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SREOLENa VOrtiCity advection and inversion —
rLJJ’f]JJUE system and Monge-Ampere
quJrc ?

J e ndre duality, singularities — contact

~ —GQe Métw

’.”_""-Lﬁymplectlc and contact geometries — Kahler

‘geometry

¢ Optimal transport, minimal surfaces — calibrated
geometry
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Incompressible Navier gcokes
: (2d/3d)

ou
5 +u - Vu+ Vp = vViu
ot

V-u=>0
— ]) = U i,j ”}E

- -P01sson eqn for
p or Monge-
Ampere eqn
for y




.
ELrtiCity and Rate of Straln P

: (Okubo Welss Crlterlon)

Q > O => vort|C|ty domlnates over rate

of strain, Monge-Ampere equation is
elliptic
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o Ap =—wu = “—Tr §°

> S, Eibbon (Physica D 2008 — Euler, 250 years on):
gilice 'iptic equation for the pressure is by no means

gl / understood and locally holds the key to the

{OTANIC tlon of vortical structures through the sign of the

= rf‘[E placian of pressure. In this relation, which is often

e Glight of as a constraint, may lie a deeper knowledge of

'..—d‘

"""f- ‘the geometry of both the Euler and Navier-Stokes

-~ equations...The fact that vortex structures are
dynamically favoured may be explained by inherent
geometrical properties of the Euler equations but little is

known about these features.”
v SSUIRIREY;
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onge-Ampere Geometry

= Adp A dy + B(dz A dp — dy A dg)

?f—_-_,:: +Cdx Adg+ Ddp A dg + Edx A dy

On the graph of a
function ¢(x,y)
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VIEASEqn) IS elliptic, and
B -A 0-D
' —-B )




S a) A, = is elliptic & pf(w) >0« I2=-Id
g b) A, = is hyperbolic & pf(w) <0< I2 =1d

- i, -~
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PROPOSITION 1. (Lychagin-Roubtsov theorem) The three following as-

sertions are equivalent:

1. A, =0 s locally equivalent to one of the two equations
Ap=10
L =0

2. the almost complex (or product) structure I, is integrable

3. the form —= 15 closed.
| pf(w)]
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omplex.structure: 2dEUlerss

= w=Vpdr Ady — 2du A dv
Poisson eqn

:—q ’b—p

= Complex
=~ structure

= —1if V’p >0

o
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EXifEia volume form in terms off theps
SYrple ectlc structure,we define a"ﬁ'etnc
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== f rm for the hyperbolic MA equation.

In general, we have an almost hyper-
symplectic structure.



eneralized -Solutiens

-

A generalized solution of (4) is a 2d-submanifold L? ¢ M* which is bilagrangian
with respect to w and €. Since w = Q(I,-,-), it is equivalent to saying that L
is closed under I: for any non vanishing vector field X on L, { X, I X} is a local

frame of L.

PROPOSITION 2. Let L be a generalized solution and h,, the restriction of
g., on L.

1. if Ap > 0, the metric h,, has signature (2,0) or (0,2)

2. if Ap < 0, the metric h,, has signature (1,1).




Induced metrics

-

REMARK 1. If L = Ly is a reqular solution, then the induced metric h,, is

affine. Indeed its tangent space is generated by X| = Oy, — Vo, 2,00, + Vs, 2, Ou,

and Xo = 0yy — VaoraOuy + Vay2e0uy. The induced metric on Ly, is therefore

Ve T
ho =2 V7 Y (1)
Uy Uy

and consequently the invariants of this tensor are

det(hy,) = 2Ap, tr(hy) = 2A.
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Evoelution of the Pfaffian™ s
& (cfi. R., Cloughr@tWhite QJRMS 2014)

g™ s,

, .Invariants of the velocity
ghadient tensor — analysis of critical points
BEpJacian of pressure is proportional to the
8Second invariant of the VGT, Q(u,v), which in 2d

7

Si5ithe Jacobian determinant:

@antwell'et all 1988..

DO -
[_}: = Py — ¢y, Up




A Geometric Flow.

Let 1;; and p;; denote the hessian matrices of the stream function and
the pressure, then

D;;
Dt

= VvAY;; + Ez‘j|¢mn| — CikDjk
J Kij(z—u)[bmn(v)|dy

2.8. Singular integral operators

Using (2.29), we may define a linear operator
Ty C2(R") — C=(R")
that gives the second derivatives of a function in terms of its Laplacian,
Oiju = Ti; Auw.
Explicitly,

(2.35) T f(z) = fﬂ E }Kﬁ{m —y) [f(y) — f(=)] dy + %f{m}ﬁw

where By (z) D supp f and K;; = —d;;I" is given by

(2.36) Koi(r) = —— (15-- “"‘*‘“J’) .

aplz® \n 7 |22




Let U = [R? and consider T*U with coordinates (z, v, p, g). Furthermore, let us introduce

complex coordinates

2= iWar—+v2¢ and 2? = Vay— iv2p (4.21)
for constant a = [ so that
A 1 i = 1 = A 1 1 - i =
] = _E(f_ﬁfr+ﬁf'§') and 9 = E(ﬁfy-i_ﬁfp) . [422}
Hence,
(0 0 0 /2
0 0 \/E 0
Jop = c (4.23)
0 —/5 0 0
WE o0 0 o
with JDE = — 14 and Jycg = ice. In addition, we define a holomorphic symplectic structure

by

Wp = %Eﬂﬁdgﬂ Ade? = d2l Ad2? = Jmwy = adzady—2dpadg,  (4.24)
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A = Azdz® with Aj = a(z,y) +ifx

Imw = [a+alay + be)|dz ~ dy

9 . __ oy | 1 ~ — 1
Uay) +V 28(VYer + Yyy) = o+ Valay + be)




In this section we are concerned with solutions of the incompressible Euler

equations of Burgers'-type. That is, we consider flows of the form

i = (=Y(t)21/2 — Yoy, =Y (t)22/2 + Yy, Y(t)23)"

- -

5--f->‘*'-Con5|der a stream function

:

. .3 .9 9
U =y, 22,t) — ﬁ""r'{__t__}z.'l‘.'é.

Using (12) and (13), (3) becomes




SEeometny. of 3-ferms'I

'chhain et al. (1993) associated with a Monge-Ampére structure (£2, w) an

invariant symmetric form

Lxw A Lyw A Q)

L(X.Y) =
g.(X.Y) -

whose signature distinguishes the different orbits of the symplectic group action.
In a seminal paper on the geometry of 3-forms, Hitchin (2001) defined the
notion of nondegenerate 3-forms on a 6-dimensional space and constructed a
scalar invariant, which we call the Hitehin pfaffian, which is non zero for such
nondegenerate 3-forms. Hitchin also defined an invariant tensor A, on the phase
space satistying
A% = \w) Id.

; : - Ao . :
Note that in the nondegenerate case, K, = ———— is a product structure if

Aw)]

Alw) = 0 and a complex structure if A(w) < 0.



S Burgers, vorticesHl
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Denote by (€2, @) the corresponding Monge-Ampére structure on T*R?, with

(2 the canonical symplectic form
Q=dry Nd&y +dxa AdEs + drs N dEs,

where §; = V,; V¥ and, following Roulstone ef al. (2009), w is the effective 3-form

w = déy N dés Adrs —adry Adxg Adrs +drey Adreg A dEs, (15)

with a(zy,x2) = Ap/2.

The corresponding “real Calabi-Yau” structure on T*R° is

(o K, Qw4+ w,w — W)



i) gw = 2adr3 @ drs 4 dr) @ d§y + dre @ dfz — drs @ dés (e(g=) = (3,3))

\

(1 0

0
0o -1 0
0 1 5
and thus K2 =1
0 0
0 0

Kﬂ 2a —1)

iil) w+w = 2d§ ANdég Ndes, w—w = 2dry Adrg A (ds — adrs),

and the Hitchin pfaffian is A(w) = 1.




syYmplectic reduction]
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Let G = R acting on T*R? by translation on the third coordinate:

}"'?'(11'11:172:33!‘51!‘5?:‘53) — (T'l: r2,Ts + T;£1;£2;£3}

This action is trivially hamiltonian with moment map p(z.§) = —& and in-
d d
ﬁn t al tor X = A, = —.
itesimal generator ( d'r) 92,

ﬂc :dil’-l .-""'ad-{;.]_ —|—dT2.-'""nd-£2

() = ﬂc — i-ﬂ_};_’ﬂ AN L}"ﬂ
2a

e

1
W = —E{dgl NdEs — adry A drs),

w = N x4+ w9 A Ly (.

.

1
Wo = E(d{il A d-£2 —|—{1{iI'1 .-"'"deg).

3
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A geometric interpretation of coherent
structures in Navier—Stokes flows

= ] = . s - - 1.5
By I. Rovrstone" ™, B. Banos?, J. D. Gieeon® anp V. N. Rovstsov™
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sometiry.of -3-forms I
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F_j‘ _j‘?

Ap = —u;u; == .’;:E—TI‘ S
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m= ﬁjﬂ r:l:r.l Adzy Adzs = 2(duy Adug A dzg +dug Adey Adug +dzy A dug Adus)
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chagm Roubtsov (LR) metric
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(W, w) =— 1 I dwm A lw)o)

) J

"y . 'y ‘
dxr Jdu,
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Metric.and-Pfaffian™
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~  structure

= metric and symplectic
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The “pfatfian” Mw) = 1r Kq




In particular, when A(w) <0, the tensor

1
K

is an almost-complex structure and the real three-form @ is the real part of the
complex form

@ = (g Fivg ) A (pe +ive) A (g +ivg) + (g —ivg) A (pg — iv) A (g — ivg)

f ey 1:." 2 I B - lay — l"'F - e
where p; = (Ap/2)"? dz; and v;= (Ap/2)” """ du,;, when Ap>0

!




B Symplectic, reductionT1

.

Let R acting on T*R® by translation on (xs,us):
AalT1, T2, T3, U, U, Ug) = (71, T2, 23 + T, Up. Up, us +77), TER
The infinitesimal generator is
d d d
XN=MA|—]=— —
(dr) dxs * Tﬂug
and the moment map is

p(r,u) =vyrs — us.

We observe that g = constant yields the linearity of ug in 24, as defined in (12).



For ¢ € R, the reduced space M, is trivially T*R?:

M. = {(z1,r2, T3, u1, U2, yx3 — ¢} /T3 ~ 23+ 1
— {(Il'- T2, D! Uy, Ua, _E:]}

~ and the pair (we, ) = (txw, txt) is

=

— ¢

- We = adry Ndre —duy N dug — yduy A dry — ydry A dus

hﬁi',: = duy N dro + dry A dug + ydry A dxs
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Considering the following change of variables

we obtain

f. =dXy NdUy + dXo A dUs

We = Wy — %HE

Wp = ({1—|— g’;ﬁz) d.Xl A d;’fg — dUI M de



BUEErS” vortices via reduction
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PROPOSITION 5. If ¥(xy,2a2,t) is solution of the Monge-Ampére equation

in two dimensions

.- Ap 3
T|fI’II:I!1I1HI’IIIEQ:IEQ _T'.""rgla:g - 2 + F} {t) (26)

= le{t):r.g — c(t),

18 solution of —Ap = usu;; and u;; = 0 in three dimensions.
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> Yoreldh y-domlnated 1ncompr6551ble Euler
I'L)‘/\ i 2D are associated with almost-
’<’| gahile “structure — a geometric version of
_ Welss criterion”, much studied in
5"” fbulence

— Usmg the geometry of 3-forms in six
- dimensions, we are able to generalize this
criterion to 3D incompressible flows



HESENdeas originatein moMge’
czlle ‘a_ mospherl ¢ flows, in which rotation
lomimnatesiandsanse imﬁsqade-mlates«the—-—-

flogy elomty to the pressure field
[

VG _[j trye and R (1996), Roubtsov and R
Q_l ) 2001) Delahaies and R (2009)

wed how hyper-Kahler structures

,f"-
,-4-—"-"-

,,—+pr0V1de a geometric foundation for
~understanding Legendre duality
~ (singularity theory), Hamiltonian
structure and Monge-Ampere equations,
in semi-geostrophic theory and related
models
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hrsemi eostrophlc theory .g}__lygaé‘l"”“&-
assumptions dlcﬁ‘@ ‘that the Monge-

_A\_"_r_r_lp re-equationsshould remain elliptic:
1;_1 Lj er/ Navier-Stokes no such conditions

ISt - _j‘2 /3d E/N-S may be describable in
ms of Hitchin’s generalized geometry
= ;, Wolf & McOrist)

—;»:f s Further, the geometry of N-S is
- parameterized by time: a geometric flow
(of advection-diffusion type) emerges in a
very natural way




