordinate chart with Cauchy surface C ⊂ V.

•
$$\mathbb{N}^+(C) = \{ v \in \mathbb{N}^+ : \pi(v) \in C \}$$
. (Null vectors at C).

イロト 不得下 イヨト イヨト 二日

- (M, C_g) strongly causal.
- TM tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

•
$$\mathbb{N} = \left\{ v \in \widehat{T}M : \mathbf{g}(v, v) = 0 \right\}$$
. $\mathbb{N} = \mathbb{N}^+ \cup \mathbb{N}^-$.

 V ⊂ M basic neighbourhood of x ∈ M contained in a coordinate chart with Cauchy surface C ⊂ V.

•
$$\mathbb{N}^+(C) = \{ v \in \mathbb{N}^+ : \pi(v) \in C \}$$
. (Null vectors at C).

• $\mathbb{PN}(C) = \{[v] = \operatorname{span}\{v\} : v \in \mathbb{N}^+(C)\}$. (Null directions at C).

The topology and the differentiable structure of \mathcal{N} is inherited from $\mathbb{PN}(C)$ by the diffeomorphism

$$\gamma : \mathbb{PN}(C) \to \mathcal{N}_V$$
 given by $\gamma([\nu]) = \gamma_{[\nu]}$

イロト 不得下 イヨト イヨト 二日

- (M, C_g) strongly causal.
- TM tangent bundle. $\hat{T}M = TM \{\mathbf{0}\}.$

•
$$\mathbb{N} = \left\{ v \in \widehat{T}M : \mathbf{g}(v, v) = 0 \right\}$$
. $\mathbb{N} = \mathbb{N}^+ \cup \mathbb{N}^-$.

 V ⊂ M basic neighbourhood of x ∈ M contained in a coordinate chart with Cauchy surface C ⊂ V.

•
$$\mathbb{N}^+(C) = \{ v \in \mathbb{N}^+ : \pi(v) \in C \}$$
. (Null vectors at C).

• $\mathbb{PN}(C) = \{[v] = \operatorname{span}\{v\} : v \in \mathbb{N}^+(C)\}$. (Null directions at C).

The topology and the differentiable structure of \mathcal{N} is inherited from $\mathbb{PN}(C)$ by the diffeomorphism

$$\gamma: \mathbb{PN}(\mathcal{C}) \to \mathcal{N}_{\mathcal{V}}$$
 given by $\gamma([\nu]) = \gamma_{[\nu]}$

Locally, \mathcal{N} can be seen as a bundle of spheres: $\mathcal{N}_V \simeq \mathcal{C} \times \mathbb{S}^{m-2}$.

M is said to be *null pseudo–convex* if $\forall K$ compact $\exists K'$ compact such that all segments of **null** geodesic with endpoints at *K* are contained in *K'*.

イロト イヨト イヨト

M is said to be *null pseudo–convex* if $\forall K$ compact $\exists K'$ compact such that all segments of **null** geodesic with endpoints at *K* are contained in *K'*.

Theorem, ([Low '90])

Let *M* be strongly causal. *M* null pseudo-convex $\iff \mathcal{N}$ Hausdorff.

イロト イポト イヨト イヨト

M is said to be *null pseudo–convex* if $\forall K$ compact $\exists K'$ compact such that all segments of **null** geodesic with endpoints at *K* are contained in *K'*.

Theorem, ([Low '90])

Let *M* be strongly causal. *M* null pseudo-convex $\iff \mathcal{N}$ Hausdorff.

Figure: \mathcal{N} is not Hausdorff.

M is said to be *null pseudo–convex* if $\forall K$ compact $\exists K'$ compact such that all segments of **null** geodesic with endpoints at *K* are contained in *K'*.

Theorem, ([Low '90])

Let *M* be strongly causal. *M* null pseudo-convex $\iff \mathcal{N}$ Hausdorff.

Figure: *M* is not null pseudo-convex.

A. Bautista ()

M is said to be *null pseudo–convex* if $\forall K$ compact $\exists K'$ compact such that all segments of **null** geodesic with endpoints at *K* are contained in *K'*.

Theorem, ([Low '90])

Let *M* be strongly causal. *M* null pseudo-convex $\iff \mathcal{N}$ Hausdorff.

Figure: *M* is not null pseudo-convex.

How can $T_{\gamma}\mathcal{N}$ be described with elements of *M*?

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

How can $T_{\gamma}\mathcal{N}$ be described with elements of *M*?

How can $T_{\gamma}N$ be described with elements of *M*?

1

・ロト ・ 一下・ ・ ヨト・

How can $T_{\gamma}N$ be described with elements of *M*?

1

・ロト ・ 一下・ ・ ヨト・

How can $T_{\gamma}N$ be described with elements of *M*?

1

▲ロト ▲圖ト ▲屋ト ▲屋ト
Tangent space $T_{\gamma}\mathcal{N}$

How can $T_{\gamma}N$ be described with elements of *M*?

э

Tangent space $T_{\gamma}\mathcal{N}$

How can $T_{\gamma}N$ be described with elements of *M*?

イロト 不得下 イヨト イヨト

Tangent space $T_{\gamma}\mathcal{N}$

How can $T_{\gamma}N$ be described with elements of *M*?

1

・ロト ・ 一下・ ・ ヨト・

If γ_s are null **g**-geodesics \Longrightarrow **g** $(J(t), \gamma'(t)) = \text{constant } \forall t$.

If γ_s are null **g**-geodesics \Longrightarrow **g** $(J(t), \gamma'(t)) = \text{constant } \forall t$.

- $\mathcal{J}_{L}(\gamma) = \{J \in \mathcal{J}(\gamma) : \mathbf{g}(J(t), \gamma'(t)) = \text{const.}\} \simeq \mathbb{R}^{2m-1}$ Jacobi fields of null geodesic variation.
- $\mathcal{J}_{0}(\gamma) = \{J \in \mathcal{J}_{L}(\gamma) : J(t) = (\alpha t + \beta) \gamma'(t), \alpha, \beta \in \mathbb{R}\}$

イロト 不得下 イヨト イヨト 二日

If γ_s are null **g**-geodesics \Longrightarrow **g** $(J(t), \gamma'(t)) = \text{constant } \forall t$.

• $\mathcal{J}_{L}(\gamma) = \{J \in \mathcal{J}(\gamma) : \mathbf{g}(J(t), \gamma'(t)) = \text{const.}\} \simeq \mathbb{R}^{2m-1}$ Jacobi fields of null geodesic variation.

•
$$\mathcal{J}_{0}(\gamma) = \{J \in \mathcal{J}_{L}(\gamma) : J(t) = (\alpha t + \beta) \gamma'(t), \alpha, \beta \in \mathbb{R}\}$$

Proposition

 $T_{\gamma}\mathcal{N}$ is isomorphic to $\mathcal{L}(\gamma) = \mathcal{J}_{L}(\gamma) / \mathcal{J}_{0}(\gamma) \simeq \mathbb{R}^{2m-3}$. This means: $\xi \in T_{\gamma}\mathcal{N} \iff J(\operatorname{mod} \gamma') \in \mathcal{J}_{L}(\gamma) / \mathcal{J}_{0}(\gamma)$

The metric $\mathbf{g} \in \mathcal{C}$ and the parametrization of $\gamma \in \mathcal{N}$ are auxiliary elements.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < < = < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contact structure \mathcal{H} in P where dim P = 2n + 1

- \mathcal{H} is a differentiable distribution of hyperplanes in TP defined by a 1-form α verifying $\alpha \wedge (d\alpha)^n \neq 0$ (maximally non-integrable).
- If α is global then \mathcal{H} is said to be *co-oriented*.

Contact structure \mathcal{H} in P where dim P = 2n + 1

- \mathcal{H} is a differentiable distribution of hyperplanes in TP defined by a 1-form α verifying $\alpha \wedge (d\alpha)^n \neq 0$ (maximally non-integrable).
- If α is global then \mathcal{H} is said to be *co-oriented*.

Contact structure ${\mathcal H}$ in ${\mathcal N}$

$$\mathcal{H}_{\gamma} = \{ J \in T_{\gamma} \mathcal{N} : \alpha(J) \equiv \mathbf{g}(J, \gamma') = \mathbf{0} \}.$$

Moreover, \mathcal{H} is co-oriented.

\mathcal{H} is <u>conformal</u>

The *sky* of *x* is defined by $X = S(x) = \{\gamma \in \mathcal{N} : x \in \gamma\} \simeq \mathbb{S}^{m-2}$

3

The *sky* of *x* is defined by $X = S(x) = \{\gamma \in \mathcal{N} : x \in \gamma\} \simeq \mathbb{S}^{m-2}$

The space (set) of skies

$$\Sigma = \{S(x) : x \in M\}$$

The *sky* of *x* is defined by $X = S(x) = \{\gamma \in \mathcal{N} : x \in \gamma\} \simeq \mathbb{S}^{m-2}$

The space (set) of skies

$$\Sigma = \{S(x) : x \in M\}$$

The sky map

$$S: M \rightarrow \Sigma$$
 defined by $x \mapsto X = S(x)$

The *sky* of *x* is defined by $X = S(x) = \{\gamma \in \mathcal{N} : x \in \gamma\} \simeq \mathbb{S}^{m-2}$

The space (set) of skies

$$\Sigma = \{S(x) : x \in M\}$$

The sky map

$$S: M \to \Sigma$$
 defined by $x \mapsto X = S(x)$

S is surjective by definition. Injectivity of S is required

The *sky* of *x* is defined by $X = S(x) = \{\gamma \in \mathcal{N} : x \in \gamma\} \simeq \mathbb{S}^{m-2}$

The space (set) of skies

$$\Sigma = \{S(x) : x \in M\}$$

The sky map

$$S: M \to \Sigma$$
 defined by $x \mapsto X = S(x)$

S is surjective by definition. Injectivity of S is required $\iff M$ is sky-separating.

The space of skies Σ

Figure: Skies at *M*.

E

The space of skies Σ

Ξ

For any $x \in M$ and $\gamma \in S(x)$, if $x = \gamma(t_0)$ then

$$\mathcal{T}_{\gamma} \mathcal{S} \left(x
ight) = \left\{ \left\langle J
ight
angle \in \mathcal{T}_{\gamma} \mathcal{N} : J \left(t_0
ight) = \mathsf{0} \left(ext{mod } \gamma'
ight)
ight\} \subset \mathcal{H}_{\gamma}$$

1

・ロト ・ 一下・ ・ ヨト・

For any $x \in M$ and $\gamma \in S(x)$, if $x = \gamma(t_0)$ then

$$\mathcal{T}_{\gamma} \mathcal{S}\left(x
ight) = \left\{\left\langle J
ight
angle \in \mathcal{T}_{\gamma} \mathcal{N}: J\left(t_{0}
ight) = \mathsf{0}\left(\mathrm{mod}\;\gamma'
ight)
ight\} \subset \mathcal{H}_{\gamma}$$

Light non-conjugation

$$T_{\gamma}X \cap T_{\gamma}Y \neq \{0_{\gamma}\} \Longrightarrow X = Y \in \Sigma$$

Ξ

イロト 不得下 イヨト イヨト

For any $x \in M$ and $\gamma \in S(x)$, if $x = \gamma(t_0)$ then

$$\mathcal{T}_{\gamma}\mathcal{S}\left(x
ight)=\left\{\left\langle J
ight
angle\in\mathcal{T}_{\gamma}\mathcal{N}:J\left(t_{0}
ight)=0\left(\mathrm{mod}\;\gamma'
ight)
ight\}\subset\mathcal{H}_{\gamma}
ight\}$$

Light non-conjugation

$$T_{\gamma}X \cap T_{\gamma}Y \neq \{0_{\gamma}\} \Longrightarrow X = Y \in \Sigma$$

 \mathcal{H} is conformal

$$\mathcal{H}_{\gamma} = T_{\gamma}X \oplus T_{\gamma}Y$$
 for any X, Y light non–conjugate.

Ξ

• • = • • = •

 $X_0 \in \Sigma$ such that $X_0 \subset \mathcal{U} \subset \mathcal{N}$ where \mathcal{U} is open.

Reconstructive or Low's topology in Σ

It is generated by $\Sigma(\mathcal{U}) = \{X \in \Sigma : X \subset \mathcal{U}\}$

 $X_0 \in \Sigma$ such that $X_0 \subset \mathcal{U} \subset \mathcal{N}$ where \mathcal{U} is open.

Reconstructive or Low's topology in Σ

It is generated by $\Sigma(\mathcal{U}) = \{X \in \Sigma : X \subset \mathcal{U}\}$

Theorem ([Kinlaw '11], [-, Ibort, Lafuente 14, 15])

The sky map $S: M \to \Sigma$ is an homeomorphism.

Theorem ([-, Ibort, Lafuente 14, 15])

Let $V \subset M$ be a relatively compact basic open set and $V_{\Sigma} = S(V) \subset \Sigma$. Then:

- $V_{\Sigma} \subset \Sigma$ is light non-conjugate.
- $\widehat{V} = \bigcup_{X \in V_{\Sigma}} \widehat{T}X \subset T\mathcal{N}$ is a **regular** submanifold of $\widehat{T}\mathcal{N}$.
- The distribution \mathcal{D} in $T\mathcal{N}$ such that its leaves are $\widehat{T}X$ is regular.
- The map $V_{\Sigma} \to \widehat{V}/\mathcal{D}$ such that $X \mapsto \widehat{T}X$ is a diffeomorphism.

Theorem ([-, Ibort, Lafuente 14, 15])

The previous one is the unique differentiable structure of Σ compatible with the reconstructive topology and such that $S: M \to \Sigma$ is a diffeomorphism.

э

・ロト ・ 一下・ ・ ヨト・

Theorem of reconstruction ([-, lbort, Lafuente, '14])

Let (M, \mathcal{C}) , $(\overline{M}, \overline{\mathcal{C}})$ be two strongly causal spacetimes and (\mathcal{N}, Σ) , $(\overline{\mathcal{N}}, \overline{\Sigma})$ their corresponding pairs of spaces of light rays and skies. Let $\phi : \mathcal{N} \to \overline{\mathcal{N}}$ be a diffeomorphism such that $\phi(\Sigma) \subset \overline{\Sigma}$ (i.e. *sky preserving*). Then the map

$$\varphi = \overline{S}^{-1} \circ \phi \circ S : M \to \overline{M}$$

is a conformal diffeomorphism onto its image, where $\overline{S} : \overline{M} \to \overline{\Sigma}$ is the sky map of \overline{M} .

- Introduction.
- 2 The space of light rays.
- The *L*-boundary for dimension m = 3.
- *L*-extensions for dimension m = 3.

3

Idea • $\gamma : (a, b) \to M$ maximal parametrized light ray. • $\tilde{\gamma} : (a, b) \to Gr^{m-2}(\mathcal{H}_{\gamma})$ defined by $\tilde{\gamma}(s) = T_{\gamma}S(\gamma(s))$ where $Gr^{m-2}(\mathcal{H}_{\gamma})$ is the grassmannian manifold of (m-2)-dimensional subspaces of $\mathcal{H}_{\gamma} \subset T_{\gamma}\mathcal{N}$. • $\begin{cases} \Theta_{\gamma} = \lim_{s \mapsto a^{+}} \tilde{\gamma}(s) \in Gr^{m-2}(\mathcal{H}_{\gamma}) \\ \oplus_{\gamma} = \lim_{s \mapsto b^{-}} \tilde{\gamma}(s) \in Gr^{m-2}(\mathcal{H}_{\gamma}) \end{cases}$ (distributions in $Gr^{m-2}(\mathcal{H})$). • New future (past) causal boundary: integral manifolds of $\oplus (\ominus)$.

Idea • $\gamma : (a, b) \to M$ maximal parametrized light ray. • $\tilde{\gamma} : (a, b) \to Gr^{m-2}(\mathcal{H}_{\gamma})$ defined by $\tilde{\gamma}(s) = T_{\gamma}S(\gamma(s))$ where $Gr^{m-2}(\mathcal{H}_{\gamma})$ is the grassmannian manifold of (m-2)-dimensional subspaces of $\mathcal{H}_{\gamma} \subset T_{\gamma}\mathcal{N}$. • $\begin{cases} \ominus_{\gamma} = \lim_{s \mapsto a^{+}} \tilde{\gamma}(s) \in Gr^{m-2}(\mathcal{H}_{\gamma}) \\ \oplus_{\gamma} = \lim_{s \mapsto b^{-}} \tilde{\gamma}(s) \in Gr^{m-2}(\mathcal{H}_{\gamma}) \end{cases}$ (distributions in $Gr^{m-2}(\mathcal{H})$). • New future (past) causal boundary: integral manifolds of \oplus (\ominus).

Problem

• Do the limits \ominus_{γ} and \oplus_{γ} exist?

Low's boundary in dim M = 3

• dim
$$M = 3 \Longrightarrow$$
 dim $\mathcal{N} = 3$.
• $Gr^1(\mathcal{H}_{\gamma}) = \mathbb{P}(\mathcal{H}_{\gamma}).$

E

Low's boundary in dim M = 3

• dim
$$M = 3 \Longrightarrow$$
 dim $\mathcal{N} = 3$.
• $Gr^1(\mathcal{H}_{\gamma}) = \mathbb{P}(\mathcal{H}_{\gamma}).$

Figure: $\widetilde{\gamma} \subset \mathbb{P}(\mathcal{H}_{\gamma}).$

E

Low's boundary in dim M = 3

• dim
$$M = 3 \Longrightarrow$$
 dim $\mathcal{N} = 3$.
• $Gr^1(\mathcal{H}_{\gamma}) = \mathbb{P}(\mathcal{H}_{\gamma}).$

Figure: $\widetilde{\gamma} \subset \mathbb{P}(\mathcal{H}_{\gamma}).$

If *M* is light non–conjugate \implies the limits $\ominus_{\gamma}, \oplus_{\gamma}$ exist.

A. Bautista ()

E

(ロ) (部) (注) (注)

Hypotheses

- a. dim M = 3.
- b. (M, C) is strongly causal, null-pseudo convex, light non-conjugate and sky-separating.
- c. The distributions $\oplus, \ominus : \mathcal{N} \to \mathbb{P}(\mathcal{H})$ defined by $\oplus_{\gamma} = \lim_{s \mapsto b^{-}} T_{\gamma}S(\gamma(s))$ and $\oplus_{\gamma} = \lim_{s \mapsto a^{+}} T_{\gamma}S(\gamma(s))$ are differentiable and regular and such that $\oplus_{\gamma} \neq \oplus_{\gamma}$ for any maximally and future-directed parametrized light ray $\gamma : (a, b) \to M$.

Lemma

Let $\pi_M^{\mathbb{PN}}:\mathbb{PN} o M$ be the canonical projection. Then the map

$$\begin{array}{rcl} \sigma : & \mathbb{PN} & \to & \mathbb{P}\left(\mathcal{H}\right) \\ & & \left[u\right] & \mapsto & T_{\gamma_{\left[u\right]}}S\left(\pi_{M}^{\mathbb{PN}}\left(\left[u\right]\right)\right) \end{array}$$
(1)

is a diffeomorphism onto its image $\widetilde{\mathcal{N}} = \sigma (\mathbb{PN})$.

Lemma

Let $\pi_M^{\mathbb{PN}}:\mathbb{PN} o M$ be the canonical projection. Then the map

$$\begin{aligned} \sigma : & \mathbb{PN} & \to & \mathbb{P}(\mathcal{H}) \\ & & [u] & \mapsto & T_{\gamma_{[u]}} S\left(\pi_M^{\mathbb{PN}}\left([u]\right)\right) \end{aligned}$$
(1)

イロト イポト イヨト イヨト

is a diffeomorphism onto its image $\widetilde{\mathcal{N}} = \sigma (\mathbb{PN})$.

Corollary

 $\widetilde{\mathcal{N}}$ is an open submanifold of $\mathbb{P}(\mathcal{H})$.

The projective parameter

Every fibre $\mathbb{P}(\mathcal{H}_{\gamma})$ is a projective line, so it is diffeomorphic to the circle \mathbb{S}^1 .

- 4 ∃ ▶

The projective parameter

Every fibre $\mathbb{P}(\mathcal{H}_{\gamma})$ is a projective line, so it is diffeomorphic to the circle \mathbb{S}^1 .

We can construct a "bunch" of projective parametrizations

$$\begin{array}{rcl} \varepsilon: & \mathcal{N}_{U} \times \mathbb{R} & \rightarrow & \mathbb{P}\left(\mathcal{H}_{U}\right) - \widetilde{\infty} \\ & (\gamma, \mathbf{t}) & \mapsto & \widetilde{\gamma}\left(\mathbf{t}\right) = T_{\gamma} S\left(\gamma\left(\mathbf{t}\right)\right) \end{array}$$

such that ε is a diffeomorphism and moreover

•
$$\mathbf{t} \in (-1, 1) \iff \widetilde{\gamma} (\mathbf{t}) \in \widetilde{\mathcal{N}}.$$

• $\widetilde{\gamma}(\mathbf{1}) = \oplus_{\gamma}, \ \widetilde{\gamma}(-\mathbf{1}) = \ominus_{\gamma} \text{ and } \pi \circ \sigma^{-1}(\widetilde{\gamma}(\mathbf{0})) \in C.$

- $\sigma: \mathbb{PN} \to \widetilde{\mathcal{N}}$ diffeomorphism.
 - \mathcal{P} regular distribution in \mathbb{PN} whose leaves are fibres \mathbb{PN}_{\times} of $\mathbb{PN} \to M$.
 - Propagating \mathcal{P} by σ we obtain a regular distribution \mathcal{D}^{\sim} in $\widetilde{\mathcal{N}}$ whose leaves are σ (\mathbb{PN}_{x}).

 $\sigma: \mathbb{PN} \to \widetilde{\mathcal{N}}$ diffeomorphism.

- \mathcal{P} regular distribution in \mathbb{PN} whose leaves are fibres \mathbb{PN}_{\times} of $\mathbb{PN} \to M$.
- Propagating \mathcal{P} by σ we obtain a regular distribution \mathcal{D}^{\sim} in $\widetilde{\mathcal{N}}$ whose leaves are σ (\mathbb{PN}_{x}).

The map $\mathbb{PN}/\mathcal{P} \to \widetilde{\mathcal{N}}/\mathcal{D}^{\sim}$ induced by σ is a diffeomorphism. Since $\mathbb{PN}/\mathcal{P} \simeq M$ then

 $\widetilde{\mathcal{N}}/\mathcal{D}^{\sim}\simeq \textit{M}$

 $\mathcal{N} \simeq \mathcal{N} \times \{1\} \xrightarrow{\varepsilon} \partial^+ \widetilde{\mathcal{N}}$ is a diffeomorphism.

- \oplus : $\mathcal{N} \to \mathbb{P}(\mathcal{H})$ is a regular distribution in \mathcal{N} .
- Propagating the leaves of \oplus by ε we obtain a regular distribution $\partial^+ \mathcal{D}^\sim$ in $\partial^+ \widetilde{\mathcal{N}}$ whose leaves are $\varepsilon(X^+)$ for X^+ leaf of \oplus .

イロト 不得下 イヨト イヨト
Theorem, ([-, Ibort, Lafuente, '18])

 $\overline{\mathcal{D}^{\sim}} = \mathcal{D}^{\sim} \cup \partial^{+} \mathcal{D}^{\sim} \text{ is a regular smooth distribution in } \overline{\widetilde{\mathcal{N}}}.$

Theorem, ([-, Ibort, Lafuente, '18])

 $\overline{\mathcal{D}^{\sim}} = \mathcal{D}^{\sim} \cup \partial^{+} \mathcal{D}^{\sim} \text{ is a regular smooth distribution in } \overline{\widetilde{\mathcal{N}}}.$

Then

$$\widetilde{\mathcal{N}}/\overline{\mathcal{D}^{\sim}}$$
 is a differentiable manifold and

$$\overline{\widetilde{\mathcal{N}}}/\overline{\mathcal{D}^{\sim}} = \widetilde{\mathcal{N}}/\mathcal{D}^{\sim} \cup \partial^{+}\widetilde{\mathcal{N}}/\partial^{+}\mathcal{D}^{\sim} \simeq \textit{M} \cup \partial^{+}\widetilde{\mathcal{N}}/\partial^{+}\mathcal{D}^{\sim} = \overline{\textit{M}}$$

 $\partial M = \partial^+ \widetilde{\mathcal{N}} / \partial^+ \mathcal{D}^{\sim}$ is the *L*-boundary.

- Introduction.
- 2 The space of light rays.
- The *L*-boundary for dimension m = 3.
- *L*-extensions for dimension m = 3.

3

イロト 不得下 イヨト イヨト

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

• continuous if $\gamma : (a, b) \to M$ is a continuous map,

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

• continuous if $\gamma : (a, b) \to M$ is a continuous map,

2 regular if $\gamma : (a, b) \to M$ is a differentiable map and $\gamma'(s) \in \mathbb{N}$ is a future-directed lightlike vector for all $s \in (a, b)$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

• continuous if $\gamma : (a, b) \to M$ is a continuous map,

- **3** regular if $\gamma : (a, b) \to M$ is a differentiable map and $\gamma'(s) \in \mathbb{N}$ is a future-directed lightlike vector for all $s \in (a, b)$,
- S projective if γ : (a, b) → M is a regular parametrization and $\widetilde{\gamma}$ (s) ∈ $\mathbb{P}(\mathcal{H}_{\gamma})$ defines a projectivity in the fibre $\mathbb{P}(\mathcal{H}_{\gamma})$, and

(日) (四) (王) (王) (王)

- continuous if $\gamma : (a, b) \to M$ is a continuous map,
- **e regular** if *γ* : (*a*, *b*) → *M* is a differentiable map and *γ'*(*s*) ∈ N is a future–directed lightlike vector for all *s* ∈ (*a*, *b*),
- projective if $\gamma : (a, b) \to M$ is a regular parametrization and $\widetilde{\gamma}(s) \in \mathbb{P}(\mathcal{H}_{\gamma})$ defines a projectivity in the fibre $\mathbb{P}(\mathcal{H}_{\gamma})$, and
- admissible if there exists a diffeomorphism h : (c, d] → (a, b] such that h'(t) > 0 for all t ∈ (c, d] and γ ∘ h : (c, d) → M is a projective parametrization.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Definition

A future L-extension of (M, C) is a Hausdorff smooth manifold $\overline{M} = M \cup \partial^+ M$ where $\partial^+ M = \overline{M} - M$ is a closed hypersurface of \overline{M} called the future L-boundary such that:

- $\lim_{s\mapsto b^-} \gamma(s) = \infty_{\gamma}^+ \in \partial^+ M$ for any continuous parametrization of $\gamma \in \mathcal{N}$.
- The map ∞⁺ : $\mathcal{N} \to \partial^+ M$ defined by ∞⁺ (γ) = ∞⁺_γ is a surjective submersion.

Analogously, we can define a past *L*-extension $\overline{M} = M \cup \partial^- M$.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < = < = > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Since $\infty^+:\mathcal{N}\to\partial^+M$ is a surjective submersion then every

$$S(p) = (\infty^+)^{-1}(p) = \{\gamma \in \mathcal{N} : p = \infty^+(\gamma)\} \subset \mathcal{N}$$

defines a leaf of a regular distribution $\boxplus : \mathcal{N} \to \mathbb{P}(T\mathcal{N})$ given by $\boxplus (\gamma) = T_{\gamma}S(\infty^+(\gamma))$, and the map

$$\begin{array}{ccccc} S: & \partial^+ M & \to & \mathcal{N}/\boxplus \\ & p & \mapsto & S(p) \end{array}$$

is a diffeomorphism.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Since $\infty^+:\mathcal{N}\to\partial^+M$ is a surjective submersion then every

$$S(p) = (\infty^+)^{-1}(p) = \{\gamma \in \mathcal{N} : p = \infty^+(\gamma)\} \subset \mathcal{N}$$

defines a leaf of a regular distribution $\boxplus : \mathcal{N} \to \mathbb{P}(T\mathcal{N})$ given by $\boxplus (\gamma) = T_{\gamma}S(\infty^+(\gamma))$, and the map

$$\begin{array}{ccccc} S: & \partial^+ M & \to & \mathcal{N}/\boxplus \\ & p & \mapsto & S(p) \end{array}$$

is a diffeomorphism.

Theorem, ([-, lbort, Lafuente, '18]) The extension constructed by the *L*-boundary is a *L*-extension.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < = < = > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem, ([-, Ibort, Lafuente, '18])

Let $\overline{M}_1 = M \cup \partial^+ M_1$ and $\overline{M}_2 = M \cup \partial^+ M_2$ be future *L*-extension of (M, \mathcal{C}) , then the identity map $\mathrm{id} : M \to M$ can be extended as a diffeomorphism $\overline{\mathrm{id}} : \overline{M}_1 \to \overline{M}_2$.

イロト イポト イヨト イヨト

Theorem, ([-, Ibort, Lafuente, '18])

Let $\overline{M}_1 = M \cup \partial^+ M_1$ and $\overline{M}_2 = M \cup \partial^+ M_2$ be future *L*-extension of (M, \mathcal{C}) , then the identity map $\mathrm{id} : M \to M$ can be extended as a diffeomorphism $\overline{\mathrm{id}} : \overline{M}_1 \to \overline{M}_2$.

Conversely,

Theorem, ([-, Ibort, Lafuente, '18])

Under the hypotheses:

- a. dim M = 3.
- b. (M, C) is strongly causal, null-pseudo convex, light non-conjugate and sky-separating.
- c. there is a future *L*-extension of (M, C)

then $\boxplus=\oplus,$ and therefore \oplus is differentiable and regular.

ヘロア ヘロア ヘロマ

Present

Construction and characterization of *L*-boundary for 3-dimensional spacetimes.
All results try to indicate, when possible, a way to afford the construction for the general higher dimensional case.

イロト イポト イヨト イヨト

Present

Construction and characterization of *L*-boundary for 3-dimensional spacetimes.
All results try to indicate, when possible, a way to afford the construction for the general higher dimensional case.

What's next?

• Follow the suggested way (or find another one) to obtain analogue results for *m*-dimensional spacetimes with $m \ge 3$.

Main bibliography

- -, A. Ibort, J. Lafuente, On the space of light rays of a spacetime and a reconstruction theorem by Low. Class. Quant. Grav. 31 (2014) 075020.
- -, A. Ibort, J. Lafuente, Causality and skies: is non-refocussing necessary?. Class. Quant. Grav. 32 (2015) 105002.
- –, A. Ibort, J. Lafuente, R. Low. A conformal boundary for space-times based on light-like geodesics: The 3-dimensional case. J. Math. Phys. 58 (2017) 022503.
 - Low, R.J. Stable singularities of wave-fronts in general relativity. J. Math. Phys. 39 (6), 3332–3335 (1998).
 - Low, R.J. *The space of null geodesics (and a new causal boundary)*. Lecture Notes in Physics 692 35–50 (2006).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Thanks to all for your attention...

... and congratulations to Alberto for his birthday.

Happy sixty sixteen!!!

・ロト ・ 四ト ・ ヨト ・ ヨト …